AN ALTERNATIVE METHQOD
FOR ASSOCIATION RULES

RECAP

L
Mining Frequent ltemsets

TID Items
ltemset | | 1 Bread, Milk
A CO||5|eCtIO|n ofMglr;eBor rr;o;g items 7 Bread, Diaper, Beer, Eggs
mple: ., Bread, Diaper : :
_ xample: {Mi laper} 3 Milk, Diaper, Beer, Coke
k-itemset y Bread. Milk. Di B
An itemset that contains k items read, VIR, Tnaper, beer
5 Bread, Milk, Diaper, Coke
Support (o)

Count: Frequency of occurrence of an itemset
E.g. o({Milk, Bread,Diaper}) = 2
Fraction: Fraction of transactions that contain an itemset
E.g. s({Milk, Bread, Diaper}) = 40%
Frequent ltemset

An itemset whose support is greater than or equal to a minsup threshold,
minsup

Problem Definition

Input: A set of transactions T, over a set of items |, minsup value
Output: All itemsets with items in | having minsup

The itemset lattice

Given

d items, there are
29 possible itemsets

ive to test all!

pens

Too ex

e
The Apriori Principle

* Apriori principle (Main observation):

— If an itemset is frequent, then all of its subsets must also
be frequent

— If an itemset is not frequent, then all of its supersets
cannot be frequent

VX, Y (XCY)=s5(X)=s(Y)

— The support of an itemset never exceeds the support of
its subsets

— This is known as the anti-monotone property of support

lllustration of the Apriori principle

————— —
—_
- —

/ N Frequent

Figure 6.3. An illustration of the Apriori principle. If {c,d, e} is frequent, then all subsets of this
itemset are frequent.

/
/
y4
(7))
e
D)
L o
Q0 g
Q <
= 5
\\\\\\\\\\ Sr
et
nD.
)
oD
o
D
—
y—
C

lllustration of the Apriori principle

Found to be
Infrequent

The Apriori algorithm

C, = candidate itemsets of size k

Level-wise approach L, = frequent itemsets of size k

1. k=1,C, =all items
2. While C, not empty

i3 Scan the database to find which itemsets in \

itemse

generation C, are frequent and put them into L,

J
- . N\
4 _Use I (o generat_e a collection of candidate
ccuceilnn jtemsets C, ,, of size k+1]

J
9. kK =Kk+1

.

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",
Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

Candidate Generation

- Basic principle (Apriori):
- An itemset of size k+1 is candidate to be frequent only if
all of its subsets of size k are known to be frequent
- Main idea:

- Construct a candidate of size k+1 by combining two
frequent itemsets of size k

- Prune the generated k+1-itemsets that do not have all
k-subsets to be frequent

Factors affecting the complexity

Choice of minimum support threshold

- lowering min support results in more frequent itemsets this may
increase number of candidates and max length of frequent itemsets

Dimensionality (number of items of the dataset)
- more space is needed to store support count of each item

- if number of frequent items also increases, both computation and /O
costs may also increase

Size of database

- since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

Average transaction length

- transaction length increases with denser data sets

- this may increase max length of frequent itemsets and traversals of
hash t;ee (number of subsets in a transaction increases with its
length

THE FP-TREE AND THE
FP-GROWTH ALGORITHM

Overview

- The FP-tree contains a compressed
representation of the transaction database.
- A trie (prefix-tree) data structure is used

- Each transaction is a path in the tree — paths can
overlap.

- Once the FP-tree is constructed the recursive,
divide-and-conquer FP-Growth algorithm is used
to enumerate all frequent itemsets.

FP-tree Construction

ltems

N —
O(OOO\ICDO'I-bOOI\)AG

{AB}
{B,C,D}
{A,C,D,E}
{AD,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B.C.E}

The FP-tree is a trie (prefix tree)

Since transactions are sets of items, we
need to transform them into ordered
sequences so that we can have prefixes

- Otherwise, there is no common prefix
between sets {A,B} and {B,C,A}

We need to impose an order to the
items
- Initially, assume a lexicographic order.

