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28.1 What Is a Trie?

A trie (pronounced “try” and derived from the word retrieval) is a data structure that
uses the digits in the keys to organize and search the dictionary. Although, in practice, we
can use any radix to decompose the keys into digits, in our examples, we shall choose our
radixes so that the digits are natural entities such as decimal digits (0,1,2,3,4,5,6,7,8,9)
and letters of the English alphabet (a — z, A — Z).

Suppose that the elements in our dictionary are student records that contain fields such
as student name, major, date of birth, and social security number (SS#). The key field
is the social security number, which is a nine digit decimal number. To keep the example
manageable, assume that the dictionary has only five elements. Table 28.1 shows the name
and SS# fields for each of the five elements in our dictionary.

To obtain a trie representation for these five elements, we first select a radix that will be
used to decompose each key into digits. If we use the radix 10, the decomposed digits are

Name | Social Security Number (SS#)
Jack | 951-94-1654
Jill 562-44-2169
Bill 271-16-3624
Kathy | 278-49-1515
April 951-23-7625

TABLE 28.1 Five elements (student records) in a dictionary

28-1
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FIGURE 28.1: Trie for the elements of Table 28.1.

just the decimal digits shown in Table 28.1. We shall examine the digits of the key field
(i.e., SS#) from left to right. Using the first digit of the SS#, we partition the elements
into three groups-elements whose SS# begins with 2 (i.e., Bill and Kathy), those that begin
with 5 (i.e., Jill), and those that begin with 9 (i.e., April and Jack). Groups with more
than one element are partitioned using the next digit in the key. This partitioning process
is continued until every group has exactly one element in it.

The partitioning process described above naturally results in a tree structure that has
10-way branching as is shown in Figure 28.1. The tree employs two types of nodes—branch
nodes and element nodes. Each branch node has 10 children (or pointer/reference) fields.
These fields, child[0 : 9], have been labeled 0,1,---,9 for the root node of Figure 28.1.
root.child[i] points to the root of a subtrie that contains all elements whose first digit is 1.
In Figure 28.1, nodes A, B, D, E, F, and I are branch nodes. The remaining nodes, nodes
C,G,H,J, and K are element nodes. Each element node contains exactly one element of
the dictionary. In Figure 28.1, only the key field of each element is shown in the element
nodes.

28.2 Searching a Trie

To search a trie for an element with a given key, we start at the root and follow a path
down the trie until we either fall off the trie (i.e., we follow a null pointer in a branch node)
or we reach an element node. The path we follow is determined by the digits of the search
key. Consider the trie of Figure 28.1. Suppose we are to search for an element with key
951-23-7625. We use the first digit, 9, in the key to move from the root node A to the node
A.child9] = D. Since D is a branch node, we use the next digit, 5, of the key to move
further down the trie. The node we reach is D.child[5] = F. To move to the next level of
the trie, we use the next digit, 1, of the key. This move gets us to the node F. .child[l] = 1.
Once again, we are at a branch node and must move further down the trie. For this move,
we use the next digit, 2, of the key, and we reach the element node I .child[2] = J. When
an element node is reached, we compare the search key and the key of the element in the
reached element node. Performing this comparison at node .J, we get a match. The element,
in node J, is to be returned as the result of the search.

When searching the trie of Figure 28.1 for an element with key 951-23-1669, we follow
the same path as for the key 951-23-7625. The key comparison made at node J tells us that
the trie has no element with key 951-23-1669, and the search returns the value null.
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To search for the element with key 562-44-2169, we begin at the root A and use the first
digit, 5, of the search key to reach the element node A.child[5] = C. The key of the element
in node C is compared with the search key. Since the two keys agree, the element in node
C is returned.

When searching for an element with key 273-11-1341, we follow the path A, A.child[2] =
B, B.child[7] = E,E.child[3] = null. Since we fall off the trie, we know that the trie
contains no element whose key is 273-11-1341.

When analyzing the complexity of trie operations, we make the assumption that we can
obtain the next digit of a key in O(1) time. Under this assumption, we can search a trie for
an element with a d digit key in O(d) time.

