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Introduction

In scientific articles the dynamics of cellular pathways is often described by
means of informal/ambiguous diagrams accompained by a textual
description

Let’s see some examples....
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Introduction

This informal way of describing the dynamics of biological systems is not
suitable for the application of mathematical and computational analysis
means

On the other hand cellular processes cannot be described only as
(bio)chemical reactions. In fact, we have to take into account:

the structure of the cell as a nesting of compartments

the dynamics of membranes

the modularity of some structures (e.g. of the DNA as a sequence of
genes)
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SBML

SBML (an XML dialect) is nowadays almost a standard for the description
of cellular processes to be analysed with computational means:

it allows reactions in a compartmentalized structure to be described

does not allow membrane dynamics to be described
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Formal modelling of cellular processes

In the last few years formalisms proposed by computer scientists to
describe systems of interactive components have been applied to the
description of biological systems.

The π-calulus

Petri Nets

concurrent automata

...

This allows:

unambiguous description of phenomena

development of simulators

application of formal analysis tools unknown to biologists (model
checkers, behavioural equivalences)
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A partial view...

In Pisa, we have developed a simple formalism for the modelling of
biological systems.

At the beginning of our work our aim was to try to apply formal methods
to models of biological systems

We were looking for a formalism

based on term rewriting

with a simple semantics

very general

As a consequence, we defined the Calculus of Looping Sequences (CLS)...
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The Calculus of Looping Sequences (CLS)

We assume an alphabet E . Terms T and Sequences S of CLS are given
by the following grammar:

T ::= S
∣∣ (

S
)L c T

∣∣ T | T
S ::= ε

∣∣ a
∣∣ S · S

where a is a generic element of E , and ε is the empty sequence.

The operators are:
S · S : Sequencing(
S
)L

: Looping (S is closed and it can rotate)
T1 c T2 : Containment (T1 contains T2)

T |T : Parallel composition (juxtaposition)

Actually, looping and containment form a single binary operator
(
S
)L c T .
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Examples of Terms

(i)
(
a · b · c)L c ε

(ii)
(
a · b · c)L c (d · e)L c ε

(iii)
(
a · b · c)L c (f · g | (d · e)L c ε)
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Structural Congruence

The Structural Congruence relations ≡S and ≡T are the least
congruence relations on sequences and on terms, respectively, satisfying
the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3

T | ε ≡T T
(
S1 · S2

)L c T ≡T

(
S2 · S1

)L c T

We write ≡ for ≡T .
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CLS Patterns

Let us consider variables of three kinds:

term variables (X ,Y ,Z , . . .)

sequence variables (x̃ , ỹ , z̃ , . . .)

element variables (x , y , z , . . .)

Patterns P and Sequence Patterns SP of CLS extend CLS terms and
sequences with variables:

P ::= SP
∣∣ (

SP
)L c P

∣∣ P | P ∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x

∣∣ x̃

where a is a generic element of E , ε is the empty sequence, and x , x̃ and X
are generic element, sequence and term variables

The structural congruence relation ≡ extends trivially to patterns
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Rewrite Rules

A Rewrite Rule is a pair (P,P ′), denoted P 7→ P ′, where:

P,P ′ are patterns

variables in P ′ are a subset of those in P

A rule P 7→ P ′ can be applied to all terms that are instantiations of P.

Example: a · x · a 7→ b · x · b
can be applied to a · c · a (producing b · c · b)

cannot be applied to a · c · c · a
Example:

(
a · x̃)L c (b | X ) 7→ (

c · x̃)L c X

can be applied to
(
a · a · a)L c (b | b | (a)L c b)

the result is either
(
c · a · a)L c (b | (a)L c b) or(

a · a · a)L c (b | b | (c)L c ε)
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Formal Semantics

Pσ denotes the term obtained by replacing any variable in T with the
corresponding term, sequence or element.

Σ is the set of all possible instantiations σ

Given a set of rewrite rules R, evolution of terms is described by the
transition system given by the least relation → satisfying

P 7→ P ′ ∈ R Pσ 6≡ ε σ ∈ Σ

Pσ → P ′σ
T → T ′

T | T ′′ → T ′ | T ′′
T → T ′(

S
)L c T → (

S
)L c T ′

and closed under structural congruence ≡.
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CLS modeling examples: the lac operon (1)

i p o z y a

DNA

mRNA

proteins
lac Repressor  beta-gal.  permease  transacet.

