
ROCK: A Robust Clustering Algorithm for

Categorical Attributes

Sudipto Guha∗

Stanford University
Stanford, CA 94305

sudipto@cs.stanford.edu

Rajeev Rastogi

Bell Laboratories
Murray Hill, NJ 07974
rastogi@bell-labs.com

Kyuseok Shim

Bell Laboratories
Murray Hill, NJ 07974

shim@bell-labs.com

Abstract

Clustering, in data mining, is useful to discover distribution patterns in the underlying
data. Clustering algorithms usually employ a distance metric based (e.g., euclidean) similarity
measure in order to partition the database such that data points in the same partition are more
similar than points in different partitions. In this paper, we study clustering algorithms for
data with boolean and categorical attributes. We show that traditional clustering algorithms
that use distances between points for clustering are not appropriate for boolean and categorical
attributes. Instead, we propose a novel concept of links to measure the similarity/proximity
between a pair of data points. We develop a robust hierarchical clustering algorithm ROCK
that employs links and not distances when merging clusters. Our methods naturally extend to
non-metric similarity measures that are relevant in situations where a domain expert/similarity
table is the only source of knowledge. In addition to presenting detailed complexity results for
ROCK, we also conduct an experimental study with real-life as well as synthetic data sets to
demonstrate the effectiveness of our techniques. For data with categorical attributes, our findings
indicate that ROCK not only generates better quality clusters than traditional algorithms, but
it also exhibits good scalability properties.

1 Introduction

The problem of data mining or knowledge discovery has become increasingly important in recent
years. There is an enormous wealth of information embedded in large data warehouses maintained
by retailers, telecom service providers and credit card companies that contain information related
to customer purchases and customer calls. Corporations could benefit immensely in the areas of
marketing, advertising and sales if interesting and previously unknown customer buying and calling
patterns can be discovered from the large volumes of data.

Clustering is a useful technique for grouping data points such that points within a single
group/cluster have similar characteristics (or are close to each other), while points in different
groups are dissimilar. For example, consider a market basket database containing one transaction
per customer, each transaction containing the set of items purchased by the customer. The trans-
action data can be used to cluster the customers such that customers with similar buying patterns
are in a single cluster. For example, one cluster may consist of predominantly married customers
with infants who buy diapers, baby food, toys etc. (in addition to necessities like milk, sugar and
butter), while another may consist of high-income customers that buy imported products like French
∗The work was done while the author was visiting Bell Laboratories.

1

and Italian wine, Swiss cheese and Belgian chocolate. The clusters can then be used to characterize
the different customer groups, and these characterizations can be used in targeted marketing and
advertising such that specific products are directed towards specific customer groups. The charac-
terizations can also be used to predict buying patterns of new customers based on their profiles.
For example, it may be possible to conclude that high-income customers buy imported foods, and
then mail customized catalogs for imported foods to only these high-income customers.

The above market basket database containing transactions is actually an example of a scenario
in which attributes of data points are non-numeric. Transactions in the database can be viewed
as records with boolean attributes, each attribute corresponding to a single item. Further, in
the record for a transaction, the attribute corresponding to an item is True if and only if the
transaction contains the item; otherwise, it is False. Boolean attributes themselves are a special
case of categorical attributes. The domain of categorical attributes is not limited to simply True and
False values, but could be any arbitrary finite set of values. An example of a categorical attribute
is color whose domain includes values such as brown, black, white, etc. Clustering in the presence
of such categorical attributes is the focus of this paper.

1.1 Shortcomings of Traditional Clustering Algorithms

Given n data points in a d-dimensional space, a clustering algorithm partitions the data points into
k clusters such that the data points in a cluster are more similar to each other than data points in
different clusters. Clustering algorithms developed in the literature can be classified into partitional
clustering and hierarchical clustering [DH73, JD88]. Partitional clustering algorithms, as the name
suggests, divide the point space into k clusters that optimize a certain criterion function. The most
commonly used criterion function for metric spaces is

E =
k∑
i=1

∑
~x∈Ci

d(~x, ~mi)

In the above equation, ~mi is the centroid of cluster Ci while d(~x, ~mi) is the euclidean distance1

between ~x and ~mi. Thus, intuitively, the criterion function E attempts to minimize the distance
of every point from the mean of the cluster to which the point belongs. A common approach is to
minimize the criterion function using an iterative, hill-climbing technique. For example, starting
with k initial partitions, data points are moved from one cluster to another to improve the value
of the criterion function.

While the use of the above criterion function could yield satisfactory results for numeric at-
tributes, it is not appropriate for data sets with categorical attributes. For example, consider a
market basket database. Typically, the number of items, and thus the number of attributes in such
a database is very large (a few thousand) while the size of an average transaction is much smaller
(less than a hundred). Furthermore, customers with similar buying patterns and belonging to a
single cluster, may buy a small subset of items from a much larger set that defines the cluster. For
instance, consider the cluster defined by the set of imported items like French wine, Swiss cheese,
Italian pasta sauce, Belgian beer etc. Every transaction in the cluster does not contain all of the
above items, but some subset of them. Thus, it is quite possible that a pair of transactions in a
cluster have few items in common, but are linked by a number of other transactions in the cluster,
that have substantial items in common with the two transactions.

The above situation is further exacerbated by the fact that the set of items that define clusters
may not have uniform sizes. A cluster involving all the common items such as diapers, baby food

1The euclidean distance between two points (x1, x2, . . . , xd) and (y1, y2, . . . , yd) is (
∑d

i=1
(xi − yi)2)

1
2 .

2

and toys will typically involve a large number of items and customer transactions, while the cluster
defined by imported products will be much smaller. In the larger cluster, since transactions are
spread out over a larger number of items, most transaction pairs will have few items in common
and consequently, a smaller percentage of transaction pairs will have a sizable number of items in
common. Thus, distances of transactions from the mean in the larger cluster will be much higher.
Since the criterion function is defined in terms of distance from the mean, splitting the larger
cluster reduces its value, and thus minimizing the criterion function favors splitting large clusters.
However, this is not desirable since the large cluster is split even though transactions in the cluster
are well connected and strongly linked.

Hierarchical clustering algorithms, too, may be unsuitable for clustering data sets containing
categorical attributes. For instance, consider the centroid-based agglomerative hierarchical cluster-
ing algorithm [DH73, JD88]. In this algorithm, initially, each point is treated as a separate cluster.
Pairs of clusters whose centroids or means are the closest are then successively merged until the de-
sired number of clusters remain. For categorical attributes, however, distances between centroids of
clusters is a poor estimate of the similarity between them as is illustrated by the following example.

Example 1.1: Consider a market basket database containing the following 4 transactions over
items 1, 2, 3, 4, 5 and 6 – (a) {1, 2, 3, 5}, (b) {2, 3, 4, 5}, (c) {1, 4}, and (d) {6}. The transactions
can be viewed as points with boolean (0/1) attributes corresponding to the items 1, 2, 3, 4, 5 and
6. The four points thus become (1,1,1,0,1,0), (0,1,1,1,1,0), (1,0,0,1,0,0) and (0,0,0,0,0,1). Using
euclidean distance to measure the closeness between points/clusters, the distance between the first
two points is

√
2, which is the smallest distance between pairs of points. As a result, they are

merged by the centroid-based hierarchical algorithm. The centroid of the new merged cluster is
(0.5,1,1,0.5,1,0). In the next step, the third and fourth points are merged since the distance between
them is

√
3 which is less than the distance between the centroid of the merged cluster from each

of them –
√

3.5 and
√

4.5, respectively. However, this corresponds to merging transactions {1, 4}
and {6} that don’t have a single item in common. Thus, using distances between the centroids of
clusters when making decisions about the clusters to merge could cause points belonging to different
clusters to be assigned to a single cluster.