28.3 Keys with Different Length

In the example of Figure 28.1, all keys have the same number of digits (i.e., 9). In many
applications, however, different keys have different length. This does not pose a problem
unless one key is a prefix of another (for example, 27 is a prefix of 276). For applications in
which one key may be a prefix of another, we normally add a special digit (say #) at the
end of each key. Doing this ensures that no key is a prefix of another.

To see why we cannot permit a key that is a prefix of another key, consider the example
of Figure 28.1. Suppose we are to search for an element with the key 27. Using the search
strategy just described, we reach the branch node E. What do we do now? There is no next
digit in the search key that can be used to reach the terminating condition (i.e., you either
fall off the trie or reach an element node) for downward moves. To resolve this problem,
we add the special digit # at the end of each key and also increase the number of children
fields in an element node by one. The additional child field is used when the next digit
equals #.

An alternative to adding a special digit at the end of each key is to give each node a data
field that is used to store the element (if any) whose key exhausts at that node. So, for
example, the element whose key is 27 can be stored in node E of Figure 28.1. When this
alternative is used, the search strategy is modified so that when the digits of the search key
are exhausted, we examine the data field of the reached node. If this data field is empty,
we have no element whose key equals the search key. Otherwise, the desired element is in
this data field.

It is important to note that in applications that have different length keys with the
property that no key is a prefix of another, neither of just mentioned strategies is needed;
the scheme described in Section 28.2 works as is.

28.4 Height of a Trie

In the worst case, a root-node to element-node path has a branch node for every digit in a
key. Therefore, the height* of a trie is at most numberofdigits + 1.

A trie for social security numbers has a height that is at most 10. If we assume that it
takes the same time to move down one level of a trie as it does to move down one level of a
binary search tree, then with at most 10 moves we can search a social-security trie. With this

*The definition of height used in this chapter is: the height of a trie equals the number of levels in that
trie.
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FIGURE 28.2: Chain for node A of Figure 28.1.

many moves, we can search a binary search tree that has at most 21° — 1 = 1023 elements.
This means that, we expect searches in the social security trie to be faster than searches in
a binary search tree (for student records) whenever the number of student records is more
than 1023. The breakeven point will actually be less than 1023 because we will normally
not be able to construct full or complete binary search trees for our element collection.

Since a SS# is nine digits, a social security trie can have up to 10° elements in it.
An AVL tree with 10° elements can have a height that is as much as (approximately)
1.4410g,(10° + 2) = 44. Therefore, it could take us four times as much time to search for
elements when we organize our student-record dictionary as an AVL tree than when this
dictionary is organized as a trie!

28.5 Space Required and Alternative Node Structures

The use of branch nodes that have as many child fields as the radix of the digits (or one
more than this radix when different keys may have different length) results in a fast search
algorithm. However, this node structure is often wasteful of space because many of the child
fields are null. A radix r trie for d digit keys requires O(rdn) child fields, where n is the
number of elements in the trie. To see this, notice that in a d digit trie with n information
nodes, each information node may have at most d ancestors, each of which is a branch node.
Therefore, the number of branch nodes is at most dn. (Actually, we cannot have this many
branch nodes, because the information nodes have common ancestors like the root node.)

We can reduce the space requirements, at the expense of increased search time, by chang-
ing the node structure. For example, each branch node of a trie could be replaced by any
of the following:

1. A chain of nodes, each node having the three fields digitValue, child, next. Node

A of Figure 28.1, for example, would be replaced by the chain shown in Fig-
ure 28.2.
The space required by a branch node changes from that required for 7 chil-
dren/pointer/reference fields to that required for 2p pointer fields and p digit
value fields, where p is the number of children fields in the branch node that are
not null. Under the assumption that pointer fields and digit value fields are of
the same size, a reduction in space is realized when more than two-thirds of the
children fields in branch nodes are null. In the worst case, almost all the branch
nodes have only 1 field that is not null and the space savings become almost
(1 —3/r)*100%.

2. A (balanced) binary search tree in which each node has a digit value and a pointer
to the subtrie for that digit value. Figure 2.3 shows the binary search tree for
node A of Figure 28.1.

