Graph Mining

(In Association Rules: Advanced Concepts and Algorithms)

Mirco Nanni Pisa KDD Lab, ISTI-CNR & Univ. Pisa http://kdd.isti.cnr.it/

Slides from "Introduction to Data Mining" (Tan, Steinbach, Kumar)

1

© Tan, Steinbach, Kumar

Introduction to Data Mining

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

Representing Transactions as Graphs

Each transaction is a clique of items

Representing Graphs as Transactions

G1

G2

G3

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

© Tan, Steinbach, Kumar

Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - What is k?

Challenges...

• Support:

- number of graphs that contain a particular subgraph

Apriori principle still holds

• Level-wise (Apriori-like) approach:

- Vertex growing:
 - k is the number of vertices
- Edge growing:
 - k is the number of edges

Vertex Growing

Edge Growing

Apriori-like Algorithm

Find frequent 1-subgraphs

- Repeat
 - Candidate generation
 - ◆ Use frequent (*k*-1)-subgraphs to generate candidate *k*-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent (*k-1*)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate *k*-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

G1

G2

G3

G4

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

Example

Candidate Generation

• In Apriori:

- Merging two frequent *k*-itemsets will produce a candidate (*k*+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Multiplicity of Candidates (Vertex Growing)

© Tan, Steinbach, Kumar

Multiplicity of Candidates (Edge growing)

Multiplicity of Candidates (Edge growing)

Multiplicity of Candidates (Edge growing)

Adjacency Matrix Representation

The same graph can be represented in many ways

Graph Isomorphism

 A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

• Test for graph isomorphism is needed:

- During candidate generation step, to determine whether a candidate has been generated
- During candidate pruning step, to check whether its (*k*-1)-subgraphs are frequent
- During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

• Use canonical labeling to handle isomorphism

- Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
- Example:
 - Lexicographically largest adjacency matrix

