DATA MINING 2 Odds and Log Odds

Riccardo Guidotti

a.a. 2022/2023

Contains edited slides from StatQuest

Odds Example

For example, you might say that
the odds in favor of my team
winning the game are 1 to 4 :

Odds Example

For example, you might say that the odds in favor of my team winning the game are 1 to 4 :

Visually, we have 5 games total...

Odds Example

For example, you might say that the odds in favor of my team winning the game are 1 to 4 :

.. 1 of which my team will win...

Odds Example

For example, you might say that the odds in favor of my team winning the game are 1 to 4 :

...and 4 of which my team will lose.

Odds Example

For example, you might say that the odds in favor of my team winning the game are 1 to 4 :

So the odds are $1 . .$.

Odds Example

For example, you might say that the odds in favor of my team winning the game are 1 to 4 :

..to 4

Odds Example

For example, you might say that the odds in favor of my team winning the game are 1 to 4 :

Alternatively, we can write this as a fraction... $\frac{1}{4}$

Odds Example

For example, you might say that
the odds in favor of my team
winning the game are 1 to 4 :

Odds Example

For example, you might say that
the odds in favor of my team
winning the game are 1 to 4 :

Alternatively, we can write this as a fraction... $\frac{1}{4}$
...divided by the 4 games
that my team loses.

Odds Example

For example, you might say that
the odds in favor of my team
winning the game are 1 to 4 :

$$
\text { Alternatively, we can write this as a fraction... } \frac{1}{4}=0.25 \begin{gathered}
\text {..if we do the math, we } \\
\begin{array}{c}
\text { see that the odds are } \\
0.25 \text { that my team will } \\
\text { win the game. }
\end{array}
\end{gathered}
$$

Odds Example

Here's another example: You might say that the odds in favor of my team winning the game are 5 to 3 :

...if we do the math, we Alternatively, we can write this as a fraction... $\frac{5}{3}=1.7 \quad$ see that the odds are 1.7 that my team will win the game.

Note: Odds are not probabilities!!!

Odds vs Probability

The odds are the ratio of something happening (i.e. my
team winning)...
...to something not happening (i.e. my team not winning).

Odds vs Probability

The odds are the ratio of something happening (i.e. my
team winning)...
...to something not happening (i.e. my team not winning).

Probability is the ratio of something happening (i.e. my team winning)...
...to everything that could happen
(i.e. my team winning and losing).

Odds vs Probability

In the previous example, the odds in favor of my team winning the game are 5 to $3 \ldots$

...however, the probability of my team winning is the number of games they win (5) divided by the total number of games they play (8)...
.here's the math...

Odds from Probabilities

Odds from Probabilities

$$
=\frac{5}{3}=1.7
$$

Odds from Probabilities

$$
\begin{aligned}
& =\frac{5}{3}=1.7 \\
& =\frac{5}{8}=0.625 \\
& =0.375 \quad \text {...the probability of losing is } \\
& 0.375
\end{aligned}
$$

Odds from Probabilities

NOTE: We could also calculate the probability of losing as:

1 - the probability of winning

Odds from Probabilities

$$
\frac{000}{000}-\frac{5}{8}=110
$$

So, either way, we get the same probability...

1 - the probability of winning $=1-\frac{5}{8}=\frac{8}{8}-\frac{5}{8}=\frac{3}{8}=0.375$

Odds from Probabilities

$$
=\frac{5}{3}=1.7
$$

Now let's take the ratio of the probability of winning to the probability of losing...

The ratio of the probability of winning...
...to the probability of losing

Odds from Probabilities

Alternatively, we can put (1 - the probability of winning) into the denominator...

The ratio of the probability of winning... ...to (1 - the probability of winning)

Odds from Probabilities

Thus, the ratio of the probabilities ends up being the same thing as the ratio of the raw counts...

$$
\begin{aligned}
& \begin{array}{l}
\text { The ratio of the } \\
\text { probability of winning... } \\
\text {...to }(1-\text { the probability of winning })
\end{array}=\frac{5 / 8}{3 / 8}=\frac{5}{3}
\end{aligned}
$$

$$
\text { odds }=p /(1-p)
$$

Log of the Odds

We can see that the worse my team is, the odds of winning get closer and closer to 0 .

Log of the Odds

In other words, if the odds are against my team winning, then they will be between 0 and 1 .

Log of the Odds

We can see that the better my team is, the odds of winning start at 1 and just go up and up.

Log of the Odds

In other words, if the odds are for my team winning,
then they will be between 1 and infinity!

Log of the Odds

Another way to look at this is with a number line...

Log of the Odds

The odds of my team
losing go from 0 to $1 . .$.