Under the assumption that digit values and pointers take the same amount of
space, the binary search tree representation requires space for 4p fields per branch
node, because each search tree node has fields for a digit value, a subtrie pointer, a
left child pointer, and a right child pointer. The binary search tree representation
of a branch node saves us space when more than three-fourths of the children
fields in branch nodes are null. Note that for large r, the binary search tree is
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FIGURE 28.3: Binary search tree for node A of Figure 28.1.

FIGURE 28.4: Binary trie for node A of Figure 28.1.

Node A B C D E F G H
Number 10 11 0 12 13 14 1 2

FIGURE 28.5: Number assignment to nodes of trie of Figure 28.1.

faster to search than the chain described above.

. A binary trie (i.e., a trie with radix 2). Figure 28.4 shows the binary trie for

node A of Figure 28.1. The space required by a branch node represented as a
binary trie is at most (2 * [log, 7] + 1)p.

. A hash table. When a hash table with a sufficiently small loading density is used,

the expected time performance is about the same as when the node structure of
Figure 1 is used. Since we expect the fraction of null child fields in a branch
node to vary from node to node and also to increase as we go down the trie,
maximum space efficiency is obtained by consolidating all of the branch nodes
into a single hash table. To accomplish this, each node in the trie is assigned
a number, and each parent to child pointer is replaced by a triple of the form
(currentNode, digitV alue, childNode). The numbering scheme for nodes is cho-
sen so as to easily distinguish between branch and information nodes. For exam-
ple, if we expect to have at most 100 elements in the trie at any time, the numbers
0 through 99 are reserved for information nodes and the numbers 100 on up are
used for branch nodes. The information nodes are themselves represented as an
array in formation{100]. (An alternative scheme is to represent pointers as tuples

28-5

of the form (currentNode, digitValue, childNode, childN odeI s BranchNode), where

childNodelsBranchNode = true iff the child node is a branch node.)

Suppose that the nodes of the trie of Figure 28.1 are assigned numbers as given
in Figure 28.5. This number assignment assumes that the trie will have no more
than 10 elements.

The pointers in node A are represented by the tuples (10,2,11),(10,5,0), and
(10,9,12). The pointers in node E are represented by the tuples (13,1,1) and
(13,8,2).

The pointer triples are stored in a hash table using the first two fields (i.e., the
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currentNode and digitValue) as the key. For this purpose, we may transform
the two field key into an integer using the formula currentNode *r+ digitValue,
where r is the trie radix, and use the division method to hash the transformed
key into a home bucket. The data presently in information node i is stored in
information[i].

To see how all this works, suppose we have set up the trie of Figure 28.1 using
the hash table scheme just described. Consider searching for an element with key
278-49-1515. We begin with the knowledge that the root node is assigned the
number 10. Since the first digit of the search key is 2, we query our hash table
for a pointer triple with key (10,2). The hash table search is successful and the
triple (10,2, 11) is retrieved. The childNode component of this triple is 11, and
since all information nodes have a number 9 or less, the child node is determined
to be a branch node. We make a move to the branch node 11. To move to the
next level of the trie, we use the second digit 7 of the search key. For the move,
we query the hash table for a pointer with key (11,7). Once again, the search is
successful and the triple (11,7, 13) is retrieved. The next query to the hash table
is for a triple with key (13,8). This time, we obtain the triple (13,8, 2). Since
childNode = 2 < 10, we know that the pointer gets us to an information node.
So, we compare the search key with the key of the element in formation[2]. The
keys match, and we have found the element we were looking for.

When searching for an element with key 322-167-8976, the first query is for
a triple with key (10,3). The hash table has no triple with this key, and we
conclude that the trie has no element whose key equals the search key.

The space needed for each pointer triple is about the same as that needed for
each node in the chain of nodes representation of a trie node. Therefore, if we
use a linear open addressed hash table with a loading density of , the hash table
scheme will take approximately (1/a — 1) * 100% more space than required by
the chain of nodes scheme. However, when the hash table scheme is used, we can
retrieve a pointer in O(1) expected time, whereas the time to retrieve a pointer
using the chain of nodes scheme is O(r). When the (balanced) binary search tree
or binary trie schemes are used, it takes O(logr) time to retrieve a pointer. For
large radixes, the hash table scheme provides significant space saving over the
scheme of Figure 28.1 and results in a small constant factor degradation in the
expected time required to perform a search.

