

Department Wirtschaftsinformatik

Fachbereich Wirtschaftswissenschaft

Business Intelligence

12 What is a good model?

Prof. Jan Fabian Ehmke, Sommersemester 2013

04.06.2013

Recommended reading

- Provost, F., Data Science for Business Fawcett, T. Chapter 7
- Berthold et al. Guide to Intelligent Data Analysis Chapter 5

What is desired from data mining results?

- How would you measure that your model is any good?
 - ► How to measure performance in a meaningful way?
- Model evaluation is application-specific
 - We look at common issues and themes in evaluation
- Frameworks and metrics for classification and instance scoring

Bad positives and harmless negatives

Classification terminology

- ► a **bad** outcome \rightarrow a "positive" example [alarm!]
- ► a good outcome → a "negative" example [uninteresting]
- Further examples
 - medical test: positive test \rightarrow disease is present
 - fraud detector: positive test \rightarrow unusual activity on account
- A classifier tries to distinguish the majority of cases (negatives, the uninteresting) from the small number of alarming cases (positives, alarming)
 - number of mistakes made on negative examples (false positive errors) will be relatively high
 - cost of each mistake made on a positive example (false negative error) will be relatively high

4

Agenda

Measuring accuracy

- Confusion matrix
- Unbalanced classes
- A key analytical framework: Expected value
 - Evaluate classifier use
 - Frame classifier evaluation

Evaluation and baseline performance

Measuring accuracy and its problems

- Up to now: measure a model's performance by some simple metric
 - ► classifier error rate, accuracy, ...
- Simple example: accuracy

 $accuracy = \frac{\text{Number of correct decisions made}}{\text{Total number of decisions made}}$

- Classification accuracy is popular, but usually too simplistic for applications of data mining to real business problems
- Decompose and count the different types of correct and incorrect decisions made by a classifier

6

The confusion matrix

A confusion matrix for a problem involving n classes

 is an n × n matrix with the columns labeled with actual classes and the rows labels with predicted classes

 $\begin{array}{ccc} p & n \\ \mbox{Predicted} & \begin{array}{c} Y \\ N \end{array} \begin{pmatrix} \mbox{True positives} & \mbox{False positives} \\ \mbox{False negatives} & \mbox{True negatives} \end{pmatrix} \end{array}$

- Each example in a test set has an actual class label and the class predicted by the classifier
- The confusion matrix separates out the decisions made by the classifier
 - ► actual/true classes: **p**(ositive), **n**(egative)
 - ► predicted classes: **Y**(es), **N**(o)
 - ► The main diagonal contains the count of correct decisions

Unbalanced classes (1/3)

- In practical classification problems, one class is often rare
 - Classification is used to find a relatively small number of unusual ones (defrauded customers, defective parts, targeting consumers who actually would respond, ...)
 - The class distribution is unbalanced ("skewed")
- Evaluation based on accuracy does not work
 - Example: 999:1 ratio always choose the most prevalent class – 99.9% accuracy!
 - ► Fraud detection: skews of 10²
 - Is a model with 80% accuracy always better than a model with 37% accuracy?
- We need to know more details about the population

Unbalanced classes (2/3)

- Consider two models A and B for the churn example (1000 customers, 1:9 ratio of churning)
 - ▶ Both models correctly classify 80% of the balanced pop.
 - Classifier A often falsely predicts that customers will churn
 - Classifier B makes many opposite errors

Note the different performances of the models in form of a confusion matrix:

		\mathbf{churn}	not churn
$CM_A =$	$Y \\ N$	$ \begin{pmatrix} 500\\ 0 \end{pmatrix} $	$\begin{pmatrix} 200 \\ 300 \end{pmatrix}$

		\mathbf{churn}	not churn
$CM_B =$	Y	300	0
	N	200	500

- Model A achieves 80% accuracy on the balanced sample
- Unbalanced population: A's accuracy is 37%, B's accuracy is 93%
- Which model is better?