FP-tree Construction

- Initially the tree is empty

ltems
{A,B} O null
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

—
—

FP-tree Construction

- Reading transaction TID = 1

TID ltems null
1 {A,B}
2 {B,C,D} ?
3 | {AC,D,E} A:1()
4 {A,D,E}
3 {A,B,C}
6 | {AB,C,D) B:l
7 {B,C}
8 {A,B,C}
9 {A,B,D} ,
10 {B,C,E} Node label = item:support

- Each node in the tree has a label consisting of the item
and the support (number of transactions that reach that
node, i.e. follow that path)

FP-tree Construction

- Reading transaction TID = 2

ltems null
{A,B} \
{B,C,D} . .

‘A C.D.E} A:1() /,@B.l
{A,D,E} R \
tAB.C} B:1()y~ .

{AB.C.D} ()c

{B,C}
{A,B,C} OD:I

{A,B,D}
{B,C,E} Each transaction is a path in the tree

N —]
OQOOO\IOU'I-BOOI\)—\G

- We add pointers between nodes that refer to the
same item

FP-tree Construction

TID ltems
null
1 {A,B} After reading
2 {B,C,D} transactions TID=1, 2: \
3 | {ACD,E} —-A) OB
4 {A,D,E} l s ’
5 | {AB,C} ' 7
n.
6 | {AB,C,D} B 1 QC:l
7 | {BC) e AN
8 {A,B,C} ! | D:1
9 (AB.D} Header TaI.oIe ! : Q :
10 {B,C,E} Itim Po[niei __: : : :
B R — : l
The Header Table and the C e J
pointers assist in D [N
computing the itemset E -—— =

support - -

FP-tree Construction

null

- Reading transaction TID = 3
ltem
{Ae B? AJ,Q .QB 1

{B,é,D} \
{A,C,D,E} B 1

{A,D,E}
{AB,C} | .
{A,B,C,D} , :
{B,C} ltem| Pointer | ' : | Q

{A,B,C}
{A,B,D}
{B,C,E}

N —]
o@OO\I@U‘I-POOI\)AU

__

mo o w >

FP-tree Construction

- Reading transaction TID = 3 ull N
TID ltems . .
1| {AB) E""A“Z'O /,,/'QB.I
2 | {B,C,D} 5 (é \
3 | {AC,D,E} BN |
4 {A,D,E} . b C:1 . C:1
5 | {ABC) / \ \
6 | {AB,C,D} » QD;l
I {B.C} ltem| Pointer | | D:1 o
8 | {ABC) Al | | -
9 | {AB,D} B | E:1 L
10 | {B,C,E} C| T
D
E __________

FP-tree Construction

- Reading transaction TID = 3

ltems

—
— -
o@OO\I@U‘I-POOI\)AU

{AB}
{B,C,D}
{A,C,D,E}
{AD,E}
{AB,C}
{AB,C,D}
{B,C}
{AB,C}
{A,B,D}
{B.C,E}

ltem

Pointer

mo o w >

Each transaction is a path in the tree

FP-Tree Construction

ltems

T;D o Transaction Each transaction is a path in the tree
5 (B.C.D) Database
3 {A,C,D,E}
4 {A,D,E}
5 | {AB.C} .
6 | ABCD}| A g
7| @®o |
8 | {ABC} T
9 | ABD} |
0| {BCE | | -
Header table : c3
ltem| Pointer y
A
B _______________
cC | - Dl)
D | T Pointers are used to assist
E | - frequent itemset generation

FP-tree size

Every transaction is a path in the FP-tree

The size of the tree depends on the compressibility
of the data

- Extreme case: All transactions are the same, the FP-
tree is a single branch

- Extreme case: All transactions are different the size
of the tree is the same as that of the database (bigger
actually since we need additional pointers)

L
ltem ordering

- The size of the tree also depends on the ordering of the items.
- Heuristic: order the items in according to their frequency from larger

to smaller.
- We would need to do an extra pass over the dataset to count
frequencies
- Example:
TID ltems TID ltems
1 {A.B} o(A)=7, o(B)=8, 1 {B,A}
2 {B,C,D} o(C)=7, o(D)=5, 2 {B,C,D}
3 | {ACDE} | ofE)=3 3 | {A.CD,E}
4 {A.D,.E} Ordering : B,A,C,D,E 4 {A.D,E}
5 {A,B,C} 5 {B.A,C}
6 | {AB,C,D} > 6 | {B,A.C,D}
7 {B,C} 7 {B.C}
8 | {AB,C} 8 | {BAC}
9 | {AB,D} 9 | {BAD}
10 | {B,CE} 101 {B.C.E}

Finding Frequent ltemsets

Input: The FP-tree
Output: All Frequent Itemsets and their support

Method: Divide and Conquer:
- Consider all itemsets that end in: E, D, C, B, A

For each possible ending item, consider the itemsets with last
items one of items preceding it in the ordering

E.g, for E, consider all itemsets with last item D, C, B, A. In this
way we get all the itemsets ending at DE, CE, BE, AE

Proceed recursively this way.
Do this for all items.