The hash table scheme actually reduces the expected time to insert elements into
a trie, because when the node structure of Figure 28.1 is used, we must spend
O(r) time to initialize each new branch node (see the description of the insert
operation below). However, when a hash table is used, the insertion time is
independent of the trie radix.

To support the removal of elements from a trie represented as a hash table, we
must be able to reuse information nodes. This reuse is accomplished by setting
up an available space list of information nodes that are currently not in use.

Andersson and Nilsson [1] propose a trie representation in which nodes have a variable
degree. Their data structure, called LC-tries (level-compressed tries), is obtained from a
binary trie by replacing full subtries of the binary trie by single node whose degree is 2¢,
where ¢ is the number of levels in the replaced full subtrie. This replacement is done by
examining the binary trie from top to bottom (i.e., from root to leaves).
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FIGURE 28.6: Trie of Figure 28.1 with 271-10-2529 inserted.

28.6 Inserting into a Trie

To insert an element the Element whose key is theK ey, we first search the trie for an existing
element with this key. If the trie contains such an element, then we replace the existing
element with theElement. When the trie contains no element whose key equals theKey,
theElement is inserted into the trie using the following procedure.

Case 1 For Insert Procedure

If the search for theKey ended at an element node X, then the key of the element in
X and theKey are used to construct a subtrie to replace X.

Suppose we are to insert an element with key 271-10-2529 into the trie of Figure 28.1.
The search for the key 271-10-2529 terminates at node G and we determine that the key,
271-16-3624, of the element in node G is not equal to the key of the element to be inserted.
Since the first three digits of the keys are used to get as far as node E of the trie, we set
up branch nodes for the fourth digit (from the left) onwards until we reach the first digit
at which the two keys differ. This results in branch nodes for the fourth and fifth digits
followed by element nodes for each of the two elements. Figure 28.6 shows the resulting
trie.

Case 2 For Insert Procedure

If the search for theKey ends by falling off the trie from the branch node X, then we
simply add a child (which is an element node) to the node X. The added element node
contains theElement.

Suppose we are to insert an element with key 987-33-1122 to the trie of Figure 28.1. The
search for an element with key equal to 987-33-1122 ends when we fall off the trie while
following the pointer D.child[8]. We replace the null pointer D.child[8] with a pointer to a
new element node that contains theElement, as is shown in Figure 28.7.

The time required to insert an element with a d digit key into a radix r trie is O(dr)
because the insertion may require us to create O(d) branch nodes and it takes O(r) time
to initialize the children pointers in a branch node.
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FIGURE 28.7: Trie of Figure 28.1 with 987-33-1122 inserted.
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FIGURE 28.8: Trie of Figure 28.7 with 951-23-7635 removed.

28.7 Removing an Element

To remove the element whose key is theK ey, we first search for the element with this key.
If there is no matching element in the trie, nothing is to be done. So, assume that the trie
contains an element theElement whose key is theKey. The element node X that contains
theElement is discarded, and we retrace the path from X to the root discarding branch
nodes that are roots of subtries that have only 1 element in them. This path retracing stops
when we either reach a branch node that is not discarded or we discard the root.

Consider the trie of Figure 28.7. When the element with key 951-23-7625 is removed, the
element node J is discarded and we follow the path from node J to the root node A. The
branch node ! is discarded because the subtrie with root I contains the single element node
K. We next reach the branch node F. This node is also discarded, and we proceed to the
branch node D. Since the subtrie rooted at D has 2 element nodes (K and L), this branch
node is not discarded. Instead, node K is made a child of this branch node, as is shown in
Figure 28.8.

To remove the element with key 562-44-2169 from the trie of Figure 28.8, we discard
the element node C. Since its parent node remains the root of a subtrie that has more
than one element, the parent node is not discarded and the removal operation is complete.
Figure 28.9 show the resulting trie.

