AN ALTERNATIVE METHOD FOR ASSOCIATION RULES

RECAP

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

 Support (o)
-------------------------------	------------

- **Count**: Frequency of occurrence of an itemset
- E.g. σ({Milk, Bread, Diaper}) = 2
- Fraction: Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 40%

Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold, minsup

Problem Definition

- Input: A set of transactions T, over a set of items I, minsup value
- Output: All itemsets with items in I having minsup

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

The itemset lattice

The Apriori Principle

- Apriori principle (Main observation):
 - If an itemset is frequent, then all of its subsets must also be frequent
 - If an itemset is not frequent, then all of its supersets cannot be frequent

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- The support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustration of the Apriori principle

Figure 6.3. An illustration of the *Apriori* principle. If $\{c, d, e\}$ is frequent, then all subsets of this itemset are frequent.

Illustration of the Apriori principle

The Apriori algorithm

Level-wise approach

C_k = candidate itemsets of size kL_k = frequent itemsets of size k

- 1. k = 1, C_1 = all items
- 2. While C_k not empty

Frequent itemset generation

 Scan the database to find which itemsets in C_k are frequent and put them into L_k

Candidate generation

4. Use L_k to generate a collection of candidate itemsets C_{k+1} of size k+1

5. k = k+1

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", *Proc. of the 20th Int'l Conference on Very Large Databases*, 1994.

Candidate Generation

Basic principle (Apriori):

 An itemset of size k+1 is candidate to be frequent only if all of its subsets of size k are known to be frequent

• Main idea:

- Construct a candidate of size k+1 by combining two frequent itemsets of size k
- Prune the generated k+1-itemsets that do not have all k-subsets to be frequent

Factors affecting the complexity

Choice of minimum support threshold

 lowering min support results in more frequent itemsets this may increase number of candidates and max length of frequent itemsets

Dimensionality (number of items of the dataset)

- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase

Size of database

 since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

Average transaction length

- transaction length increases with denser data sets
- this may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its length)

THE FP-TREE AND THE FP-GROWTH ALGORITHM

Overview

- The FP-tree contains a compressed representation of the transaction database.
 - A trie (prefix-tree) data structure is used
 - Each transaction is a path in the tree paths can overlap.
- Once the FP-tree is constructed the recursive, divide-and-conquer FP-Growth algorithm is used to enumerate all frequent itemsets.

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

- The FP-tree is a trie (prefix tree)
- Since transactions are sets of items, we need to transform them into ordered sequences so that we can have prefixes
 - Otherwise, there is no common prefix between sets {A,B} and {B,C,A}
- We need to impose an order to the items
 - Initially, assume a lexicographic order.

Initially the tree is empty

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Reading transaction TID = 1

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

Node label = item:support

 Each node in the tree has a label consisting of the item and the support (number of transactions that reach that node, i.e. follow that path)

Reading transaction TID = 2

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

Each transaction is a path in the tree

 We add pointers between nodes that refer to the same item

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

The Header Table and the pointers assist in computing the itemset support

Reading transaction TID = 3

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

null

Reading transaction TID = 3

	_
TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

null

Reading transaction TID = 3

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

null

Each transaction is a path in the tree

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	{A,B,D}
10	$\{B,C,E\}$

Header table

Item	Pointer
Α	
В	
С	
D	
Е	

Transaction Database

Each transaction is a path in the tree

Pointers are used to assist frequent itemset generation

FP-tree size

- Every transaction is a path in the FP-tree
- The size of the tree depends on the compressibility of the data
 - Extreme case: All transactions are the same, the FPtree is a single branch
 - Extreme case: All transactions are different the size of the tree is the same as that of the database (bigger actually since we need additional pointers)

Item ordering

- The size of the tree also depends on the ordering of the items.
- Heuristic: order the items in according to their frequency from larger to smaller.
 - We would need to do an extra pass over the dataset to count frequencies

Example:

TID	Items		TID	Items
1	{A,B}	σ(A)=7, σ(B)=8, σ(C)=7, σ(D)=5, σ(E)=3 Ordering: B,A,C,D,E	1	{B,A}
2	$\{B,C,D\}$		2	{B,C,D}
3	$\{A,C,D,E\}$		3	$\{A,C,D,E\}$
4	$\{A,D,E\}$		4	{A,D,E}
5	$\{A,B,C\}$		5	{B,A,C}
6	$\{A,B,C,D\}$		6	$\{B,A,C,D\}$
7	{B,C}		7	{B,C}
8	{A,B,C}		8	{B,A,C}
9	{A,B,D}		9	$\{B,A,D\}$
10	{B,C,E}		10	{B,C,E}