Frequent itemsets

All ltemsets

S
AN x\\ \\\

DE CE~._ BE~_AE CD BD AD a8

CDE BDE ADE . BCE ACE. ABE BGD “ACD | ABD ABC

/NS ,_\

ACDE BCDE ~ ABDE . ABCE ABCD

l

ABCDE

"

Frequent ltemsets

All ltemsets

}/ NS
A A N .\\\

DE~. CEL BE\AE CD BD AD | B B

CpE BQE ADE BCE ACE | ABE BCD “ACD | ABD ABC

Freqyént’?\ \ \ | N \

ACDEBCDE | ABDE ABCE ABCD

 ABCDE

T

We can generate all itemsets this way
We expect the FP-tree to contain a lot less

Using the FP-tree to find frequent itemsets

ltems

N —
SO®NOOAWN =g

{A,C,D,E}

{A,B,C,D}

{AB}
{B,C,D}

{A,D,E}
{A,B,C}

1B,C}
{A,B,C}
{A,B,D}
{B.C.E}

Header table

Transaction
Database

-
-
- -
- -
- ”
- -
- -
- ’f
’f’ ’4
_ - -
-
-
-
-
-
-
-
-
- . .
. .
-’
-,
e
e

-
-
-
-

ltem

Pointer

mo o w >

B:5(57 A e
C:1 \) D:l
c3()] \
. /‘Q - D:1 /QE:I
,/,’ /,/ D:l ////
_____ ’ E:1
- Drl ¥
-7 Bottom-up traversal of the tree.

First, itemsets ending in E, then D,

etc, each time a suffix-based class

Finding Frequent ltemsets

Subproblem: find frequent
itemsets ending in E

-
-
-
-

Header table

ltem Pointer

mo o w>
\

= WWe will then see how to compute the support for the possible itemsets

Finding Frequent ltemsets

Ending in D

Header table

ltem

Pointer

mo O W >

Finding

Frequent ltemsets

Ending in C

Header table

ltem Pointer

mooO o>
|
|
|
I

Finding Frequent ltemsets

null
Ending in B
. C’:T"% D1 """"""

| - \ ;
-
Header table |

ltem | Pointer

| Qg D:1 ,QE:l
Dl

"B:1

mooOw>X>

Finding Frequent ltemsets

Ending in A %

-
-
-
-
-
-
-
-
-

.
.
-
”’
f’,’
-
-
-
/,’
-
-
-
C.-l D.l
. .
1 \\\
4 So
4 S
e ~So
4 ~ -
\\
Y N

-
. ”’
.
-
-
P4
-
.
-,
-,
.
-
-,
-,

Header table

ltem Pointer

/ Og p:1 L E:
D:1

"B:1

mo O w >
\
O
e

L
Algorithm

- For each suffix X

- Phase 1

- Construct the prefix tree for X as shown before, and
compute the support using the header table and the
pointers

- Phase 2

- If X'is frequent, construct the conditional FP-tree for X in
the following steps
1. Recompute support
2. Prune infrequent items
3. Prune leaves and recurse

Example

Phase 1 — construct
prefix tree

Find all prefix paths that

contain E

Header table

-
P

ltem

Pointer

mo o w >

-
-

Suffix Paths for E:
{A,C,D,E}, {AD,E}, {B,C,E}

Example

Phase 1 — construct
prefix tree

Find all prefix paths that
contain E

Prefix Paths for E:
{A,C,D,E}, {A,D,E}, {B,C,E}

Example

Compute Support for E
(minsup = 2)
How?