The time required to remove an element with a d digit key from a radix r trie is O(dr)
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FIGURE 28.9: Trie of Figure 28.8 with 562-44-2169 removed.

ps2ascii  ps2pdf psbook psmandup psselect
ps2epsi ps2pk  pscal psmerge pstopnm
ps2frag ps2ps  psidtopgm psnup pstops
ps2gif psbb pslatex psresize pstruct

TABLE 28.2 Commands that begin with ”ps”

because the removal may require us to discard O(d) branch nodes and it takes O(r) time
to determine whether a branch node is to be discarded. The complexity of the remove
operation can be reduced to O(r + d) by adding a numberO f ElementsInSubtrie field to
each branch node.

28.8 Prefix Search and Applications

You have probably realized that to search a trie we do not need the entire key. Most of the
time, only the first few digits (i.e., a prefix) of the key is needed. For example, our search
of the trie of Figure 28.1 for an element with key 951-23-7625 used only the first four digits
of the key. The ability to search a trie using only the prefix of a key enables us to use tries
in applications where only the prefix might be known or where we might desire the user to
provide only a prefix. Some of these applications are described below.

Criminology

Suppose that you are at the scene of a crime and observe the first few characters CRX
on the registration plate of the getaway car. If we have a trie of registration numbers, we
can use the characters CRX to reach a subtrie that contains all registration numbers that
begin with CRX. The elements in this subtrie can then be examined to see which cars
satisfy other properties that might have been observed.

Automatic Command Completion

When using an operating system such as Unix or DOS, we type in system commands
to accomplish certain tasks. For example, the Unix and DOS command ¢d may be used to
change the current directory. Table 28.2 gives a list of commands that have the prefix ps
(this list was obtained by executing the command Is/usr /local /bin/psx on a Unix system).

We can simply the task of typing in commands by providing a command completion
facility which automatically types in the command suffix once the user has typed in a long
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enough prefix to uniquely identify the command. For instance, once the letters pst have
been entered, we know that the command must be psidtopgm because there is only one
command that has the prefix psi. In this case, we replace the need to type in a 9 character
command name by the need to type in just the first 3 characters of the command!

A command completion system is easily implemented when the commands are stored in
a trie using ASCII characters as the digits. As the user types the command digits from
left to right, we move down the trie. The command may be completed as soon as we reach
an element node. If we fall off the trie in the process, the user can be informed that no
command with the typed prefix exists.

Although we have described command completion in the context of operating system
commands, the facilty is useful in other environments:

1. A network browser keeps a history of the URLs of sites that you have visited. By
organizing this history as a trie, the user need only type the prefix of a previously
used URL and the browser can complete the URL.

2. A word processor can maintain a dictionary of words and can complete words as
you type the text. Words can be completed as soon as you have typed a long
enough prefix to identify the word uniquely.

3. An automatic phone dialer can maintain a list of frequently called telephone
numbers as a trie. Once you have punched in a long enough prefix to uniquely
identify the phone number, the dialer can complete the call for you.

28.9 Compressed Tries

Take a close look at the trie of Figure 28.1. This trie has a few branch nodes (nodes B, D,
and F) that do not partition the elements in their subtrie into two or more nonempty groups.
We often can improve both the time and space performance metrics of a trie by eliminating
all branch nodes that have only one child. The resulting trie is called a compressed trie.

When branch nodes with a single child are removed from a trie, we need to keep additional
information so that dictionary operations may be performed correctly. The additional
information stored in three compressed trie structures is described below.

28.9.1 Compressed Tries with Digit Numbers

In a compressed trie with digit numbers, each branch node has an additional field digit Number

that tells us which digit of the key is used to branch at this node. Figure 11 shows the
compressed trie with digit numbers that corresponds to the trie of Figure 28.1. The leftmost
field of each branch node of Figure 28.10 is the digit Number field.

Searching a Compressed Trie with Digit Numbers

A compressed trie with digit numbers may be searched by following a path from
the root. At each branch node, the digit, of the search key, given in the branch node’s
digitNumber field is used to determine which subtrie to move to. For example, when
searching the trie of Figure 28.10 for an element with key 951-23-7625, we start at the
root of the trie. Since the root node is a branch node with digit Number = 1, we use the
first digit 9 of the search key to determine which subtrie to move to. A move to node
A.child9] = I is made. Since I.digitNumber = 4, the fourth digit, 2, of the search key
tells us which subtrie to move to. A move is now made to node I.child[2] = J. We are now
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FIGURE 28.11: Compressed trie following the insertion of 987-26-1615 into the compressed
trie of Figure 28.10.

at an element node, and the search key is compared with the key of the element in node J.
Since the keys match, we have found the desired element.