R

i p o z y a

R  RNA
Polime-
  rase

NO TRANSCRIPTION

a)

i p o z y a

R

  RNA
Polime-
  rase

TRANSCRIPTION

b)

LACTOSE
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CLS modeling examples: the lac operon (2)

Ecoli ::=
(
m
)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Rules for DNA transcription/translation:

lacI · x̃ 7→ lacI · x̃ | repr (R1)

polym | x̃ · lacP · ỹ 7→ x̃ · PP · ỹ (R2)

x̃ · PP · lacO · ỹ 7→ x̃ · lacP · PO · ỹ (R3)

x̃ · PO · lacZ · ỹ 7→ x̃ · lacO · PZ · ỹ (R4)

x̃ · PZ · lacY · ỹ 7→ x̃ · lacZ · PY · ỹ | betagal (R5)

x̃ · PY · lacA 7→ x̃ · lacY · PA | perm (R6)

x̃ · PA 7→ x̃ · lacA | transac | polym (R7)
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CLS modeling examples: the lac operon (3)

Ecoli ::=
(
m
)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Rules to describe the binding of the lac Repressor to gene o, and what
happens when lactose is present in the environment of the bacterium:

repr | x̃ · lacO · ỹ 7→ x̃ · RO · ỹ (R8)

LACT | (m · x̃)L c X 7→ (
m · x̃)L c (X | LACT ) (R9)

x̃ · RO · ỹ | LACT 7→ x̃ · lacO · ỹ | RLACT (R10)(
x̃
)L c (perm | X ) 7→ (

perm · x̃)L c X (R11)

LACT | (perm · x̃)L c X 7→ (
perm · x̃)L c (LACT | X ) (R12)

betagal | LACT 7→ betagal | GLU | GAL (R13)

Paolo Milazzo (Università di Pisa) Dynamics of biological systems 26 / 45



CLS modeling examples: the lac operon (4)

Ecoli ::=
(
m
)L c (lacI · lacP · lacO · lacZ · lacY · lacA | polym)

Example:

Ecoli |LACT |LACT

→∗ (m)L c (lacI ′ · lacP · lacO · lacZ · lacY · lacA | polym | repr)|LACT |LACT

→∗ (m)L c (lacI ′ · lacP · RO · lacZ · lacY · lacA | polym)|LACT |LACT

→∗ (m)L c (lacI ′ · lacP · lacO · lacZ · lacY · lacA|polym|RLACT )|LACT

→∗ (perm ·m)L c (lacI ′−A|betagal |transac |polym|RLACT )|LACT

→∗ (perm ·m)L c (lacI ′−A|betagal |transac |polym|RLACT |GLU|GAL)
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Bisimulations

Bisimilarity is widely accepted as the finest extensional behavioral
equivalence one may impose on systems.

Two systems are bisimilar if they can perform step by step the same
interactions with the environment.

Properties of a system can be verified by assessing the bisimilarity
with a system known to enjoy them.

Bisimilarities need semantics based on labeled transition relations
capturing the potential interactions with the environment.

In process calculi, transitions are usually labeled with actions.

In CLS labels are contexts in which rules can be applied.
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Labeled semantics

The idea: There is a (labeled) transition between terms T and T ′ if there
exists a context C such that a rewrite rule can be applied to C [T ] with T ′

as result.

C is used as transition label

C must not provide the whole left hand side of the applied rewrite rule

An example: Let R = { a | b 7→ c ,
(
d
)L c c 7→ (

d
)L c e }

a

a | b

b

c (d)Lce

� | b

(d)Lc��

a | �
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Labeled semantics

Contexts C are given by the following grammar:

C ::= �
∣∣ C | T ∣∣ T | C ∣∣ (

S
)L c C

where T ∈ T and S ∈ S. Context � is called the empty context.

Given a set of rewrite rules R ⊆ <, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

(rule appl)
P 7→ P ′ ∈ R C [T ′′] ≡ Pσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′
C−→ P ′σ

(cont)
T

�−→ T ′(
S
)L c T

�−→ (
S
)L c T ′

(par)
T

C−→ T ′ C ∈ CP
T | T ′′ C−→ T ′ | T ′′

where CP are contexts that do not include
(
S
)L c C and the dual version

of the (par) rule is omitted.
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Bisimulations in CLS (1)

A binary relation R on terms is a strong bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′1 =⇒ ∃T ′2 s.t. T2

C−→ T ′2and T ′1RT ′2

T2
C−→ T ′2 =⇒ ∃T ′1 s.t. T1

C−→ T ′1 and T ′2RT ′1.

