Blind Trie

Paolo Ferragina
Dipartimento di Informatica, Universita di Pisa, Italy

Let S; be a string set and take PT,. as a simplified trie in which each arc label
is replaced by only its first character. See Figure 1 for an illustrative example.
We assume that PT; is stored in internal memory and the string set S is stored
on disk.

The goal of PT} is to help finding the lexicographic position of the searched
pattern P in the ordered set S,. This search is a little bit more complicated than
the one in classical tries, because of the presence of only one character per arc
label, and in fact consists of two stages:

— Trace a downward path in PT); to locate a leaf [which points to an interesting
string of S;. This string does not necessarily identify P’s position in S;
(which is our goal), but it provides enough information to find that position
in the second stage (see Figure 1). The retrieval of the interesting leaf I
is done by traversing PT, from the root and comparing the characters of
P with the single characters which label the traversed arcs until a leaf is
reached or no further branching is possible (in this case, choose I to be any
descendant leaf from the last traversed node).

— Compare the string pointed by [with P in order to determine their longest
common prefix. A useful property holds: the leaf | stores one of the strings
in Sy that share the longest common prefix with P. The length ¢ of this
common prefix and the mismatch character P[¢ + 1] are used in two ways:
first to determine the shallowest ancestor of [spelling out a string longer
than ¢; and then, to select the leaf descending from that ancestor which
identifies the lexicographic position of P in S;.

An illustrative example of a search in a Patricia tree is shown in Figure 1 for a
pattern P = “GCACGCAC"”. The leaf | found after the first stage is the second
one from the right. In the second stage, the algorithm first computes ¢ = 2 and
P[¢ + 1] = A; then, it proceeds along the leftmost path descending from the
node u, since the 3rd character on the arc leading to w (i.e. the mismatch G) is
grater than the corresponding pattern character A. The position reached by this
two-stage process is indicated in Figure 1, and results the correct lexicographic
position of P among S;’s strings.

We remark here that PT, requires space linear in the number of strings of
S, therefore the space usage is independent of their total length. Consequently,
the number of strings in S; can be properly chosen in order to be able to fit
PT, in a cache. An additional nice property of PT is that it allows to find
the lexicographic position of P in S, by fully comparing P with just one of the
strings in Sy, thus taking O(%5 + 1) disk accesses.

A
[GA] [CGC]
[T]
A A A G G G G
G G G c c c c
A A A G G G G
A A C c c c c
G G A A G G
A G G G G G
A G A G
A
correct position
for P= GCACGCAC checked string

for P= GCACGCAC

Fig. 1. An example of Patricia tree built on a set of k = 7 DNA strings drawn from
the alphabet X = {A,G,C,T}. Each leaf points to one of the k strings; each internal
node u (they are at most k — 1) is labeled with one integer len(u) which denotes the
length of the common prefix shared by all the strings pointed by the leaves descending
from u; each arc (they are at most 2k — 1) is labeled with only one character (called
branching character). The characters between square-brackets are not explicitly stored,
and denote the other characters labeling a trie arc.