Notice that a search for an element with key 913-23-7625 also terminates at node J.
However, the search key and the element key at node J do not match and we conclude that
the trie contains no element with key 913-23-7625.

Inserting into a Compressed Trie with Digit Numbers

To insert an element with key 987-26-1615 into the trie of Figure 28.10, we first search
for an element with this key. The search ends at node J. Since the search key and the
key, 951-23-7625, of the element in this node do not match, we conclude that the trie has
no element whose key matches the search key. To insert the new element, we find the first
digit where the search key differs from the key in node J and create a branch node for this
digit. Since the first digit where the search key 987-26-1615 and the element key 951-23-
7625 differ is the second digit, we create a branch node with digitNumber = 2. Since digit
values increase as we go down the trie, the proper place to insert the new branch node can
be determined by retracing the path from the root to node J and stopping as soon as either
a node with digit value greater than 2 or the node J is reached. In the trie of Figure 28.10,
this path retracing stops at node I. The new branch node is made the parent of node I ,
and we get the trie of Figure 28.11.

Consider inserting an element with key 958-36-4194 into the compressed trie of Fig-
ure 28.10. The search for an element with this key terminates when we fall of the trie by
following the pointer I.child[3] = null. To complete the insertion, we must first find an
element in the subtrie rooted at node I. This element is found by following a downward
path from node I using (say) the first non null link in each branch node encountered. Doing
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FIGURE 28.12: Compressed trie following the insertion of 958-36-4194 into the compressed
trie of Figure 28.10.
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FIGURE 28.13: Compressed trie following the removal of 951-94-1654 from the compressed
trie of Figure 28.12.

this on the compressed trie of Figure 28.10, leads us to node J. Having reached an element
node, we find the first digit where the element key and the search key differ and complete
the insertion as in the previous example. Figure 28.12 shows the resulting compressed trie.

Because of the possible need to search for the first non null child pointer in each branch
node, the time required to insert an element into a compressed tries with digit numbers is
O(rd), where r is the trie radix and d is the maximum number of digits in any key.

Removing an Element from a Compressed Trie with Digit Numbers

To remove an element whose key is theKey, we do the following:

1. Find the element node X that contains the element whose key is theKey.
2. Discard node X.

3. If the parent of X is left with only one child, discard the parent node also. When
the parent of X is discarded, the sole remaining child of the parent of X becomes
a child of the grandparent (if any) of X.

To remove the element with key 951-94-1654 from the compressed trie of Figure 28.12,
we first locate the node K that contains the element that is to be removed. When this node
is discarded, the parent I of K is left with only one child. Consequently, node I is also
discarded, and the only remaining child J of node I is the made a child of the grandparent
of K. Figure 28.13 shows the resulting compressed trie.

Because of the need to determine whether a branch node is left with two or more children,
removing a d digit element from a radix r trie takes O(d + r) time.
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FIGURE 28.14: Compressed trie with skip fields.
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FIGURE 28.15: Compressed trie with edge information.

28.9.2 Compressed Tries with Skip Fields

In a compressed trie with skip fields, each branch node has an additional field skip which
tells us the number of branch nodes that were originally between the current branch node
and its parent. Figure 15 shows the compressed trie with skip fields that corresponds to the
trie of Figure 28.1. The leftmost field of each branch node of Figure 28.14 is the skip field.

The algorithms to search, insert, and remove are very similar to those used for a com-
pressed trie with digit numbers.

28.9.3 Compressed Tries with Edge Information

In a compressed trie with edge information, each branch node has the following additional
information associated with it: a pointer/reference element to an element (or element node)
in the subtrie, and an integer skip which equals the number of branch nodes eliminated
between this branch node and its parent. Figure 28.15 shows the compressed trie with edge
information that corresponds to the trie of Figure 28.1. The first field of each branch node
Is its element field, and the second field is the skip field.