The strong bisimilarity ∼ is the largest of such relations.

A binary relation R on terms is a weak bisimulation if, given T1,T2

such that T1RT2, the two following conditions hold:

T1
C−→ T ′1 =⇒ ∃T ′2 s.t. T2

C
=⇒ T ′2and T ′1RT ′2

T2
C−→ T ′2 =⇒ ∃T ′1 s.t. T1

C
=⇒ T ′1 and T ′2RT ′1.

The weak bisimilarity ≈ is the largest of such relations.

Theorem: Strong and weak bisimilarities are congruences.
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Bisimulations in CLS (2)

Consider the following set of rewrite rules:

R = { a | b 7→ c , d | b 7→ e , e 7→ e , c 7→ e , f 7→ a }

We have that a ∼ d , because

a
�|b−−→ c

�−→ e
�−→ e

�−→ . . .

d
�|b−−→ e

�−→ e
�−→ . . .

and f ≈ d , because

f
�−→ a

�|b−−→ c
�−→ e

�−→ e
�−→ . . .

On the other hand, f 6∼ e and f 6≈ e.

e
�−→ e

�−→ e
�−→ . . .
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Bisimulations in CLS (3)

Let us consider systems (T ,R). . .

A binary relation R is a strong bisimulation on systems if, given
(T1,R1) and (T2,R2) such that (T1,R1)R(T2,R2):

R1 : T1
C−→ T ′1 =⇒ ∃T ′2 s.t. R2 : T2

C−→ T ′2 and (T ′1,R1)R(T ′2,R2)

R2 : T2
C−→ T ′2 =⇒ ∃T ′1 s.t. R1 : T1

C−→ T ′1 and (R2,T
′
2)R(R1,T

′
1).

The strong bisimilarity on systems ∼ is the largest of such relations.

A binary relation R is a weak bisimulation on systems if, given
(T1,R1) and (T2,R2) such that (T1,R1)R(T2,R2):

R1 : T1
C−→ T ′1 =⇒ ∃T ′2 s.t. R2 : T2

C
=⇒ T ′2 and (T ′1,R1)R(T ′2,R2)

R2 : T2
C−→ T ′2 =⇒ ∃T ′1 s.t. R1 : T1

C
=⇒ T ′1 and (T ′2,R2)R(T ′1,R1)

The weak bisimilarity on systems ≈ is the largest of such relations.

Strong and weak bisimilarities on systems are NOT congruences.
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Bisimulations in CLS (4)

Consider the following sets of rewrite rules

R1 = {a | b 7→ c} R2 = {a | d 7→ c , b | e 7→ c}

We have that 〈a,R1〉 ≈ 〈e,R2〉 because

R1 : a
�|b−−→ c R2 : e

�|b−−→ c

and 〈b,R1〉 ≈ 〈d ,R2〉, because

R1 : b
�|a−−→ c R2 : d

�|a−−→ c

but 〈a | b,R1〉 6≈ 〈e | d ,R2〉, because

R1 : a | b �−→ c R2 : e | d 6 �−→
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Applying bisimulations to the lac operon (1)

By using the weak bisimilarity on systems we can prove that from the state
in which the repressor is bound to the DNA we can reach a state in which
the enzymes are synthesized only if lactose appears in the environment.

We replace rule

x̃ · RO · ỹ | LACT 7→ x̃ · lacO · ỹ | RLACT (R10)

with (
w̃
)L c (x̃ · RO · ỹ | LACT | X ) | START 7→(

w̃
)L c (x̃ · lacO · ỹ | RLACT | X ) (R10bis)
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Applying bisimulations to the lac operon (2)

The obtained model is weakly bisimilar to (T1,R) where R is

T1 | LACT 7→ T2 (R1’) T2 | START 7→ T3 (R3’)

T2 | LACT 7→ T2 (R2’) T3 | LACT 7→ T3 (R4’)

that is a system satisfying the wanted property.