Once points belonging to different clusters are merged, the situation gets progressively worse
as the clustering progresses. What typically happens is a ripple effect – as the cluster size grows,
the number of attributes appearing in the mean go up, and their value in the mean decreases. This
makes it very difficult to distinguish the difference between two points that differ on few attributes,
or two points that differ on every attribute by small amounts. An example will make this issue
very clear. Consider the means of two clusters (1

3 ,
1
3 ,

1
3 , 0, 0, 0) and (0, 0, 0, 1

3 ,
1
3 ,

1
3), with roughly the

same number of points. Even though, the two clusters have no attributes in common, the euclidean
distance between the two means is less than the distance of the point (1, 1, 1, 0, 0, 0) to the mean of
the first cluster. Obviously, this is undesirable since the point shares common attributes with the
first cluster. An oblivious method based on distance will merge the two clusters and will generate
a new cluster with mean (1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6). Interestingly, the distance of the point (1, 1, 1, 0, 0, 0) to

the new cluster is even larger than the original distance of the point to the first of the merged
clusters. In effect, what is happening is that the center of the cluster is spreading over more and
more attributes. As this tendency starts, it now becomes closer to other centers which also span a
large number of attributes. Thus, these centers tend to spread out in all the attribute values and
lose the information about the points in the cluster that they represent. This is why a small ripple
soon spreads out to fill all the attributes. This is exactly the behavior that we observed when we
ran the centroid-based hierarchical algorithm on a real-life data set (see Section 5).

3

Figure 1: Basket data example for Jaccard coefficient

Set theoretic similarity measures such as the Jaccard coefficient2 [JD88] have often been used,
instead of euclidean distance, for document clustering. With the Jaccard coefficient as the distance
measure between clusters, centroid-based hierarchical clustering schemes cannot be used since the
similarity measure is non-metric, and defined for only points in the cluster and not for its centroid.
Thus, we have to use either the minimum spanning tree (MST) hierarchical clustering algorithm or
hierarchical clustering with group average [JD88]. The MST algorithm merges, at each step, the
pair of clusters containing the most similar pair of points while the group average algorithm merges
the ones for which the average similarity between pairs of points in the clusters is the highest.
The MST algorithm is known to be very sensitive to outliers while the group average algorithm
has a tendency to split large clusters (since, as mentioned earlier, the average similarity between
two subclusters of a large cluster is small). Furthermore, the Jaccard coefficient is a measure of
the similarity between only the two points in question – it thus, does not reflect the properties of
the neighborhood of the points. Consequently, the Jaccard coefficient fails to capture the natural
clustering of “not so well-separated” data sets with categorical attributes and this is illustrated
further in the following example.

Example 1.2: Consider a market basket database over items 1, 2, . . . , 8, 9. Consider the 2 trans-
action clusters shown in Figure 1. The first cluster is defined by 5 items while the second cluster is
defined by 4 items. These items are shown at the top of each of the two clusters. Note that items 1
and 2 are common to both clusters. Each cluster contains transactions of size 3, one for every subset
(of size 3) of the set of items that define the cluster. The Jaccard coefficient between an arbitrary
pair of transactions belonging to the first cluster ranges from 0.2 (e.g., {1, 2, 3} and {3, 4, 5}) to 0.5
(e.g., {1, 2, 3} and {1, 2, 4}). Note that even though {1, 2, 3} and {1, 2, 7} share common items and
have a high Jaccard coefficient of 0.5, they belong to different clusters. In contrast, {1, 2, 3} and
{3, 4, 5} have a lower Jaccard coefficient of 0.2, but belong to the same cluster.

The MST algorithm may first merge transactions {1, 2, 3} and {1, 2, 7} since the Jaccard coef-
ficient for them has the maximum value of 0.5. Once this happens, the cluster may subsequently
merge with transactions from both clusters like {1, 3, 4} and {1, 6, 7} since these are very similar
to transactions in the merged cluster. This is not surprising since the MST algorithm is known to
be fragile when clusters are not well-separated.

The use of group average for merging clusters ameliorates some of the problems with the MST
algorithm. However, it may still fail to discover the correct clusters. For instance, similar to MST, it
may first merge a pair of transactions containing items 1 and 2, and belonging to different clusters.
Note that the group average of the Jaccard coefficient between the new cluster and every other
transaction containing both 1 and 2 is still maximum, that is, 0.5. Consequently, every transaction

2The Jaccard coefficient for similarity between transactions T1 and T2 is |T1∩T2|
|T1∪T2|

.

4

containing both 1 and 2 may get merged together into a single cluster in subsequent steps. Thus,
in the final clustering, transactions {1, 2, 3} and {1, 2, 7} from the two different clusters may be
assigned to the same cluster.

1.2 Our Contributions

In this paper, we present a novel concept of clustering that is based on links between data points,
instead of distances based on the Lp3 metric or the Jaccard coefficient. For domains with discrete
non-numeric attributes, the unsuitability of the Lp distance metrics and the Jaccard coefficient as
an estimate of the similarity between clusters is evident from Examples 1.1 and 1.2. The situation
with these distance metrics further worsens as the number of attributes/dimensions increase.

The notion of links between data points helps us overcome the problems with Lp distances
and the Jaccard coefficient. Let a pair of points be neighbors if their similarity exceeds a certain
threshold. The similarity value for pairs of points can be based on Lp distances, the Jaccard
coefficient or any other non-metric similarity function obtained from a domain expert/similarity
table. The number of links between a pair of points is then the number of common neighbors for
the points. Points belonging to a single cluster will in general have a large number of common
neighbors, and consequently more links. Thus, during clustering, merging clusters/points with the
most number of links first will result in better and more meaningful clusters.

Specifically, in Example 1.1, suppose we defined a pair of transactions to be neighbors if they
contained at least one item in common. In that case, transactions {1, 4} and {6} would have
no links between them and thus would not be merged. Thus, links are more appropriate than
distances for clustering categorical data sets. Similarly, in Example 1.2, let us assume that a pair
of transactions are considered to be neighbors if they have at least two items in common. Then,
any pair of transactions containing both 1 and 2 and in the same cluster (e.g., {1, 2, 3} and {1,
2, 4}) has 5 common neighbors (due to {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 3, 4} and {2, 3, 4})
while a pair of transactions containing 1 and 2, but in different clusters (e.g., {1, 2, 3} and {1,
2, 6}) has only 3 neighbors in common (due to {1, 2, 4}, {1, 2, 5} and {1, 2, 7}). Thus, even
though popular similarity measures like Lp distances and the Jaccard coefficient would consider
the transaction pairs ({1, 2, 3}, {1, 2, 4}) and ({1, 2, 3}, {1, 2, 6}) equally similar, our link-based
approach would consider the former pair (with 5 links) belonging to the same cluster more similar
than the latter pair (with 3 links) in different clusters. As a result, clustering algorithms that use
links when making decisions about clusters to merge would favor merging the first transaction pair
over the second, and are thus less fragile.

From the above examples, it follows that unlike distances or similarities between a pair of points
which are local properties involving only the two points in question, the link concept incorporates
global information about the other points in the neighborhood of the two points. The larger the
number of links between a pair of points, the greater is the likelihood that they belong to the same
cluster. Thus, clustering using links injects global knowledge into the clustering process and is thus
more robust. For example, even though a pair of clusters are not well-separated and have a few
points that are quite similar, these points will not be coalesced into a single cluster since they will
have very few common neighbors and thus very few links. To the best of our knowledge, we are
not aware of any work that so elegantly and succinctly captures, in a relationship involving a pair
of data points, information about their neighbors.

In this paper, we first discuss recent work on clustering algorithms for data mining in Section 2.
In Section 3, we present a new criterion function based on our notion of links and show that

3Lp = (
∑d

1
|xi − yi|p)1/p, 1 ≤ p ≤ ∞ and d is the dimensionality of the data points.

