DATA MINING 1 Classification Model Evaluation

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 3 "Introduction to Data Mining", 2nd Edition by
Tan, Steinbach, Karpatne, Kumar

What is Classification?

Model Evaluation

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

Problem Setting

- Let suppose we have a vector y of actual/real class labels, i.e.,
-y y [0001110101011100]
- Let name y^{\prime} the vector returned by a trained model f, i.e.,
-y' = [0011100101110000]

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
- Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a	b
	Class=No	c	d

$$
\begin{aligned}
& \mathrm{a}: \mathrm{TP} \text { (true positive) } \\
& \text { b: FN (false negative) } \\
& \mathrm{c}: \mathrm{FP} \text { (false positive) } \\
& \text { d: TN (true negative) }
\end{aligned}
$$

Metrics for Performance Evaluation

$$
\begin{aligned}
& \text { •y }=[0001110101011100] \\
& \cdot y^{\prime}=\left[\begin{array}{lllllll}
0 & 1 & 110 & 0 & 101110000
\end{array}\right] \\
& \text { TN FP } \\
& \text { FN } \\
& \text { TP }
\end{aligned}
$$

Metrics for Performance Evaluation...

	PREDICTED CLASS		
ACTUAL CLASS	Class=Yes	Class=No	
	Class=No	a (TP)	b (FN)
	c (FP)	d (TN)	

Most widely-used metric:

$$
\text { Accuracy }=\frac{a+d}{a+b+c+d}=\frac{T P+T N}{T P+T N+F P+F N}
$$

Limitation of Accuracy

- Consider a 2-class problem
- Number of Class 0 examples $=9990$
- Number of Class 1 examples $=10$
- If model predicts everything to be class 0 , accuracy is $9990 / 10000=99.9 \%$
- Accuracy is misleading because model does not detect any class 1 example

Cost-Sensitive Measures

$$
\begin{aligned}
& \operatorname{Precision}(\mathrm{p})=\frac{T P}{T P+F P} \\
& \operatorname{Recall}(\mathrm{r})=\frac{T P}{T P+F N} \\
& \text { F-measure }(\mathrm{F})=\frac{2 r p}{r+p}=\frac{2 T P}{2 T P+F N+F P}
\end{aligned}
$$

(1. Precision is biased towards $C($ Yes \mid Yes $) \& C(Y e s \mid N o)$
@ Recall is biased towards $\mathrm{C}(\mathrm{Yes} \mid \mathrm{Yes}) \& \mathrm{C}(\mathrm{No} \mid \mathrm{Yes})$
[F -measure is biased towards all except $\mathrm{C}(\mathrm{No} \mid \mathrm{No})$

$$
\text { Weighted Accuracy }=\frac{w_{1} a+w_{4} d}{w_{1} a+w_{2} b+w_{3} c+w_{4} d}
$$

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS	Class=Yes	C(Yes\|Yes)	Class=Yes
	Class=No\|Yes)		
	Class=No	C(Yes\|No)	C(No\|No)

$\mathrm{C}(\mathrm{i} \mid \mathrm{j})$: Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	$\mathrm{C}(\mathrm{i} \mid \mathrm{j})$	+	-
	$\boldsymbol{+}$	-1	100
	-	1	0

${\text { Model } M_{1}}^{\|c\|}$ PREDICTED CLASS			
ACTUAL CLASS	+	+	-
	$\boldsymbol{+}$	150	40
	60	250	

${\text { Model } M_{2}}^{2}$	PREDICTED CLASS		
ACTUAL		+	-
	+	250	45
	-	5	200

Accuracy $=80 \%$
Accuracy = 90\%
Cost $=3910$
Cost $=4255$

Cost vs Accuracy

Count	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=No	c	d

Cost	PREDICTED CLASS		
ACTUAL CLASS	Class=Yes	Class=Yes	Class=No
	Class=No	q	p

Accuracy is proportional to cost if

1. $\mathrm{C}(\mathrm{Yes} \mid \mathrm{No})=\mathrm{C}(\mathrm{No} \mid \mathrm{Yes})=\mathrm{q}$
2. $C($ Yes \mid Yes $)=C(N o \mid N o)=p$

$$
N=a+b+c+d
$$

Accuracy $=(a+d) / \mathrm{N}$

$$
\begin{aligned}
\text { Cost } & =p(a+d)+q(b+c) \\
& =p(a+d)+q(N-a-d) \\
& =q N-(q-p)(a+d) \\
& =N[q-(q-p) \times \text { Accuracy }]
\end{aligned}
$$

