
Graph Mining
(In Association Rules: Advanced Concepts and Algorithms)

Mirco Nanni
Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://kdd.isti.cnr.it/

Slides from “Introduction to Data Mining” (Tan, Steinbach, Kumar)

© Tan,Steinbach, Kumar Introduction to Data Mining 1

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Frequent Subgraph Mining

 Extend association rule mining to finding frequent
subgraphs

 Useful for Web Mining, computational chemistry,
bioinformatics, spatial data sets, etc

Databases

Homepage

Research

Artificial
Intelligence

Data Mining

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Graph Definitions

a

b a

c c

b

(a) Labeled Graph

pq

p

p

r
s

t
r

t

qp

a

a

c

b

(b) Subgraph

p

s

t

p

a

a

c

b

(c) Induced Subgraph

p

r
s

t
r

p

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Representing Transactions as Graphs

 Each transaction is a clique of items

Transaction
Id

Items

1 {A,B,C,D}
2 {A,B,E}
3 {B,C}
4 {A,B,D,E}
5 {B,C,D}

A

B
C

D
E

TID = 1:

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Representing Graphs as Transactions

a

b

e

c

p

q

r p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Challenges

 Node may contain duplicate labels
 Support and confidence

–  How to define them?

 Additional constraints imposed by pattern
structure

–  Support and confidence are not the only constraints
–  Assumption: frequent subgraphs must be connected

 Apriori-like approach:
–  Use frequent k-subgraphs to generate frequent (k+1)

subgraphs
u What is k?

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Challenges…

 Support:
–  number of graphs that contain a particular subgraph

 Apriori principle still holds

 Level-wise (Apriori-like) approach:
–  Vertex growing:

u  k is the number of vertices

–  Edge growing:
u  k is the number of edges

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Vertex Growing

a

a

e

a

p

q

r

p

a

a

a

p

r
r

d

G1 G2

p

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
00
00

0

1

q
rp

rp
qpp

M
G

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
0
00
00

2

r
rrp

rp
pp

M
G

a

a

a

p

q

r

e
p

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0000
0000
00
000

00

3

q
r
rrp

rp
qpp

MG

G3 = join(G1,G2)

dr+

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Edge Growing

a

a
f

a

p

q

r

p

a

a

a

p

r
r

f

G1 G2

p

a

a

a

p

q

r

fp

G3 = join(G1,G2)

r
+

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Apriori-like Algorithm

 Find frequent 1-subgraphs
 Repeat

–  Candidate generation
u  Use frequent (k-1)-subgraphs to generate candidate k-subgraph

–  Candidate pruning
u  Prune candidate subgraphs that contain infrequent
(k-1)-subgraphs

–  Support counting
u  Count the support of each remaining candidate

–  Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Example: Dataset

a

b

e

c

p

q

r p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G4 0 0 0 0 0 0 … 0

a e
q

c

d

p p

p

G4

r

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Example

p

a b c d ek=1
Frequent
Subgraphs

a b

p
c d

p
c e

q
a e

r
b d

p
a b

d

r

p
d c

e

p

(Pruned candidate)

Minimum support count = 2

k=2
Frequent
Subgraphs

k=3
Candidate
Subgraphs

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Candidate Generation

  In Apriori:
–  Merging two frequent k-itemsets will produce a

candidate (k+1)-itemset

  In frequent subgraph mining (vertex/edge
growing)

–  Merging two frequent k-subgraphs may produce more
than one candidate (k+1)-subgraph

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Multiplicity of Candidates (Vertex Growing)

a

a

e

a

p

q

r

p

a

a

a

p

r
r

d

G1 G2

p

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
00
00

0

1

q
rp

rp
qpp

M
G

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
0
00
00

2

r
rrp

rp
pp

M
G

a

a

a

p

q

r

e
p

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0?00
?000
00
000

00

3

q
r
rrp

rp
qpp

M
G

G3 = join(G1,G2)

dr

?

+

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Multiplicity of Candidates (Edge growing)

 Case 1: identical vertex labels

a

b
e

a

a

b
e

a

+

a

b
e

a

e a

b
e

a

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Multiplicity of Candidates (Edge growing)

 Case 2: Core contains identical labels

+

a

a
a

a

c
b

a

a
a

a

c

a

a
a

a

c

b

b

a

a
a

a

b a

a
a

a

c

Core: The (k-1) subgraph that is common
 between the joint graphs

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Multiplicity of Candidates (Edge growing)

 Case 3: Core multiplicity

a

ab

+

a

a

a ab

a ab

a

a

ab

a a

ab

ab

a ab

a a

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Adjacency Matrix Representation

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 0 1 0 1 0 0
A(2) 1 1 1 0 0 0 1 0
A(3) 0 1 1 1 1 0 0 0
A(4) 1 0 1 1 0 0 0 1
B(5) 0 0 1 0 1 0 1 1
B(6) 1 0 0 0 0 1 1 1
B(7) 0 1 0 0 1 1 1 0
B(8) 0 0 0 1 1 1 0 1

•  The same graph can be represented in many ways

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Graph Isomorphism

 A graph is isomorphic if it is topologically
equivalent to another graph

A

A

A A

B A

B

A

B

B

A

A

B B

B

B

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Graph Isomorphism

 Test for graph isomorphism is needed:
–  During candidate generation step, to determine

whether a candidate has been generated

–  During candidate pruning step, to check whether its

(k-1)-subgraphs are frequent

–  During candidate counting, to check whether a

candidate is contained within another graph

© Tan,Steinbach, Kumar Introduction to Data Mining ‹#›

Graph Isomorphism

 Use canonical labeling to handle isomorphism
–  Map each graph into an ordered string representation

(known as its code) such that two isomorphic graphs
will be mapped to the same canonical encoding

–  Example:
u  Lexicographically largest adjacency matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0110
1011
1100
0100

String: 0010001111010110

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0001
0011
0101
1110

Canonical: 0111101011001000