5

maximizing the value of this criterion function results in desirable clusters for data with categorical
attributes. We then present an agglomerative hierarchical clustering algorithm ROCK (RObust
Clustering using linKs) that iteratively merges clusters so as to try and maximize the criterion
function in Section 4. We also present complexity results for ROCK. Following this, in Section 5,
with real-life as well as synthetic data sets, we show that the quality of clusters generated by ROCK
are far superior to the clusters produced by the traditional centroid-based hierarchical clustering
algorithm. One of the real-life data sets we consider is a time-series database, thus demonstrating
the utility of ROCK as a tool for also clustering time-series data. In addition, we show that ROCK
can be used to cluster large data sets and scales well with database size. Finally, in Section 6, we
summarize our research results.

2 Related Work

Clustering has been extensively studied by researchers in psychology, statistics, biology and so on.
Surveys of clustering algorithms can be found in [DH73, JD88]. More recently, clustering algorithms
for mining large databases have been proposed in [NH94, EKX95, ZRL96, EKSX96, GRS98]. Most
of these, however, are variants of either partitional (e.g., [NH94]) or centroid-based hierarchical
clustering (e.g., [ZRL96, GRS98]). As a result, as pointed out in Section 1.1, these algorithms
are more suitable for clustering numeric data rather than data sets with categorical attributes.
For instance, CLARANS [NH94] employs a randomized search to find the k best cluster medoids.
BIRCH, proposed in [ZRL96], first preclusters data and then uses a centroid-based hierarchical
algorithm to cluster the partial clusters. The CURE algorithm [GRS98] uses a combination of
random sampling and partition clustering to handle large databases. In addition, its hierarchical
clustering algorithm represents each cluster by a certain number of points that are generated by
selecting well scattered points and then shrinking them toward the cluster centroid by a specified
fraction. DBSCAN, a density-based algorithm proposed in [EKSX96], grows clusters by including
the dense neighborhoods of points already in the cluster. This approach, however, may be prone
to errors if clusters are not well-separated.

Recently, in [HKKM97], the authors address the problem of clustering related customer transac-
tions in a market basket database. Frequent itemsets used to generate association rules are used to
construct a weighted hypergraph. Each frequent itemset is a hyperedge in the weighted hypergraph
and the weight of the hyperedge is computed as the average of the confidences for all possible as-
sociation rules that can be generated from the itemset. Then, a hypergraph partitioning algorithm
from [KAKS97] is used to partition the items such that the sum of the weights of hyperedges that
are cut due to the partitioning is minimized. The result is a clustering of items (not transactions)
that occur together in the transactions. Finally, the item clusters are used as the description of the
cluster and a scoring metric is used to assign customer transactions to the best item cluster. For
example, a transaction T may be assigned to the item cluster Ci for which the ratio |T∩Ci||Ci| is the
highest.

The rationale for using item clusters to cluster transactions is questionable. For example, the
approach in [HKKM97] makes the assumption that itemsets that define clusters are disjoint and
have no overlap among them. This may not be true in practice since transactions in different
clusters may have a few common items. For instance, consider the market basket database in
Example 1.2. With minimum support set to 2 transactions, the hypergraph partitioning algorithm
generates two item clusters of which one is {7} and the other contains the remaining items (since 7
has the least hyperedges to other items). However, this results in transactions {1, 2, 6} and {3, 4, 5}
being assigned to the same cluster since both have the highest score with respect to the big item

6

cluster.

3 Clustering Paradigm

In this section, we present our new clustering model that is based on the notions of neighbors and
links. We also discuss the criterion function that we would like to optimize under our new clustering
paradigm.

3.1 Neighbors

Simply put, a point’s neighbors are those points that are considerably similar to it. Let sim(pi, pj)
be a similarity function that is normalized and captures the closeness between the pair of points pi
and pj . The function sim could be one of the well-known distance metrics (e.g., L1, L2) or it could
even be non-metric (e.g., a distance/similarity function provided by a domain expert). We assume
that sim assumes values between 0 and 1, with larger values indicating that the points are more
similar. Given a threshold θ between 0 and 1, a pair of points pi, pj are defined to be neighbors if
the following holds:

sim(pi, pj) ≥ θ

In the above equation, θ is a user-defined parameter that can be used to control how close a pair
of points must be in order to be considered neighbors. Thus, higher values of θ correspond to a
higher threshold for the similarity between a pair of points before they are considered neighbors.
Assuming that sim is 1 for identical points and 0 for totally dissimilar points, a value of 1 for θ
constrains a point to be a neighbor to only other identical points. On the other hand, a value of 0
for θ permits any arbitrary pair of points to be neighbors. Depending on the desired closeness, an
appropriate value of θ may be chosen by the user.

In the following subsections, we present possible definitions for sim for market basket databases
and for data sets with categorical attributes.

3.1.1 Market Basket Data

The database consists of a set of transactions, each of which is a set of items. A possible definition
based on the Jaccard coefficient [DH73], for sim(T1, T2), the similarity between the two transactions
T1 and T2, is the following:

sim(T1, T2) =
|T1 ∩ T2|
|T1 ∪ T2|

where |Ti| is the number of items in Ti. The more items that the two transactions T1 and T2 have
in common, that is, the larger |T1 ∩ T2| is, the more similar they are. Dividing by |T1 ∪ T2| is the
scaling factor which ensures that θ is between 0 and 1. Thus, the above equation computes the
relative closeness based on the items appearing in both transactions T1 and T2.

The above definition of a neighbor rules out subsets of a transaction that are very small in size.
A typical example is that of a store where milk is bought by everyone. A transaction with only
milk will not be considered very similar to other bigger transactions that contain milk. Also, note
that for a pair of transactions T1 and T2, sim can take at most min{|T1|, |T2|} + 1 values. Thus,
there are at most min{|T1|, |T2|} + 1 distinct similarity levels between the two transactions. As a
result, if most transactions have uniform sizes, then there aren’t too many possible values for sim
for the transactions in the database, and this could simplify the choice of an appropriate value for
the parameter θ.

7

3.1.2 Categorical Data

Data sets with categorical attributes can be handled in a manner similar to how we handled market
basket data in the previous subsection. Categorical data typically is of fixed dimension and is more
structured than market basket data. However, it is still possible that in certain records, values may
be missing for certain attributes, as is the case for some of the real-life data sets we consider in
Section 5.

We propose to handle categorical attributes with missing values by modeling each record with
categorical attributes as a transaction. Corresponding to every attribute A and value v in its
domain, we introduce an item A.v. A transaction Ti for a record contains A.v if and only if the
value of attribute A in the record is v. Note that if the value for an attribute is missing in the record,
then the corresponding transaction does not contain items for the attribute. Thus, in the proposal,
we simply ignore missing values. The similarity function proposed in the previous subsection can
then be used to compute similarities between records by determining the similarity between the
corresponding transactions.

Obviously, the above suggested method for dealing with missing values is one of several possible
ways to handle them, and may not work well across all domains. For instance, in time-series data,
each data point consists of a sequence of time slot, value pairs. We can conceptualize time-series
data as a categorical dataset. Each data point can be viewed as a record with every time slot
corresponding to a single categorical attribute. The values that are possible in the time slot then
constitute the domain of the categorical attribute. Missing values for attributes can frequently
result since two individual time-series could be sampled at different times. For example, for young
mutual funds that began a year ago, prices for time periods preceding the last year do not exist.