Binary vs Multiclass Evaluation

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	TP	FN
	Class=No	FP	TN

	PREDICTED CLASS			
ACTUAL CLASS		Class=A	Class=B	Class=C
	Class=A	TP-A		
	Class=B		TP-B	
	Class=C			TP-C

[^0]Accuracy $=\#$ correct $/ N=(T P-A+T P-B+T P-C) / N$

Multiclass Evaluation

	PREDICTED CLASS			
ACTUAL CLASS	Class=A	TP-A	a	b
	Class=B	c	TP-B	d
	Class=C	e	f	TP-C

$\operatorname{Precision}(\mathrm{p})=\frac{T P}{T P+F P}$
$\operatorname{Recall}(\mathrm{r})=\frac{T P}{T P+F N}$
F-measure $(\mathrm{F})=\frac{2 r p}{r+p}=\frac{2 T P}{2 T P+F N+F P}$

A	PREDICTED CLASS		
ACTUAL CLASS	Class=A	Class=A	Class=NotA
	Class=NotA	$c+e$	TP-B $+\mathrm{TP}-\mathrm{C}$ $+d+f$

B	PREDICTED CLASS		
ACTUAL CLASS		Class=B	Class=Not B
	Class=B	TP-B	$c+d$
	Class=Not B	$a+f$	TP-A + TP-C $+b+e$

C	PREDICTED CLASS		
ACTUAL CLASS		Class=C	Class=Not C
	Class=C	TP-C	$\mathrm{e}+\mathrm{f}$
	Class=Not C	$\mathrm{b}+\mathrm{d}$	TP-A $+\mathrm{TP}-\mathrm{B}$ $+\mathrm{a}+\mathrm{c}$

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

Methods for Evaluation

Parameter Tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
- Stage 1: builds the basic structure
- Stage 2: optimizes parameter settings
- The test data can't be used for parameter tuning!
- Proper procedure uses three sets:
- training data,
- validation data,
- test data
- Validation data is used to optimize parameters
- Once evaluation is complete, all the data can be used to build the final classifier
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
- Class distribution
- Cost of misclassification
- Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

1. How much a classification model benefits from adding more training data?
2. Does the model suffer from a variance error or a bias error?

Methods of Estimation

- Holdout
- Reserve 2/3 for training and 1/3 for testing
- Random subsampling
- Repeated holdout
- Cross validation
- Partition data into k disjoint subsets
- k-fold: train on $k-1$ partitions, test on the remaining one
- Leave-one-out: k=n
- Stratified sampling
- oversampling vs undersampling
- Bootstrap
- Sampling with replacement

Holdout

- The holdout method reserves a certain amount for testing and uses the remainder for training
- Usually, one third for testing, the rest for training.
- Typical quantities are 60\%-40\%, 66\%-34\%, 70\%-30\%.
- For small or "unbalanced" datasets, samples might not be representative
- For instance, few or none instances of some classes
- Stratified sample
- Balancing the data
- Make sure that each class is represented with approximately equal proportions in both subsets

Repeated Holdout

- Holdout estimate can be made more reliable by repeating the process with different subsamples
- In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
- The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap

Cross Vaildation

Run 2
Training Set

- Avoids overlapping test sets
- First step: data is split into k subsets of equal size
- Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
- Even better: repeated stratified cross-validation E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

Data Partitioning

Train the model for final testing

Train the model for parameter selection

Test

- Test the model
- Compare different models once parameters have been selected

Test

Cross Validation (check potential dataset bias)

Evaluation: Training, Validation, Tests

Cross Validation with Time

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
- Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
- changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

Receiver Operating Characteristic Curve

- It illustrates the ability of a binary classifier as its discrimination threshold THR is varied.
- The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various THR.
- The TPR = TP / (TP + FN) is also known as sensitivity, recall or probability of detection.

- The FPR = FP / (TN + FP) is also known as probability of false alarm and can be calculated as (1 - specificity).