Unequal costs and benefits

- How much do we care about the different errors and correct decisions?
 - Classification accuracy makes no distinction between false positive and false negative errors
 - In real-world applications, different kinds of errors lead to different consequences!
- Examples for medical diagnosis:
 - a patient has cancer (although he does not)

 false positive error, expensive, but not life threatening
 - ► a patient has cancer, but she is told that she has not → false negative error, more serious
- Errors should be counted separately
 - Estimate cost or benefit of each decision

- Another example: how to measure the accuracy / quality of a regression model?
 - Predict how much a given customer will like a given movie
- Typical accuracy of regression: mean-squared error
- What does the mean-squared error describe?
 - Value of the target variable, e.g., the number of stars that a user would give as a rating for the movie

Is the mean-squared error a meaningful metric?

Measuring accuracy

- Confusion matrix
- Unbalanced classes

A key analytical framework: Expected value

- Evaluate classifier use
- ► Frame classifier evaluation

Evaluation and baseline performance

The expected value framework

- Expected value calculation includes enumeration of the possible outcomes of a situation
- Expected value = weighted average of the values of different possible outcomes, where the weight given to each value is the probability of its occurrence
 - Example: different levels of profit
 - We focus on the maximization of expected profit
- General form of expected value computation:

 $EV = p(o_1) \cdot v(o_1) + p(o_2) \cdot v(o_2) + \dots +$

with o_i as possible decision outcome, $p(o_i)$ as its probability, and $v(o_i)$ as its value.

Probabilities can be estimated from available data

Expected value for use of a classifier (1/2)

- Use of a classifier: predict a class and take some action
 - Example target marketing: assign each consumer to either a class "likely responder" or "not likely responder"
 - Response is usually relatively low so no consumer may seem like a likely responder
- Computation of the expected value
 - A model gives an estimated probability of response
 *p*_R(*x*)
 for any consumer with a feature vector *x*
 - ► Calculate expected benefit (or costs) of targeting consumer x: p̂_R(x) · v_R + (1 p̂_R(x)) · v_{NR} with v_R being the value of a response and v_{NR} the value from no response

Expected value for use of a classifier (2/2)

Example

- Price of product: \$200, costs of product: \$100
- ► Targeting a consumer: \$1, profit $v_R =$ \$99, $v_{NR} = -$ \$1
- ► Do we make a profit? Is the expected value (profit) of targeting greater than zero? $\hat{p}_R(\mathbf{x}) \cdot \$99 + (1 - \hat{p}_R(\mathbf{x})) \cdot (-\$1) > 0$ $\hat{p}_R(\mathbf{x}) \cdot \$99 > (1 - \hat{p}_R(\mathbf{x})) \cdot \1 $\hat{p}_R(\mathbf{x}) > \0.01
- We should target the consumer as long as the estimated probability of responding is greater than 1%!

Expected value for evaluation of a classifier

- Goal: compare the quality of different models with each other
 - Does the data-driven model perform better than a hand-crafted model?
 - Does a classification tree work better than a linear discriminant model?
 - Do any of the models perform substantially better than a baseline model?

In aggregate: how well does each model do – what is its expected value?

Expected value calculation

18

Expected value for evaluation of a classifier

Aggregate together all the different cases:

- When we target consumers, what is the probability that they (do not) respond?
- What about when we do not target consumers, would they have responded?
- This information is available in the confusion matrix
 - Each o_i corresponds to one of the possible combinations of the class we predict/the actual class

Example confusion matrix/estimates of probability

Department Wirtschaftsinformatik

70	Actual		al	T = 100, P = 61, N = 49 (Positive, Negative)
icte		р	n	$p(Y, \mathbf{p}) = \frac{56}{2} = 0.56, p(Y, \mathbf{p}) = \frac{7}{2} = 0.7$
red	Y	56	7	100 100 100 100 100 100 100 100 100 100
	Ν	5	42	$p(N, p) = \frac{5}{100} = 0.05, p(N, n) = \frac{42}{100} = 0.42$

FU Berlin

Jan Fabian Ehmke

Where do the probabilities of errors and correct decisions actually come from?