In this case, for two records, in order to compute the similarity between them, we are only
interested in considering attributes that have values in both records. This way, if two records
are identical for the attributes that do not contain missing values, then we will conclude that the
similarity between them is high even though for a number of other attributes, one of the records
may have a missing value. Thus, for a pair of records, the transaction for each record only contains
items that correspond to attributes for which values are not missing in either record. The similarity
between the transactions can then be computed as described earlier in Section 3.1.1. Note that the
same record may correspond to different transactions when computing its similarity with respect
to different records (depending on the missing values for attributes in the different records).

3.2 Links

Clustering points based on only the closeness or similarity between them is not strong enough to
distinguish two “not so well-separated” clusters because it is possible for points in different clusters
to be neighbors. In this situation, even if a pair of points pi and pj in different clusters are neighbors,
it is very unlikely that the pairs have a large number of common neighbors, that is, points that are
neighbors to both pi and pj . This observation motivates the following definition of links below that
builds on the notion of closeness between points to determine more effectively when close points
actually belong to the same cluster.

Let us define link(pi, pj) to be the number of common neighbors between pi and pj . From
the definition of links, it follows that if link(pi, pj) is large, then it is more probable that pi and
pj belong to the same cluster. In our framework, we exploit this property of links when making
decisions about points to merge into a single cluster. Most existing work only uses the similarity
measure between points when clustering them – at each step, points that are the most similar are
merged into a single cluster. Since the similarity measure between a pair of points only takes into

8

account characteristics of the points themselves, it is a more local approach to clustering. This
approach is susceptible to errors since as we mentioned earlier, two distinct clusters may have a
few points or outliers that could be very close – relying simply on the similarities between points
to make clustering decisions could cause the two clusters to be merged.

The link-based approach adopts a global approach to the clustering problem. It captures the
global knowledge of neighboring data points into the relationship between individual pairs of points.
Thus, since the ROCK clustering algorithm utilizes the information about links between points
when making decisions on the points to be merged into a single cluster, it is very robust.

The notion of links between a pair of points, in effect, is the number of distinct paths of length
2 between points pi and pj such that every pair of consecutive points on the path are neighbors.
Alternative definitions for links, based on paths of length 3 or more, are certainly possible; however,
we do not consider these for the following reasons. First and most important, computing paths of
length 2 is computationally a lot more efficient than computing paths of higher lengths. Second,
points connected by paths of length 2 represent more tightly connected points than points connected
by paths with larger lengths. Finally, paths of length 2 constitute the simplest and most cost-
efficient way of capturing the knowledge about the mutual neighborhood of points – the additional
information gained as a result of considering longer paths may not be as valuable.

Our link-based approach can correctly identify the overlapping clusters in Figure 1. This is
because for each transaction, the transaction that it has the most links with is a transaction in
its own cluster. For instance, let θ = 0.5 and sim(T1, T2) = |T1∩T2|

|T1∪T2| . Transaction {1, 2, 6} has 5
links with transaction {1, 2, 7} in its own cluster (due to {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 6, 7} and
{2, 6, 7}) and only 3 links with transaction {1, 2, 3} in the other cluster (due to {1, 2, 4}, {1, 2, 5}
and {1, 2, 7}). Similarly, transaction {1, 6, 7} has 2 links with every transaction in the smaller
cluster (e.g., {1, 2, 6}) and 0 links with every other transaction in the bigger cluster. Thus, even
though the clusters contain common items, with θ = 0.5, our link-based approach would generate
the correct clusters shown in Figure 1.

3.3 Criterion Function

For a clustering method, an important question is the following: “is it possible to characterize the
best clusters ?”. If one could mathematically characterize the “best clusters”, then this would aid
in the development of algorithms that attempt to find these good clusters. In this subsection, we
present a criterion function – the best clusters are the ones that maximize the value of the criterion
function.

Since we are interested in each cluster to have a high degree of connectivity, we would like to
maximize the sum of link(pq, pr) for data point pairs pq, pr belonging to a single cluster and at the
same time, minimize the sum of link(pq, ps) for pq, ps in different clusters. This leads us to the
following criterion function that we would like to maximize for the k clusters.

El =
k∑
i=1

ni ∗
∑

pq ,pr∈Ci

link(pq, pr)

n
1+2f(θ)
i

where Ci denotes cluster i of size ni. The rationale for the above criterion function El is as follows.
It may seem that since one of our goals was to maximize link(pq, pr) for all pairs of points pq, pr,
a simple criterion function like

∑k
i=1

∑
pq ,pr∈Ci link(pq, pr) that simply sums up the links between

pairs of points in the same cluster, ought to work fine. However, even though this criterion function
will ensure that points with a large number of links between them are assigned to the same cluster,
it does not prevent a clustering in which all points are assigned to a single cluster. Thus, it does
not force points with few links between them to be split between different clusters.

9

Figure 2: Overview of ROCK

In order to remedy the above problem, in the criterion function El, we divide the total number
of links involving pairs of points in cluster Ci by the expected total number of links in Ci, and then
weigh this quantity by ni, the number of points in Ci. Our estimate for the total number of links in
cluster Ci is n1+2f(θ)

i , where f(θ) is a function that is dependent on the data set as well as the kind
of clusters we are interested in, and has the following important property: each point belonging to
cluster Ci has approximately nf(θ)

i neighbors in Ci. If such a function f does exist, then since we
can assume that points outside Ci result in a very small number of links to the points in Ci, each
point in cluster Ci contributes n2f(θ)

i links - one for each pair of its neighbors. Thus, we obtain
n

1+2f(θ)
i as the expected number of links between pairs of points in Ci. Dividing by the expected

number of links in El prevents points with very few links between them from being put in the same
cluster since assigning them to the same cluster would cause the expected number of links for the
cluster to increase more than the actual number of links and the result would be a smaller value
for the criterion function.

Of course, it may not be easy to determine an accurate value for function f(θ). However, we
have found that if clusters are fairly well-defined, even an inaccurate but reasonable estimate for
f(θ) can work well in practice (see Section 5). Furthermore, in El, every cluster is normalized
by n

1+2f(θ)
i . Thus, errors in the estimation of f(θ) affect all the clusters similarly, and does not

penalize one cluster excessively over other clusters.
For the market basket data case, one possibility for f(θ) is 1−θ

1+θ . This can be informally derived
under the simplifying assumptions that transactions are of approximately the same size (say t)
and are uniformly distributed amongst the (say m) items purchased by customers in cluster Ci.
For some constant c ≤ 1, the number of transactions in the cluster is approximately

(mc
t

)
and the

number of transactions whose similarity to a particular transaction Ti exceeds θ is approximately(mc
(1−θ)t

1+θ

)
(these are all the transactions that have at least 2θt

1+θ items in common with Ti). Thus, the

number of neighbors for a transaction in Ci is approximately n
1−θ
1+θ

i and f(θ) = 1−θ
1+θ . Intuitively, this

makes sense, because when θ = 1, a transaction has only itself as a neighbor and since f(θ) = 0,
the expected number of links is in Ci is ni; on the other hand, when θ = 0, every other transaction
in Ci is a neighbor to a transaction and in this case, f(θ) = 1 and the expected number of links in
Ci appropriately becomes n3

i .
In the following section, we adapt standard hierarchical clustering so that it attempts to maxi-

mize our link-based criterion function.

4 The ROCK Clustering Algorithm

In this section, we describe the ROCK (RObust Clustering using linKs) clustering algorithm which
belongs to the class of agglomerative hierarchical clustering algorithms. We begin by presenting an
overview of ROCK, and reserve the details and complexity results for subsequent subsections.

10

4.1 Overview of ROCK

The steps involved in clustering using ROCK are described in Figure 2. After drawing a random
sample from the database, a hierarchical clustering algorithm that employs links is applied to the
sampled points. Finally, the clusters involving only the sampled points are used to assign the
remaining data points on disk to the appropriate clusters. In the following subsections, we first
describe the steps performed by ROCK in greater detail.