Log of the Odds

...and the odds of my team
winning go from 1 to infinity
(and beyond!)

Log of the Odds

The asymmetry makes it difficult to compare the odds for or against my team winning.

Log of the Odds

For example if the odds are against 1 to 6 , then the odds are $1 / 6=0.17 \ldots$

...but if the odds are in
favor 6 to 1 , then the odds

$$
\text { are } 6 / 1=6!
$$

Log of the Odds

Taking the $\log 0$ of the odds
(i.e. $\log (o d d s))$ solves this
problem by making everything symmetrical.

Log of the Odds

For example if the odds are
against 1 to 6 , then the $\log ($ odds $)$ are $\log (1 / 6)=$
$\log (0.17)=-1.79$

Log of the Odds

For example if the odds are
against 1 to 6 , then the $\log ($ odds $)$ are $\log (1 / 6)=$ $\log (0.17)=-1.79$

Log of the Odds

Using the log function, the distance from the origin (or 0) is the same for 1 to 6 and 6 to 1 odds.

Odds and Log Odds

$=\frac{5}{3}=1.7$

Earlier we saw that odds can be calculated from counts...

Odds and Log Odds

The ratio of the

$$
\frac{\text { probability of winning... }}{\text {..to }(1 \text { - the probability of winning) }}=\frac{5 / 8}{3 / 8}=\frac{5}{3}=1.7
$$

Odds and Log Odds

The ratio of the
$\frac{\text { probability of winning... }}{\text {..to }(1 \text { - the probability of winning) }}=\frac{5 / 8}{3 / 8}=\frac{5}{3}=1.7$

Odds and Log Odds

Logit Transform

- The logit is the natural log of the odds
- $\operatorname{logit}(p)=\ln ($ odds $)=\ln (p /(1-p))$

Odds and Log Odds

- Odds are the ratio of something happening to something not happening
- Log odds are the log of the odds
- What's the big deal?

Odds and Log Odds

To show you what the big deal is all about, if I pick pairs of random numbers that add up to 100 (for example) and use them to calculate the log(odds)
and draw a histogram...

Odds and Log Odds

...the histogram is in the shape of a
normal distribution!

Odds and Log Odds

This makes the log(odds) useful for solving certain statistics problems - specifically ones where we are trying to determine probabilities about win/lose, or yes/no, or true/false types of situations.

Odds Ratios

When people say "odds ratio", they are talking about a "ratio of odds".

Odds Ratios

When people say "odds ratio", they are talking about a "ratio of odds".

Odds Ratios

000 of something, if the denominator is

Odds Ratios

...and if the numerator is larger than the denominator, then the odds ratio will go from 1 to infinity (and beyond!)...

Log of Odds Ratios

...and, just like the odds, taking the log of the odds ratio (i.e. log(odds ratio)) makes things nice and symmetrical.

Odds Ratios in Action

Has the mutated gene	Yes	Has Cancer	
		Yes	No
		23	117
	No	6	210

Odds Ratios in Action

Odds Ratios in Action

Has the mutated gene	Yes	Has Cancer	
		Yes	No
		23	117
	No	6	210

...and the odds ratio tells us that the odds are 6.88 times greater that someone with the mutated gene will also have cancer.

Odds Ratios in Action

Odds Ratios in Action

What does all this mean?

Odds Ratios in Action

Has the mutated gene	Yes	Has Cancer	
		Yes	No
		23	117
	No	6	210

...larger values mean that the mutated gene is a good predictor of cancer. Smaller values mean that the mutated gene is not a good predictor of cancer.

Odds Again

- Given some event with probability p of being 1, the odds of that event are given by:

$$
\text { odds }=p /(1-p)
$$

- When we go from Normal to High, the odds of being Sick triple:
- Odds ratio: 0.293/0.111 $=2.64$
- 2.64 times more likely to be Sick with high values

Sick

	Yes		No
	Normal	402	3614
	High	101	345
Total	503	3959	446

The odds of being sick if you have a Normal value are:

- Odds(Sick|Normal) $=\mathrm{P}($ sick $) / 1-\mathrm{P}($ sick $)=$

$$
\begin{aligned}
& =(402 / 4016) /(1-(402 / 4016)) \\
& =0.1001 / 0.8889=0.111
\end{aligned}
$$

The odds of being not sick with a Normal value is the reciprocal:

- Odds(not Sick \mid Normal $)=0.8999 / 0.1001=8.99$

For the High value we have

- Odds(Sick \mid High $)=101 / 345=0.293$
- Odds(not Sick|High) $=345 / 101=3.416$

References

- Regression. Appendix D. Introduction to Data Mining.