Even though we store the “edge information” with branch nodes, it is convenient to think
of this information as being associated with the edge that comes into the branch node from
its parent (when the branch node is not the root). When moving down a trie, we follow
edges, and when an edge is followed. we skip over the number of digits given by the skip field
of the edge information. The value of the digits that are skipped over may be determined
by using the element field.

When moving from node A to node I of the compressed trie of Figure 28.15, we use
digit 1 of the key to determine which child field of A is to be used. Also, we skip over the
next 2 digits, that is, digits 2 and 3, of the keys of the elements in the subtrie rooted at
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FIGURE 28.16: Compressed trie following the insertion of 987-26-1615 into the compressed
trie of Figure 28.15.

I. Since all elements in the subtrie I have the same value for the digits that are skipped
over, we can determine the value of these skipped over digits from any of the elements in
the subtrie. Using the element field of the edge information, we access the element node J,
and determine that the digits that are skipped over are 5 and 1.

Searching a Compressed Trie with Edge Information

When searching a compressed trie with edge information, we can use the edge infor-
mation to terminate unsuccessful searches (possibly) before we reach an element node or fall
off the trie. As in the other compressed trie variants, the search is done by following a path
from the root. Suppose we are searching the compressed trie of Figure 28.15 for an element
with key 921-23-1234. Since the skip value for the root node is 0, we use the first digit 9
of the search key to determine which subtrie to move to. A move to node A.child[9] = I is
made. By examining the edge information (stored in node I), we determine that, in making
the move from node A to node I, the digits 5 and 1 are skipped. Since these digits do not
agree with the next two digits of the search key, the search terminates with the conclusion
that the trie contains no element whose key equals the search key.

Inserting into a Compressed Trie with Edge Information

To insert an element with key 987-26-1615 into the compressed trie of Figure 28.15,
we first search for an element with this key. The search terminates unsuccessfully when we
move from node A to node I because of a mismatch between the skipped over digits and
the corresponding digits of the search key. The first mismatch is at the first skipped over
digit. Therefore, we insert a branch node L between nodes A and I. The skip value for this
branch node is 0, and its element field is set to reference the element node for the newly
inserted element. We must also change the skip value of I to 1. Figure 28.16 shows the
resulting compressed trie.

Suppose we are to insert an element with key 958-36-4194 into the compressed trie of
Figure 16. The search for an element with this key terminates when we move to node T
because of a mismatch between the digits that are skipped over and the corresponding digits
of the search key. A new branch node is inserted between nodes A and I and we get the
compressed trie that is shown in Figure 28.17.

The time required to insert a d digit element into a radix r compressed trie with edge
information is O(r + d).
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FIGURE 28.17: Compressed trie following the insertion of 958-36-4194 into the compressed
trie of Figure 28.15.

Removing an Element from a Compressed Trie with Edge Information

This is similar to removal from a compressed trie with digit numbers except for the
need to update the element fields of branch nodes whose element field references the re-
moved element.

28.9.4 Space Required by a Compressed Trie

Since each branch node partitions the elements in its subtrie into two or more nonempty
groups, an n element compressed trie has at most n — 1 branch nodes. Therefore, the space
required by each of the compressed trie variants described by us is O(nr), where r is the
trie radix.

When compressed tries are represented as hash tables, we need an additional data struc-
ture to store the nonpointer fields of branch nodes. We may use an array (much like we use
the array information) for this purpose.

280 Patricia

The data struttyre Patricia (Practical Algorithm To Retrieve Information Ce
Alphanumeric) is a~sqmpressed binary trie in which the branch and elemeat™nodes have
been melded into a singlesyode type. Consider the compressed binary #fé of Figure 28.18.
Circular nodes are branch nddes and rectangular nodes are elemefit nodes. The number
inside a branch node is its bit nunither field; the left child of.e’branch node corresponds to

The melding of branch and element nodes is™dane by moving each element from its element
r of branch nodes is one less than the

od” downward pointers), the bit number value at the pointer end is always greater than
S~bit number value at the pointer start.
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