4.2 Goodness Measure

In Section 3.3, we presented the criterion function which can be used to estimate the “goodness” of
clusters. The best clustering of points were those that resulted in the highest values for the criterion
function. Since our goal is to find a clustering that maximizes the criterion function, we use a
measure similar to the criterion function in order to determine the best pair of clusters to merge at
each step of ROCK’s hierarchical clustering algorithm. For a pair of clusters Ci, Cj , let link[Ci, Cj]
store the number of cross links between clusters Ci and Cj , that is,

∑
pq∈Ci,pr∈Cj link(pq, pr). Then,

we define the goodness measure g(Ci, Cj) for merging clusters Ci, Cj as follows.

g(Ci, Cj) =
link[Ci, Cj]

(ni + nj)1+2f(θ) − n1+2f(θ)
i − n1+2f(θ)

j

The pair of clusters for which the above goodness measure is maximum is the best pair of clusters
to be merged at any given step. It seems intuitive that pairs of clusters with a large number of cross
links are, in general, good candidates for merging. However, using only the number of cross links
between pairs of clusters as an indicator of the goodness of merging them may not be appropriate.
This naive approach may work well for well-separated clusters, but in case of outliers or clusters
with points that are neighbors, a large cluster may swallow other clusters and thus, points from
different clusters may be merged into a single cluster. This is because a large cluster typically
would have a larger number of cross links with other clusters.

In order to remedy the problem, as we did in section 3.3, we divide the number of cross links
between clusters by the expected number of cross links between them. Thus, if every point in
Ci has nf(θ)

i neighbors, then the expected number of links involving only points in the cluster is
approximately n

1+2f(θ)
i . Since for large clusters, we can assume that points outside the cluster

contribute minimally to the number of links between pairs of points in the cluster, the expected
number of links between points within the cluster is approximately n1+2f(θ)

i . As a result, it follows
that if two fairly large clusters with sizes ni and nj are merged, the number of links between pairs
of points in the merged cluster is (ni + nj)1+2f(θ), while the number of links in each of the clusters
(before merging) were n1+2f(θ)

i and n1+2f(θ)
j , respectively. Thus, the expected number of cross links

or links between pairs of points each from a different cluster, becomes (ni +nj)1+2f(θ)−n1+2f(θ)
i −

n
1+2f(θ)
j . We use this normalization factor in the above goodness measure as a heuristic to steer us

in the direction of clusters with large values for the criterion function.

4.3 Clustering Algorithm

ROCK’s hierarchical clustering algorithm is presented in Figure 3. It accepts as input the set S
of n sampled points to be clustered (that are drawn randomly from the original data set), and the
number of desired clusters k. The procedure begins by computing the number of links between
pairs of points in Step 1 (schemes for this are described in the next subsection). Initially, each

11

procedure cluster(S, k)
begin
1. link := compute links(S)
2. for each s ∈ S do
3. q[s] := build local heap(link, s)
4. Q := build global heap(S, q)
5. while size(Q) > k do {
6. u := extract max(Q)
7. v := max(q[u])
8. delete(Q, v)
9. w := merge(u, v)
10. for each x ∈ q[u] ∪ q[v] do {
11. link[x,w] := link[x, u] + link[x, v]
12. delete(q[x], u); delete(q[x], v)
13. insert(q[x], w, g(x,w)); insert(q[w], x, g(x,w))
14. update(Q, x, q[x])
15. }
16. insert(Q,w, q[w])
17. deallocate(q[u]); deallocate(q[v])
18. }
end

Figure 3: Clustering Algorithm

point is a separate cluster. For each cluster i, we build a local heap q[i] and maintain the heap
during the execution of the algorithm. q[i] contains every cluster j such that link[i, j] is non-zero.
The clusters j in q[i] are ordered in the decreasing order of the goodness measure with respect to
i, g(i, j).

In addition to the local heaps q[i] for each cluster i, the algorithm also maintains an additional
global heap Q that contains all the clusters. Furthermore, the clusters in Q are ordered in the
decreasing order of their best goodness measures. Thus, g(j,max(q[j])) is used to order the various
clusters j in Q, where max(q[j]), the max element in q[j], is the best cluster to merge with cluster
j. At each step, the max cluster j in Q and the max cluster in q[j] are the best pair of clusters to
be merged.

The while-loop in Step 5 iterates until only k clusters remain in the global heap Q. In addition,
it also stops clustering if the number of links between every pair of the remaining clusters becomes
zero. In each step of the while-loop, the max cluster u is extracted from Q by extract max and
q[u] is used to determine the best cluster v for it. Since clusters u and v will be merged, entries for
u and v are no longer required and can be deleted from Q. Clusters u and v are then merged in
Step 9 to create a cluster w containing |u|+ |v| points. There are two tasks that need to be carried
out once clusters u and v are merged: (1) for every cluster that contains u or v in its local heap,
the elements u and v need to be replaced with the new merged cluster w and the local heap needs
to be updated, and (2) a new local heap for w needs to be created.

Both these tasks are carried out in the for-loop of Step 10–15. The number of links between
clusters x and w is simply the sum of the number of links between x and u, and x and v. This is
used to compute g(x,w), the new goodness measure for the pair of clusters x and w, and the two

12

procedure compute links(S)
begin
1. Compute nbrlist[i] for every point i in S
2. Set link[i, j] to be zero for all i, j
3. for i := 1 to n do {
4. N := nbrlist[i]
5. for j := 1 to |N | − 1 do
6. for l := j + 1 to |N | do
7. link[N [j], N [l]] := link[N [j], N [l]] + 1
8. }
end

Figure 4: Algorithm for computing links

clusters are inserted into each other’s local heaps. Note that q[w] can only contain clusters that
were previously either in q[u] or q[v] since these are the only clusters that have non-zero links with
cluster w. Also, note that, as a result of merging clusters u and v, it is possible that the cluster
u or v was previously the best to be merged with x and now w becomes the best one for being
merged. Furthermore, it is also possible that neither u nor v was the best cluster to merge with
x, but now w is a better cluster to merge with x. For such cases, whenever the max cluster in the
local heap for x changes, the algorithm needs to relocate x in Q to reflect information relating to
the new best cluster for x (see Step 14). The procedure also needs to make sure that Q contains
the best cluster to be merged for the new cluster w.

4.4 Computation of Links

One way of viewing the problem of computing links between every pair of points is to consider an
n x n adjacency matrix A in which entry A[i, j] is 1 or 0 depending on whether or not points i
and j, respectively, are neighbors. The number of links between a pair of points i and j can be
obtained by multiplying row i with column j (that is,

∑n
l=1A[i, l] ∗ A[l, j]). Thus, the problem of

computing the number of links for all pairs of points is simply that of multiplying the adjacency
matrix A with itself, in other words, A x A. The time complexity of the naive algorithm to compute
the square of a matrix is O(n3). However the problem of calculating the square of a matrix is a
well studied problem and well-known algorithms such as Strassen’s algorithm [CLR90] runs in time
O(N2.81). The best complexity possible currently is O(N2.37) due to the algorithm by Coppersfield
and Winograd [CW87].

We expect that, on an average, the number of neighbors for each point will be small compared
to the number of input points n, causing the adjacency matrix A to be sparse. For such sparse
matrices, the algorithm in Figure 4 provides a more efficient way of computing links.