Follow pointers while
summing up counts:
1+1+1=3> 2

E is frequent

{E} is frequent so we can now consider suffixes DE, CE, BE, AE

Example

Phase 2

Convert the prefix tree of E into a
conditional FP-tree

Two changes
(1) Recompute support

(2) Prune infrequent

Example

Recompute Support

The support counts for some of the
nodes include transactions that do

notendin E

For example in null->B->C->E we
count {B, C}

Property to satisfy: The support of
any node is equal to the sum of the
support of leaves with label E in its

subtree

Example

The support of any node is
equal to the sum of the
support of leaves with label E
in its subtree

Example

C E:1

?Dl
1 OB1— - -

null
A7
cC:1
Y D:1
7’
7’
"E:1

Example

C E:1

?Dl
1 OB1— - -

null
A7
cC:1
Y D:1
7’
7’
"E:1

Example

C E:1

D:1
OE:I" -~

hl
’
’
’
’
’
. 4

null
A7
cC:1
Y D:1
7’
7’
"E:1

Example

C E:1

D:1
OE:I" -~

hl
’
’
’
’
’
. 4

null
A7
c1
Y D:1
7’
7’
"E:1

Example

C E:1

D:1
OE:I" -~

hl
’
’
’
’
’
. 4

null
A2
c1
Y D:1
7’
7’
"E:1

Example

C E:1

D:1
OE:I" -~

hl
’
’
’
’
’
. 4

null
A2
c1
Y D:1
7’
7’
"E:1

Example

Truncate

Delete the nodes of E

Example

Truncate

Delete the nodes of E

Example

Truncate

Delete the nodes of E

Example

Prune infrequent

In the conditional FP-tree
some nodes may have
support less than minsup

e.d., B needs to be pruned

This means that B appears
with E less than minsup
times

null

Example

Example

Example

The conditional FP-tree for E
Repeat the algoritnm for {D, E}, {C, E}, {A, E}

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

Example

Compute the support of {D,E} by following the pointers in the tree
1+1 =2 =2 2 = minsup

{D,E} is frequent

Example

Phase 2

Construct the conditional FP-tree
1. Recompute Support
2. Prune nodes

Example

Recompute support

Example

Prune nodes

Example

y
A2 Z
Prune nodes C:1

Example

y

A2
Small rt
Prune nodes C:1 et SHPpo

Example

y

A2()

Final condition FP-tree for {D,E}

The support of Ais = minsup so {A,D,E} is frequent
Since the tree has a single node we return to the next
subproblem

Example

The conditional FP-tree for E

We repeat the algorithm for{Bs&}; {C,E}, {A,E}

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

Example

null
A2 Lcd

-
-
-
-
-
-
~
C.l
.

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

Example

null
A2 Lcd

-
-
-
-
-
-
~
C.l
.

Compute the support of {C,E} by following the pointers in the tree
1+1 =2 =2 2 = minsup

{C,E} is frequent

Example

null
A2 Lcd

-
-
-
-
-
-
~
C.l
.

Phase 2

Construct the conditional FP-tree
1. Recompute Support
2. Prune nodes

Example

null

Al e

Recompute support i

Example

Prune nodes

Example

y

A1)

Prune nodes

Example

null

A:l

Prune nodes

Example

Prune nodes

Return to the previous subproblem

Example

The conditional FP-tree for E

We repeat the algorithm for{B;&LtGEH {AE}

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

Example

y

A2()

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

Example

y

A2()

Compute the support of {A,E} by following the pointers in the tree
2 2 minsup

{A,E} is frequent

There is no conditional FP-tree for {A,E}

Example

- So for E we have the following frequent itemsets
{E}, {D,E}, {C,E}, {A,E} {ADE}

- We proceed with D

Example

Ending in D

Header table

ltem

Pointer

mo O W >

Example

null

Phase 1 — construct
prefix tree

Find all prefix paths that
contain D

Support 5 > minsup, D is
frequent

Phase 2

Convert prefix tree into
conditional FP-tree

Example

Recompute support

Example

Recompute support

Example

Recompute support

Example

Recompute support

Example

Recompute support

Example

Prune nodes

Example

Prune nodes

Example

Construct conditional FP-trees for {C,D}, {B,D}, {A,D}

And so on....

Observations

At each recursive step we solve a subproblem
- Construct the prefix tree

- Compute the new support

- Prune nodes

Subproblems are disjoint so we never consider
the same itemset twice

Support computation is efficient — happens
together with the computation of the frequent
itemsets.

Observations

- The efficiency of the algorithm depends on the
compaction factor of the dataset

- If the tree is bushy then the algorithm does not
work well, it increases a lot of number of
subproblems that need to be solved.