T2T1 T3

� | LACT

� | LACT � | LACT

� | START

Paolo Milazzo (Università di Pisa) Dynamics of biological systems 37 / 45



Outline of the talk

1 Introduction

2 The Calculus of Looping Sequences (CLS)
Definition of CLS
The lac operon in CLS

3 Bisimulations in CLS
A labeled semantics for CLS
Bisimulations in CLS
Bisimulations applied to the CLS model of the lac operon

4 Stochastic CLS
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Background: Gillespie’s simulation algorithm

represents a chemical solution as a multiset of molecules

each chemical reaction is associated with a kinetic constant

computes the reaction rate aµ by multiplying the kinetic constant by
the number of possible combinations of reactants

Example: chemical solution with X1 molecules S1 and X2 molecules S2

reaction R1 : S1 + S2 → 2S1 rate a1 =
(X1

1

)(X2
1

)
k1 = X1X2k1

reaction R2 : 2S1 → S1 + S2 rate a2 =
(X1

2

)
k2 = X1(X1−1)

2 k2

Given a set of reactions {R1, . . .RM} and a current time t

The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter

∑M
ν=1 aν ;

The reaction Rµ that has to occur at time t + τ is randomly chosen
with probability

aµPM
ν=1 aν

.

At each step t is incremented by τ and the chemical solution is updated.
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Stochastic CLS

Stochastic CLS incorporates Gillespie’s stochastic framework into the
semantics of CLS

Rewrite rules are enriched with kinetic constants

What is a reactant in Stochastic CLS?

A reactant combination is an occurrence (up to ≡) of a left hand side
of a rewrite rule

Example: The application rate of a | b k7→ c to a | a | a | b | b is 6k

Example: The application rate of
(
a · x̃)L c (b | X )

k7→ (
c · x̃)L c X to(

a · a · a)L c (b | b) | (a · a)L c b is

6k , with
(
c · a · a)L c b | (a · a)L c b as result

+ 2k , with
(
a · a · a)L c (b | b) | (c · a)L c ε as result

= 8k
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A Stochastic CLS model of the lac operon (1)

i p o z y a

DNA

mRNA

proteins
lac Repressor  beta-gal.  permease  transacet.

R

i p o z y a
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i p o z y a

R

  RNA
Polime-
  rase

TRANSCRIPTION

b)

LACTOSE
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A Stochastic CLS model of the lac operon (2)
Transcription of DNA, binding of lac Repressor to gene o, and interaction
between lactose and lac Repressor:

lacI · x̃ 0.027→ lacI · x̃ | Irna (S1)

Irna
0.17→ Irna | repr (S2)

polym | x̃ · lacP · ỹ 0.17→ x̃ · PP · ỹ (S3)

x̃ · PP · ỹ 0.017→ polym | x̃ · lacP · ỹ (S4)

x̃ · PP · lacO · ỹ 20.07→ polym | Rna | x̃ · lacP · lacO · ỹ (S5)

Rna
0.17→ Rna | betagal | perm | transac (S6)

repr | x̃ · lacO · ỹ 1.07→ x̃ · RO · ỹ (S7)

x̃ · RO · ỹ 0.017→ repr | x̃ · lacO · ỹ (S8)

repr | LACT
0.0057→ RLACT (S9)

RLACT
0.17→ repr | LACT (S10)

Paolo Milazzo (Università di Pisa) Dynamics of biological systems 42 / 45



A Stochastic CLS model of the lac operon (3)

The behaviour of the three enzymes for lactose degradation:(
x̃
)L c (perm | X )

0.17→ (
perm · x̃)L c X (S11)

LACT | (perm · x̃)L c X
0.0017→ (

perm · x̃)L c (LACT |X ) (S12)

betagal | LACT
0.0017→ betagal | GLU | GAL (S13)

Degradation of all the proteins and mRNA involved in the process:

perm
0.0017→ ε (S14) betagal

0.0017→ ε (S15)

transac
0.0017→ ε (S16) repr

0.0027→ ε (S17)

Irna
0.017→ ε (S18) Rna

0.017→ ε (S19)

RLACT
0.0027→ LACT (S20)
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Simulation results (1)
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Simulation results (2)

 0

 10

 20

 30

 40

 50

 0  500  1000  1500  2000  2500  3000  3500

N
um

be
r 

of
 e

le
m

en
ts

Time (sec)

betagal
perm

perm on membrane

Production of enzymes in the presence of lactose

100× LACT | (m)L c (lacI − A | 30× polym | 100× repr)
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Simulation results (3)
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Paolo Milazzo (Università di Pisa) Dynamics of biological systems 46 / 45


	Introduction
	The Calculus of Looping Sequences (CLS)
	Definition of CLS
	The lac operon in CLS

	Bisimulations in CLS
	A labeled semantics for CLS
	Bisimulations in CLS
	Bisimulations applied to the CLS model of the lac operon

	Stochastic CLS