For every point, after computing a list of its neighbors, the algorithm considers all pairs of its
neighbors. For each pair, the point contributes one link. If the process is repeated for every point
and the link count is incremented for each pair of neighbors, then at the end, the link counts for
all pairs of points will be obtained. If mi is the size of the neighbor list for point i, then for point
i, we have to increase the link count by one in m2

i entries. Thus, the complexity of the algorithm is∑
im

2
i which is O(nmmma), where ma and mm are the average and maximum number of neighbors

for a point, respectively. In the worst case, the value of mm can be n in which case the complexity

13

of the algorithm becomes O(man
2). In practice, we expect mm to be reasonably close to ma and

thus, for these cases, the complexity of the algorithm reduces to O(m2
an) on average. For market

basket data, when transactions are uniformly distributed amongst the attributes, we showed that
the expected value for the number of neighbors per point is nf(θ), where f(θ) = 1−θ

1+θ . Assuming

θ = 0.5, ma is approximately n
1
3 , which is much smaller than

√
n. This results in a time complexity

of O(n2) for computing the links. Note that the list of neighbors for every point can be computed
in O(n2) time. In our experiments, we found that values of θ larger than 0.5 generally resulted in
good clustering. For these larger θ values, the overhead of computing links can be expected to be
low in practice.

4.5 Time and Space Complexity

Computation of Links: As shown in the previous section, it is possible to compute links among
pairs of points in O(n2.37) using standard matrix multiplication techniques, or alternatively in
O(n2ma) time for average number of neighbors ma. The space requirement for the link computation
is at most n(n+ 1)/2, when every pair of points are linked. However, in general, not every pair of
points will have links between them and we expect the storage requirements to be much smaller.
We can shown this to be O(min{nmmma, n

2}) where mm is the maximum number of neighbors for
a point. This is because a point i can have links to at most min{n,mmmi} other points.

Clustering Algorithm: The time to build each local heap initially is O(n) (a heap for a set
of n input clusters can be built in time that is linear in the number of clusters [CLR90]). The
global heap also has at most n clusters initially, and can be constructed in O(n) time. We next
examine the complexities of the steps in the while-loop which is executed O(n) times. The inner
for-loop dominates the complexity of the while-loop. Since the size of each local queue can be n in
the worst case, and the new merged cluster w may need to be inserted in O(n) local queues, the
time complexity of the for-loop becomes O(n log n), and that of the while-loop is O(n2 log n) in the
worst case. Due to the above analysis, ROCK’s clustering algorithm, along with computation of
neighbor lists and links, has a worst-case time complexity of O(n2 + nmmma + n2 log n).

The space complexity of the algorithm depends on the initial size of the local heaps. The reason
for this is that when two clusters are merged, their local heaps are deleted and the size of the new
cluster’s local heap can be no more than the sum of the sizes of the local heaps of the merged
clusters. Since each local heap only contains those clusters to which it has non-zero links, the
space complexity of ROCK’s clustering algorithm is the same as that of link computation, that is,
O(min{n2, nmmma}).

4.6 Miscellaneous Issues

Random Sampling: In case the database is large, random sampling enables ROCK to reduce
the number of points to be considered and ensures that the input data set fits in main-memory.
Consequently, significant improvements in execution times for ROCK can be realized. With an
appropriate sample size, the quality of the clustering is not sacrificed. On the contrary, random
sampling can aid clustering by filtering outliers. Efficient algorithms for selecting random samples
from a database can be found in [Vit85], and we do not discuss them here. Also, an analysis of
the appropriate sample size for good quality clustering can be found in [GRS98]. Note that the
salient feature of ROCK is not sampling but the clustering algorithm that utilizes links instead of
distances.

14

Handling Outliers: In ROCK, outliers can be handled fairly effectively. The first pruning occurs
when we choose a value for θ, and by definition outliers are relatively isolated from the rest of the
points. This immediately allows us to discard the points with very few or no neighbors because
they will never participate in the clustering. This is the most significant part where outliers are
eliminated.

However in some situations, outliers may be present as small groups of points that are loosely
connected to the rest of the dataset. This immediately suggests to us that these clusters will persist
as small clusters for the most part of clustering. These will only participate in clustering once the
number of clusters remaining is actually close to the number of clusters in the data. So we stop the
clustering at a point such that the number of remaining clusters is a small multiple of the expected
number of clusters. We then weed out the clusters that have very little support.

Labeling Data on Disk: In the final labeling phase, ROCK assigns the remaining data points
residing on disk to the clusters generated using the sampled points. This is performed as follows.
First, a fraction of points from each cluster i is obtained; let Li denote this set of points from
cluster i and used for labeling. Then, the original data set is read from disk, and each point p is
assigned to the cluster i such that p has the maximum neighbors in Li (after normalization). In
other words, if point p has Ni neighbors in set Li, then p is assigned to the cluster i for which

Ni
(|Li|+1)f(θ) is maximum. Note that (|Li| + 1)f(θ) is the expected number of neighbors for p in set

Li. Thus, labeling each point p requires at most
∑k
i=1 |Li| operations to determine the points in Li

that are neighbors of p.

5 Experimental Results

To get a better feel for how ROCK performs in practice, we ran ROCK on real-life as well
as synthetic data sets. We use real-life data sets to compare the quality of clustering due to
ROCK with the clusters generated by a traditional centroid-based hierarchical clustering algorithm
[DH73, JD88]. The synthetic data sets, on the other hand, are used primarily to demonstrate the
scalability properties of ROCK. For ROCK, in all the experiments, we used the similarity function
for categorical data (as described in Section 3.1.2), and f(θ) = 1−θ

1+θ .
In the traditional algorithm, we handle categorical attributes by converting them to boolean

attributes with 0/1 values. For every categorical attribute, we define a new attribute for every
value in its domain. The new attribute is 1 if and only if the value for the original categorical
attribute is equal to the value corresponding to the boolean attribute. Otherwise, it is 0. We use
euclidean distance as the distance measure between the centroids of clusters. Also, outlier handling
is performed even in the traditional hierarchical algorithm by eliminating clusters with only one
point when the number of clusters reduces to 1

3 of the original number.
Our experimental results with both real-life as well as synthetic data sets demonstrate the

effectiveness of our link-based approach for clustering categorical as well as time-series data. All
experiments were performed on a Sun Ultra-2/200 machine with 512 MB of RAM and running
Solaris 2.5.

5.1 Real-life Data Sets

We experimented with three real-life datasets whose characteristics are illustrated in Table 1.

15

Data Set No of Records No of Attributes Missing Values Note
Congressional Votes 435 16 Yes (very few) 168 Republicans and 267 Democrats
Mushroom 8124 22 Yes (very few) 4208 edible and 3916 poisonous
U.S. Mutual Fund 795 548 Yes Jan 4, 1993 - Mar 3, 1995

Table 1: Data sets

Congressional votes: The Congressional voting data set was obtained from the UCI Machine
Learning Repository (http://www.ics.uci.edu/ mlearn/MLRepository.html). It is the United States
Congressional Voting Records in 1984. Each record corresponds to one Congress man’s votes on
16 issues (e.g., education spending, crime). All attributes are boolean with Yes (that is, 1) and
No (that is, 0) values, and very few contain missing values. A classification label of Republican or
Democrat is provided with each data record. The data set contains records for 168 Republicans
and 267 Democrats.

Mushroom: The mushroom data set was also obtained from the UCI Machine Learning Repos-
itory . Each data record contains information that describes the physical characteristics (e.g., color,
odor, size, shape) of a single mushroom. A record also contains a poisonous or edible label for the
mushroom. All attributes are categorical attributes; for instance, the values that the size attribute
takes are narrow and broad, while the values of shape can be bell, flat, conical or convex, and odor
is one of spicy, almond, foul, fishy, pungent etc. The mushroom database has the largest number of
records (that is, 8124) among the real-life data sets we used in our experiments. The number of
edible and poisonous mushrooms in the data set are 4208 and 3916, respectively.

