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Frequent Subgraph Mining 

 Extend association rule mining to finding frequent 
subgraphs 

 Useful for Web Mining, computational chemistry, 
bioinformatics, spatial data sets, etc 
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Graph Definitions 
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Representing Transactions as Graphs 

 Each transaction is a clique of items 

Transaction 
Id

Items

1 {A,B,C,D}
2 {A,B,E}
3 {B,C}
4 {A,B,D,E}
5 {B,C,D}

A

B
C

D
E

TID = 1:
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Representing Graphs as Transactions 
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(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …
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Challenges 

 Node may contain duplicate labels 
 Support and confidence 

–  How to define them? 

 Additional constraints imposed by pattern 
structure 

–  Support and confidence are not the only constraints 
–  Assumption: frequent subgraphs must be connected 

 Apriori-like approach:  
–  Use frequent k-subgraphs to generate frequent (k+1) 

subgraphs 
u What is k? 
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Challenges… 

 Support:  
–  number of graphs that contain a particular subgraph 
 

 Apriori principle still holds 
 

 Level-wise (Apriori-like) approach: 
–  Vertex growing: 

u  k is the number of vertices 

–  Edge growing: 
u  k is the number of edges 
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Vertex Growing 
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Edge Growing 
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Apriori-like Algorithm 

 Find frequent 1-subgraphs 
 Repeat 

–  Candidate generation 
u  Use frequent (k-1)-subgraphs to generate candidate k-subgraph 

–  Candidate pruning 
u  Prune candidate subgraphs that contain infrequent  
(k-1)-subgraphs  

–  Support counting 
u  Count the support of each remaining candidate 

–  Eliminate candidate k-subgraphs that are infrequent 

In practice, it is not as easy. There are many other issues 
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Example: Dataset 
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Example 
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Candidate Generation 

  In Apriori: 
–  Merging two frequent k-itemsets will produce a 

candidate (k+1)-itemset 
 

  In frequent subgraph mining (vertex/edge 
growing) 

–  Merging two frequent k-subgraphs may produce more 
than one candidate (k+1)-subgraph 
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Multiplicity of Candidates (Vertex Growing) 
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Multiplicity of Candidates (Edge growing) 

 Case 1: identical vertex labels 
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Multiplicity of Candidates (Edge growing) 

 Case 2: Core contains identical labels 
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Multiplicity of Candidates (Edge growing) 

 Case 3: Core multiplicity 
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Adjacency Matrix Representation 

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 0 1 0 1 0 0
A(2) 1 1 1 0 0 0 1 0
A(3) 0 1 1 1 1 0 0 0
A(4) 1 0 1 1 0 0 0 1
B(5) 0 0 1 0 1 0 1 1
B(6) 1 0 0 0 0 1 1 1
B(7) 0 1 0 0 1 1 1 0
B(8) 0 0 0 1 1 1 0 1

•  The same graph can be represented in many ways 
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Graph Isomorphism 

 A graph is isomorphic if it is topologically 
equivalent to another graph 
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Graph Isomorphism 

 Test for graph isomorphism is needed: 
–  During candidate generation step, to determine 

whether a candidate has been generated 
 
–  During candidate pruning step, to check whether its  

(k-1)-subgraphs are frequent 
 
–  During candidate counting, to check whether a 

candidate is contained within another graph 
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Graph Isomorphism 

 Use canonical labeling to handle isomorphism 
–  Map each graph into an ordered string representation 

(known as its code) such that two isomorphic graphs 
will be mapped to the same canonical encoding 

–  Example:  
u  Lexicographically largest adjacency matrix 
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String: 0010001111010110 
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Canonical: 0111101011001000 