ROC Curve

(TP,FP):

- $(0,0)$: declare everything to be negative class
- $(1,1)$: declare everything to be positive class
- $(0,1)$: ideal
- Diagonal line:
- Random guessing
- Below diagonal line:
- prediction is opposite of the true class

Using ROC for Model Comparison

\square No model consistently outperform the other

- M_{1} is better for small FPR
- M_{2} is better for large FPR
\square Area Under the ROC curve
- Ideal: Area = 1
- Random: Area $=0.5$

How to Construct the ROC curve

Instance	$\mathrm{P}(+\mid \mathrm{A})$	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance $P(+\mid A)$
- Sort the instances according to $\mathrm{P}(+\mid \mathrm{A})$ in decreasing order
- Apply threshold at each unique value of $P(+\mid A)$
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, $\mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$
- FP rate, $\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})$

How to Construct the ROC curve

How to Construct the ROC curve

How to Construct the ROC curve

													Inst.	$\mathrm{P}(+\mid$)	True
	Class	+	-	+	-	-	-	+	-	+	+		1	0.95	+
Thresh	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
	TP												3	0.87	-
	7	5	4										4	0.85	-
	FP	5	5										5	0.85	-
	TN	0	0												
													6	0.85	+
	FN	0	1										7	0.76	-
\longrightarrow	TPR	1	0.8										8	0.53	+
\longrightarrow	FPR	1	1										9	0.43	-
													10	0.25	+

How to Construct the ROC curve

													Inst.	$\mathrm{P}(+\mid A)$	True
	Class	+	-	+	-	-	-	+	-	+	+		1	0.95	+
Thres	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00	2	0.93	+
													3	0.87	-
	TP	5	4	4									4	0.85	-
	FP	5	5	4									5	0.85	
	TN	0	0	1									6		
	FN	0	1	1											
\longrightarrow	TPR	1	0.8	0.8									8	0.53	+
\longrightarrow	FPR	1	1	0.8									9	0.43	-
													10	0.25	+

How to Construct the ROC curve

How to Construct the ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold >=		0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\longrightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

$T P R=T P /(T P+F N)$
$F P R=F P /(T N+F P)$

ROC Curve:

Inst.	$\mathrm{P}(+\mid \mathrm{A})$	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- The lift curve is a popular technique in direct marketing.
- The input is a dataset that has been "scored" by appending to each case the estimated probability that it will belong to a given class.
- The cumulative lift chart (also called gains chart) is constructed with the cumulative number of cases (descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis.
- The dashed line is a reference line. For any given number of cases (the x-axis value), it represents the expected number of positives we would predict if we did not have a model but simply selected cases at random. It provides a benchmark against which we can see performance of the model.

Notice: "Lift chart" is a rather general term, often used to identify also other kinds of plots. Don't get confused!

Lift Chart-Example

Serial no.	Predicted prob of 1	Actual Class	Cumulative Actual class
1	0.995976726	1	1
2	0.987533139	1	2
3	0.984456382	1	3
4	0.980439587	1	4
5	0.948110638	1	5
6	0.889297203	1	6
7	0.847631864	1	7
8	0.762806287	0	7
9	0.706991915	1	8
10	0.680754087	1	9
11	0.656343749	1	10
12	0.622419543	0	10
13	0.505506928	1	11
14	0.47134045	0	11
15	0.337117362	0	11
16	0.21796781	1	12
17	0.199240432	0	12
18	0.149482655	0	12
19	0.047962588	0	12
20	0.038341401	0	12
21	0.024850999	0	12
22	0.021806029	0	12
23	0.016129906	0	12
24	0.003559986	0	12

Lift Chart - Application Example

- From Lift chart we can easily derive an "economical value" plot, e.g. in target marketing.
- Given our predictive model, how many customers should we target to maximize income?
- Profit $=$ UnitB*MaxR*Lift(X) - UnitCost*N*X/100
- UnitB = unit benefit, UnitCost = unit postal cost
- $\mathrm{N}=$ total customers
- MaxR = expected potential respondents in all population (N)
- $\operatorname{Lift}(X)=$ lift chart value for X, in $[0, . ., 1]$

Lift Chart-Application Example

References

- Chapter 3. Classification: Basic Concepts and Techniques.

[^0]: Accuracy $=T P+T N /(T P+T N+F N+F P)=\#$ correct $/ N$