US Mutual Funds: We ran ROCK on a time-series database of the closing prices of U.S.
mutual funds that were collected from the MIT AI Laboratories’ Experimental Stock Market Data
Server4 (http://www.ai.mit.edu/stocks/mf.html). The funds represented in this dataset include
bond funds, income funds, asset allocation funds, balanced funds, equity income funds, foreign
stock funds, growth stock funds, aggressive growth stock funds and small company growth funds.
The closing prices for each fund are for business dates only. Some of the mutual funds that were
launched later than Jan 4, 1993 do not have a price for the entire range of dates from Jan 4, 1993
until Mar 3, 1995. Thus, there are many missing values for a certain number of mutual funds in
our data set.

While the congressional voting and mushroom data sets have categorical attributes, the mutual
fund data set has real values that correspond to the closing prices for each date. We adopt the
following approach in order to generate the similarity value for an arbitrary pair of mutual funds.
For a mutual fund, we map the real values for each date to one of three categorical values, Up,
Down and No, based on changes to its closing price compared to the previous business date. As
the names for the categorical values suggest, Up, Down and No correspond to a positive, negative
and no change to the price relative to the previous price. The similarity function is then defined
for the categorical data as described in Section 3.1.2.

Note that it is possible to employ alternate techniques from the one we have outlined above
for the similarity function. For example, in [ALSS95, SSA97], the authors propose methods for
generating a similarity or dissimilarity value for a pair of time-series sequences based on a very
general similarity model with amplitude scaling, outlier removal and translation. The similarity
values produced by their technique can be directly used in ROCK to determine neighbors and links

4The web server does not exist any more. However, the data we used was collected a few years ago for [ALSS95]
and [SSA97] when the web site was available.

16

Traditional Hierarchical Clustering Algorithm
Cluster No No of Republicans No of Democrats
1 157 52
2 11 215

ROCK
Cluster No No of Republicans No of Democrats
1 144 22
2 5 201

Table 2: Clustering result for congressional voting data

for the various time-series sequences. For the purpose of our experiments in this paper, however, we
do not use the similarity model from [ALSS95]5, but instead use our simpler model that transforms
real values to Up, Down and No. Our experimental results indicate that even with our simpler
similarity model, we find some very interesting clusters.

5.2 Results with Real-life Data Sets

Congressional Votes: Table 2 contains the results of running on congressional voting data,
the centroid-based hierarchical algorithm and ROCK with θ set to 0.73. As the table illustrates,
ROCK and the traditional algorithm, both identify two clusters one containing a large number of
republicans and the other containing a majority of democrats. However, in the cluster for repub-
licans found by the traditional algorithm, around 25% of the members are democrats, while with
ROCK, only 12% are democrats. The improvement in the quality of clustering can be attributed
to both our outlier removal scheme as well as the usage of links by ROCK. Note that due to the
elimination of outliers, the sum of the sizes of our clusters does not equal to the size of the input
data set.

The frequent values of categorical attributes for the two clusters are described in Table 7 in
the appendix. We found that only on 3 issues did a majority of Republicans and Democrats cast
the same vote. However, on 12 of the remaining 13 issues, the majority of the Democrats voted
differently from the majority of the Republicans. Furthermore, on each of the 12 issues, the Yes/No
vote had sizable support in their respective clusters. Since on majority of the attributes the records
in each cluster have similar values that are different from the values for the attributes in the other
cluster, we can consider the two clusters to be well-separated. Furthermore, there isn’t a significant
difference in the sizes of the two clusters. These two characteristics of the voting data set allow the
traditional algorithm to discover the clusters easily.

Mushroom: Table 3 describes the result of clustering the mushroom database using the tradi-
tional algorithm and ROCK. We set the number of desired clusters for both algorithms to be 20.
We set θ for ROCK to be 0.8. ROCK found 21 clusters instead of 20 – no pair of clusters among
the 21 clusters had links between them and so ROCK could not proceed further. As the results in
the table indicate, all except one (Cluster 15) of the clusters discovered by ROCK are pure clusters
in the sense that mushrooms in every cluster were either all poisonous or all edible. Furthermore,
there is a wide variance among the sizes of the clusters – 3 clusters have sizes above 1000 while
9 of the 21 clusters have a size less than 100. Furthermore, the sizes of the largest and smallest
cluster are 1728 and 8, respectively. We also generated the characteristics of the clusters shown in
Table 3, but due to lack of space, we show the characteristics of only the five largest clusters among

5The reason is that we did not have access to the code for generating the similarity values.

17

Traditional Hierarchical Algorithm
Cluster No No of Edible No of Poisonous Cluster No No of Edible No of Poisonous
1 666 478 11 120 144
2 283 318 12 128 140
3 201 188 13 144 163
4 164 227 14 198 163
5 194 125 15 131 211
6 207 150 16 201 156
7 233 238 17 151 140
8 181 139 18 190 122
9 135 78 19 175 150
10 172 217 20 168 206

ROCK
Cluster No No of Edible No of Poisonous Cluster No No of Edible No of Poisonous
1 96 0 12 48 0
2 0 256 13 0 288
3 704 0 14 192 0
4 96 0 15 32 72
5 768 0 16 0 1728
6 0 192 17 288 0
7 1728 0 18 0 8
8 0 32 19 192 0
9 0 1296 20 16 0
10 0 8 21 0 36
11 48 0

Table 3: Clustering result for mushroom data

them in tables 8 and 9 in the appendix. We found that, in general, records in different clusters
could be identical with respect to some attribute values. Thus, every pair of clusters generally have
some common values for the attributes and thus clusters are not well-separated. An interesting
exception was the odor attribute which had values none, anise or almond for edible mushrooms,
while for poisonous mushrooms, the values for the odor attribute were either foul, fishy or spicy.

As expected, the quality of the clusters generated by the traditional algorithm were very poor.
This is because clusters are not well-separated and there is a wide variance in the sizes of clusters.
As a result, with the traditional algorithm, we observed that cluster centers tend to spread out in
all the attribute values and lose information about points in the cluster that they represent. Thus,
as discussed earlier in Section 1, distances between centroids of clusters become a poor estimate of
the similarity between them.

As shown in Table 3, points belonging to different clusters are merged into a single cluster
and large clusters are split into smaller ones. None of the clusters generated by the traditional
algorithm are pure. Also, every cluster contains a sizable number of both poisonous and edible
mushrooms. Furthermore, the sizes of clusters detected by traditional hierarchical clustering are
fairly uniform. More than 90% of the clusters have sizes between 200 and 400, and only 1 cluster
has more than 1000 mushrooms. This confirms that our notion of links finds more meaningful
clusters for mushroom data.

US Mutual Funds: For the mutual funds data set, we could not run the traditional algorithm
because the sizes of records vary significantly. The reason for this is that a number of young mutual

18

Cluster Name Number of Funds Ticker Symbol Note
Bonds 1 4 BTFTX BTFIX BTTTX BTMTX Coupon Bonds
Bonds 2 10 CPTNX FRGVX VWESX FGOVX PRCIX et al –
Bonds 3 24 FMUIX SCTFX PRXCX PRFHX VLHYX et. al Municipal Bonds
Bonds 4 15 FTFIX FRHIX PHTBX FHIGX FMBDX et. al Municipal Bonds
Bonds 5 5 USGNX SGNMX VFITX OPIGX PHGBX –
Bonds 6 3 VFLTX SWCAX FFLIX Municipal Bonds
Bonds 7 26 WPGVX DRBDX VUSTX SGZTX PRULX et. al Income
Financial Service 3 FIDSX FSFSX FSRBX –
Precious Metals 10 FDPMX LEXMX VGPMX STIVX USERX et.al Gold
International 1 4 FSIGX INIFX PRFEX USIFX –
International 2 4 PRASX FSEAX SCOPX Asia
International 3 6 TEMWX TEPLX TEMFX ANWPX AEPGX –
Balanced 5 RPBAX SCBAX PREIX VTSMX OPVSX –
Growth 1 8 DTSGX AVLFX PESPX PNOPX ACEMX et al. –
Growth 2 107 STCSX SOPFX USAUX PBHGX VEIPX et al. –
Growth 3 70 VWNDX SLASX ANEFX FKGRX FISEX et al. –

Table 4: Mutual funds clusters

funds started after Jan 4, 1993 and as a result, a large number of values for them are missing from
the data set. This makes it difficult to use the traditional algorithm since it is unclear as to how
to treat the missing values in the context of traditional hierarchical clustering.