Each cell of the confusion matrix contains a count of the number of decisions corresponding to the combination of (predicted, actual) count(h, a)

• Compute estimated probabilities as
$$p(h, a) = count(h, a)/T$$

Costs and benefits

- Compute cost-benefit values for each decision pair
- A cost-benefit matrix specifies for each (predicted,actual) pair the cost or benefit making such a decision
 - Correct classifications (true positives and negatives) correspond to b(Y, p) and b(N, n), respectively
 - Incorrect classifications (false positives and negatives) correspond to b(Y, n) and b(N, n), respectively [often negative benefits or costs]
- Costs and benefits cannot be estimated from data
 - ► How much is it really worth us to retain a customer?
 - Often use of average estimated costs and benefits

Predicted

Actual

b(**Y,p**)

n

c(**Y,n**)

b(**N,n**)

Costs and benefits - example

Targeted marketing example

- False positive occurs when we classify a consumer as a likely responder and therefore target her, but she does not respond → benefit b(Y, n) = -1
- ► False negative is a consumer who was predicted not to be a likely responder, but would have bought if offered. No money spent, nothing gained → benefit b(N, p) = 0
- ► True positive is a consumer who is offered the product and buys it → benefit b(Y, p) = 200 - 100 - 1 = 99
- ► True negative is a consumer who was not offered a deal but who would not have bought it
 → benefit b(N, n) = 0
- Sum up in cost-benefit matrix

Expected profit computation (1/2)

- Compute expected profit by cell-wise multiplication of the matrix of costs and benefits against the matrix of probabilities:
- $EP = p(Y|p) \cdot p(p) \cdot b(Y,p) + p(N|p) \cdot p(p) \cdot b(N,p) + p(N|n) \cdot p(n) \cdot b(N,n) + p(Y|n) \cdot p(n) \cdot b(Y,n)$
- Sufficient for comparison of various models
- Alternative calculation: factor out the probabilities of seeing each class (class priors)
 - Class priors p(p) and p(n) specify the likelihood of seeing positive versus negative instances
 - Factoring out allows us to separate the influence of class imbalance from the predictive power of the model

Expected profit computation (2/2)

- Factoring out priors yields the following alternative expression for expected profit EP = p(p) · [p(Y|p) · b(Y,p) + p(N|p) · b(N,p)] + p(n) · [p(N|n) · b(N,n) + p(Y|n) · b(Y,n)]
- The first component corresponds to the expected profit from the positive examples, whereas the second corresonds to the expected profit from the negative examples

Costs and benefits – example alternative expression

Actual		$P = 61, \qquad N = 49$
p n		$p(\mathbf{p}) = 0.55, \qquad p(\mathbf{n}) = 0.45$
$\mathbf{Y} 56 7$		$tp \ rate = 56/61 = 0.92, \qquad fp \ rate = 7/49 = 0.14$
Predicted IN 5 42		fn rate = $5/61 = 0.08$, tn rate = $42/49 = 0.86$
expected profit	=	$p(\mathbf{p}) \cdot \left[p(\mathbf{Y} \mathbf{p}) \cdot b(\mathbf{Y},\mathbf{p}) + p(\mathbf{N} \mathbf{p}) \cdot b(\mathbf{N},\mathbf{p}) \right] +$
		$p(\mathbf{n}) \cdot \left[p(\mathbf{N} \mathbf{n}) \cdot b(\mathbf{N},\mathbf{n}) + p(\mathbf{Y} \mathbf{p}) \cdot b(\mathbf{Y},\mathbf{n}) \right]$
	=	$0.55 \cdot [0.92 \cdot b(\mathbf{Y}, \mathbf{p}) + 0.08 \cdot b(\mathbf{N}, \mathbf{p})] +$
		$0.45 \cdot [0.86 \cdot b(\mathbf{N}, \mathbf{n}) + 0.14 \cdot b(\mathbf{Y}, \mathbf{n})]$
	=	$0.55 \cdot [0.92 \cdot 100 + 0.08 \cdot 0] +$
		$0.45 \cdot [0.86 \cdot 0 + 0.14 \cdot -1]$
	=	$50.6 - 0.063 \approx 50.54$

