
Blind Trie

Paolo Ferragina

Dipartimento di Informatica, Università di Pisa, Italy

Let Sπ be a string set and take PTπ as a simplified trie in which each arc label
is replaced by only its first character. See Figure 1 for an illustrative example.
We assume that PTπ is stored in internal memory and the string set Sπ is stored
on disk.

The goal of PTπ is to help finding the lexicographic position of the searched
pattern P in the ordered set Sπ. This search is a little bit more complicated than
the one in classical tries, because of the presence of only one character per arc
label, and in fact consists of two stages:

– Trace a downward path in PTπ to locate a leaf l which points to an interesting
string of Sπ. This string does not necessarily identify P ’s position in Sπ

(which is our goal), but it provides enough information to find that position
in the second stage (see Figure 1). The retrieval of the interesting leaf l
is done by traversing PTπ from the root and comparing the characters of
P with the single characters which label the traversed arcs until a leaf is
reached or no further branching is possible (in this case, choose l to be any
descendant leaf from the last traversed node).

– Compare the string pointed by l with P in order to determine their longest
common prefix. A useful property holds: the leaf l stores one of the strings
in Sπ that share the longest common prefix with P . The length ` of this
common prefix and the mismatch character P [` + 1] are used in two ways:
first to determine the shallowest ancestor of l spelling out a string longer
than `; and then, to select the leaf descending from that ancestor which
identifies the lexicographic position of P in Sπ.

An illustrative example of a search in a Patricia tree is shown in Figure 1 for a
pattern P = “GCACGCAC ′′. The leaf l found after the first stage is the second
one from the right. In the second stage, the algorithm first computes ` = 2 and
P [` + 1] = A; then, it proceeds along the leftmost path descending from the
node u, since the 3rd character on the arc leading to u (i.e. the mismatch G) is
grater than the corresponding pattern character A. The position reached by this
two-stage process is indicated in Figure 1, and results the correct lexicographic
position of P among Sπ’s strings.

We remark here that PTπ requires space linear in the number of strings of
Sπ, therefore the space usage is independent of their total length. Consequently,
the number of strings in Sπ can be properly chosen in order to be able to fit
PTπ in a cache. An additional nice property of PTπ is that it allows to find
the lexicographic position of P in Sπ by fully comparing P with just one of the
strings in Sπ, thus taking O(p

B + 1) disk accesses.

2

A

A A

G

G G G

GC
[G] [G]

A

0

3 4

5 6 6

u

[T]

 [C G C]

correct position
for P = GCACGCAC

for P = GCACGCAC
checked string

A
G
A
A
G
A

A
G
A
A
G
G

A
G
A
C

G
C
G
C
A
G
A

G
C
G
C
A
G
G

G
C
G
C
G
G
A

G
C

C
G
G
G
A

G

[G]
A

[G A]
A

Fig. 1. An example of Patricia tree built on a set of k = 7 DNA strings drawn from
the alphabet Σ = {A, G, C, T}. Each leaf points to one of the k strings; each internal
node u (they are at most k − 1) is labeled with one integer len(u) which denotes the
length of the common prefix shared by all the strings pointed by the leaves descending
from u; each arc (they are at most 2k − 1) is labeled with only one character (called
branching character). The characters between square-brackets are not explicitly stored,
and denote the other characters labeling a trie arc.