- Input: The FP-tree
- Output: All Frequent Itemsets and their support
- Method: Divide and Conquer:
 - Consider all itemsets that end in: E, D, C, B, A
 - For each possible ending item, consider the itemsets with last items one of items preceding it in the ordering
 - E.g, for E, consider all itemsets with last item D, C, B, A. In this
 way we get all the itemsets ending at DE, CE, BE, AE
 - Proceed recursively this way.
 - Do this for all items.

Frequent itemsets

Frequent Itemsets

Using the FP-tree to find frequent itemsets

Transaction Database

Header table

Item	Pointer
Α	
В	
С	
D	
Е	

null

Bottom-up traversal of the tree.

First, itemsets ending in E, then D, etc, each time a suffix-based class

■ We will then see how to compute the support for the possible itemsets

Algorithm

- For each suffix X
- Phase 1
 - Construct the prefix tree for X as shown before, and compute the support using the header table and the pointers
- Phase 2
 - If X is frequent, construct the conditional FP-tree for X in the following steps
 - 1. Recompute support
 - Prune infrequent items
 - Prune leaves and recurse

Example

 ${A,C,D,E}, {A,D,E}, {B,C,E}$

Example

Phase 1 – construct prefix tree

Find all prefix paths that contain E

Prefix Paths for E:

 ${A,C,D,E}, {A,D,E}, {B,C,E}$

Example

Compute Support for E

(minsup = 2)

How?

Follow pointers while summing up counts: 1+1+1 = 3 > 2

E is frequent

{E} is frequent so we can now consider suffixes DE, CE, BE, AE

E is frequent so we proceed with Phase 2

Phase 2

Convert the prefix tree of E into a conditional FP-tree

Two changes

- (1) Recompute support
- (2) Prune infrequent

Recompute Support

The support counts for some of the nodes include transactions that do not end in E

For example in null->B->C->E we count {B, C}

Property to satisfy: The support of any node is equal to the sum of the support of leaves with label E in its subtree

The support of any node is equal to the sum of the support of leaves with label E in its subtree

Truncate

Delete the nodes of E

Truncate

Delete the nodes of E

Truncate

Delete the nodes of E

Prune infrequent

In the conditional FP-tree some nodes may have support less than minsup

e.g., B needs to be pruned

This means that B appears with E less than minsup times

The conditional FP-tree for E

Repeat the algorithm for {D, E}, {C, E}, {A, E}

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

Compute the support of $\{D,E\}$ by following the pointers in the tree $1+1=2\geq 2=$ minsup

{D,E} is frequent

Phase 2

Construct the conditional FP-tree

- 1. Recompute Support
- 2. Prune nodes

Recompute support

Final condition FP-tree for {D,E}

The support of A is ≥ minsup so {A,D,E} is frequent Since the tree has a single node we return to the next subproblem

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

Compute the support of $\{C,E\}$ by following the pointers in the tree $1+1=2\geq 2=$ minsup

{C,E} is frequent

Phase 2

Construct the conditional FP-tree

- 1. Recompute Support
- 2. Prune nodes

A:1 C:1

Recompute support

null (

Prune nodes

Return to the previous subproblem

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

Compute the support of $\{A,E\}$ by following the pointers in the tree $2 \ge minsup$

{A,E} is frequent

There is no conditional FP-tree for {A,E}

So for E we have the following frequent itemsets
 {E}, {D,E}, {C,E}, {A,E} {ADE}

We proceed with D

Phase 1 – construct prefix tree

Find all prefix paths that contain D

Support 5 > minsup, D is frequent

Phase 2

Convert prefix tree into conditional FP-tree

Prune nodes

Prune nodes

Construct conditional FP-trees for {C,D}, {B,D}, {A,D}

And so on....

Observations

- At each recursive step we solve a subproblem
 - Construct the prefix tree
 - Compute the new support
 - Prune nodes
- Subproblems are disjoint so we never consider the same itemset twice

 Support computation is efficient – happens together with the computation of the frequent itemsets.

Observations

- The efficiency of the algorithm depends on the compaction factor of the dataset
- If the tree is bushy then the algorithm does not work well, it increases a lot of number of subproblems that need to be solved.