This expected value means that if we apply this model to a population of prospective customers and mail offers to those it classifies as positive, we can expect to make an average of about \$50.54 profit per consumer.

Further insights

- In sum: instead of computing accuracies for competing models, we would compute expected values
- We can compare two models even though one is based on a representative distribution and one is based on a class-balanced data set
 - Just replace the priors
 - ▶ Balanced distribution $\rightarrow p(\mathbf{p}) = 0.5$ and $p(\mathbf{n}) = 0.5$
- Make sure that the signs of quantities in the cost-benefit matrix are consistent
- Do not double count by putting a benefit in one cell and a negative cost for the same thing in another cell

Other evaluation metrics

- Based on the entries of the confusion matrix, we can describe various evaluation metrics
 - True positive rate (Recall): $\frac{TP}{TP+FN}$
 - False negative rate: $\frac{FN}{TP+FN}$
 - Precision (accuracy over the cases predicted to be positive): $\frac{TP}{TP+FP}$
 - ► F-measure (harmonic mean): $2 \cdot \frac{precision \cdot recall}{precision + recall}$

- Sensitivity: $\frac{TN}{TN+FP}$
- Specificity: $\frac{TP}{TP+FN}$
- Accuracy (count of correct decisions): $\frac{TP+TN}{P+N}$

- Measuring accuracy
 - Confusion matrix
 - Unbalanced classes
- A key analytical framework: Expected value
 - Evaluate classifier use
 - ► Frame classifier evaluation

Evaluation and baseline performance

Baseline performance (1/3)

- Consider what would be a reasonable baseline against which to compare model performance
 - Demonstrate stakeholder that data mining has added value (or not)
- What is the appropriate baseline for comparison?
 - Depends on the actual application
- Nate Silver on weather forecasting:
 - There are two basic tests that any weather forecast must pass to demonstrate its merit: (1) It must do better than what meteorologists call persistence: the assumption that the weather will be the same tomorrow (and the next day) as it

was today. (2) It must also beat climatology, the long-term historical average of conditions on a particular date in a particular area.

Baseline performance (2/3)

- Baseline performance for classification
 - Compare to a completely random model (very easy)
 - Implement a simple (but not simplistic) alternative model
- Majority classifier = a naive classifier that always chooses the majority class of the training data set
 - May be challenging to outperform: classification accuracy of 94%, but only 6% of the instances are positive
 majority classifier also would have an accuracy of 94%!
- Pitfall: don't be surprised that many models simply predict everything to be of the majority class
- Maximizing simple prediction accuracy is usually not an appropriate goal

Baseline performance (3/3)

- Further alternative: how well does a simple "conditional" model perform?
 - ► Conditional → prediction different based on the value of the features
 - Just use the most informative variable for prediction
 - ► Decision tree: build a tree with only one internal node (decision stump) → tree induction selects the single most informative feature to make a decision
- Compare quality of models based on data sources
 - Quantify the value of each source
- Implement models that are based on domain knowledge

Measuring accuracy

- Confusion matrix
- Unbalanced classes

A key analytical framework: Expected value

- Evaluate classifier use
- Frame classifier evaluation

Evaluation and baseline performance

Example with KNIME

- The scorer node is KNIME's most prominent module to estimate errors.
 - In the figure below, the trained Naïve Bayes classifier is applied to a second data set, and the output is fed into the scorer node which compares the target with the predicted class.
 - The output of this scorer is a confusion matrix and a second matrix listing some well-known error measures.