The result of ROCK with θ = 0.8 is presented in Table 4. The mutual fund data set is not very
amenable to clustering and contains a number of outliers, that is, clusters with only a single mutual
fund. The reason for this is that even though some funds are in the same group, they sometimes
do not perform similarly because the fund managers maintain different portfolios. Despite this,
ROCK found 24 clusters of size 2 (that is, containing exactly two mutual funds) that we do not
present here due to lack of space. However, we do want to point out that these clusters with
size two were also very interesting. For example, one of the clusters with size 2 contained Harbor
International Fund and Ivy International Fund. This is because even though the two mutual funds
belong to different mutual fund companies, the portfolio managers of both funds were the same for
the period of the data set. Interestingly, the same two mutual funds were also found to be similar
using techniques to detect similar time sequences in [ALSS95]. This indicates to us that even our
simple transformation of the mutual fund data to a form containing Up, Down and No when input
to ROCK is capable of generating some interesting results that were obtained using very powerful
and general tools for data mining. Some of the other interesting clusters of size 2 included a pair
of Japan funds, a pair of European funds, a pair that invest in Energy and two that invested in
Emerging Markets.

In Table 4, we present the 16 clusters whose size exceeded 3. For each cluster, the first column
contains the name for the cluster that is based on the group of funds that the cluster belongs
to, and column 3 contains the ticker symbols for the first few funds in the cluster. In the final
column, whenever possible, we assign a category to each cluster based on the types of investments
made by the the funds in the cluster (e.g., Bonds, Gold, Asia). The Financial Service cluster
has 3 funds – Fidelity Select Financial Services (FIDSX), Invesco Strategic Financial Services
(FSFSX) and Fidelity Select Regional Banks (FSRBX) that invest primarily in banks, brokerages
and financial institutions. The cluster named International 2 contains funds that invest in South-
east Asia and the Pacific rim region; they are T. Rowe Price New Asia (PRASX), Fidelity Southeast
Asia (FSEAX), and Scudder Pacific Opportunities (SCOPX). The Precious Metals cluster includes

19

Cluster No. 1 2 3 4 5 6 7 8 9 10 Outliers
No. of Transactions 9736 13029 14832 10893 13022 7391 8564 11973 14279 5411 5456
No. of Items 19 20 19 19 22 19 19 21 22 19 116

Table 5: Synthetic Data Set

mutual funds that invest mainly in Gold.
Thus, our results with the mutual funds data goes on to prove that ROCK can also be used to

cluster time-series data. In addition, it can be employed to determine interesting distributions in
the underlying data even when there are a large number of outliers that do not belong to any of
the clusters, as well as when the data contains a sizable number of missing values. Furthermore, a
nice and desirable characteristic of our technique is that it does not merge a pair of clusters if there
are no links between them. Thus, the desired number of clusters input to ROCK is just a hint
– ROCK may discover more than the specified number of clusters (if there are no links between
clusters) or fewer (in case certain clusters are determined to be outliers and eliminated).

5.3 Synthetic Data Set

The synthetic data set is a market basket database containing 114586 transactions. Of these, 5456
(or roughly, 5%) are outliers, while the others belong to one of 10 clusters with sizes varying between
5000 and 15000 (see Table 5). Each cluster is defined by a set of items – the number of items that
define each cluster is as shown in the last row of Table 5. Roughly 40% of the items that define a
cluster are common with items for other clusters, the remaining 60% being exclusive to the cluster.
A transaction for a cluster is generated by randomly selecting items from the set of items that
define the cluster (outliers are generated by randomly selecting from among the items for all the
clusters). The transaction size parameter has a normal distribution with an average value of 15.
Due to the normal distribution, 98% of transactions have sizes between 11 and 19.

5.4 Results with Synthetic Data Set

Scalability for Large Databases: Since we use the combination of random sampling and
labeling to handle large data sets, the size of the database has minimal impact on the execution
time of ROCK. However, the random sample size has a significant effect on ROCK’s performance.
Thus, in our scale-up experiment, we study the effects of the random sample size on running time.
In our running times, we do not include the time for the final labeling phase.

Figure 5 plots ROCK’s execution time on the synthetic data set as the random sample size is
varied for four different settings of θ. The graph illustrates that the computational complexity of
ROCK is roughly quadratic with respect to the sample size. Furthermore, for a given sample size,
the performance of ROCK improves as θ is increased. The reason for this is that as θ is increased,
each transaction has fewer neighbors and this makes the computation of links more efficient.

Quality of Clustering: Since for each transaction in our synthetic data set, we know the
cluster to which it belongs, we can easily compute the number of transactions misclassified in a
clustering and use this as an assessment of its quality. Table 6 describes the number of transactions
misclassified by ROCK for our synthetic data set with θ values of 0.5 and 0.6 and a range of
sample sizes. As the table illustrates, ROCK with random sampling finds the original clusters very
accurately when θ is either 0.5 or 0.6. The table also shows that the quality of clustering improves
as the random sample size increases.

20

Figure 5: Scalability of ROCK with respect to size of random sample

Sample Size 1000 2000 3000 4000 5000
θ = 0.5 37 0 0 0 0
θ = 0.6 8123 1051 384 104 8

Table 6: Number of misclassified transactions

Note that the quality of clustering is better with θ = 0.5 than with θ = 0.6. The main reason
for this is that the random sample sizes we consider range from being less than 1% of the database
size to about 4.5%. In addition, transaction sizes can be as small as 11, while the number of items
defining each cluster is approximately 20. Finally, a high percentage (roughly 40%) of items in a
cluster are also present in other clusters. Thus, a smaller similarity threshold is required to ensure
that a larger number of transaction pairs from the same cluster are neighbors.

6 Concluding Remarks

In this paper, we proposed a new concept of links to measure the similarity/proximity between
a pair of data points with categorical attributes. We also developed a robust hierarchical clus-
tering algorithm ROCK that employs links and not distances for merging clusters. Our methods
naturally extend to non-metric similarity measures that are relevant in situations where a domain
expert/similarity table is the only source of knowledge.

The results of our experimental study with real-life data sets are very encouraging. For exam-
ple, with the mushroom data set, ROCK discovered almost pure clusters containing either only
edible or only poisonous mushrooms. Furthermore, there were significant differences in the sizes
of the clusters found. In contrast, the quality of clusters found by the traditional centroid-based
hierarchical algorithm was very poor. Not only did it generate uniform sized clusters, but also most
clusters contained a sizable number of both edible and poisonous mushrooms. With the mutual
funds data set, we could find, using our link-based approach, groups of mutual funds that have
similar performance. This demonstrates the utility of ROCK as a tool for also clustering time-series
data. Finally, for our large synthetic data set, we found that the combination of random sampling
and labeling enables ROCK’s performance to scale quite well for large databases.

21

References

[ALSS95] Rakesh Agrawal, King-Ip Lin, Harpreet S. Sawhney, and Kyuseok Shim. Fast similarity
search in the presence of noise, scaling, and translation in time-series databases. In
Proc. of the VLDB Conference, Zurich, Switzerland, September 1995.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Massachusetts, 1990.

[CW87] Donald Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. In Proc. of the 19th Annual ACM Symposium on Theory of Computing,
1987.

[DH73] Richard O. Duda and Peter E. Hard. Pattern Classification and Scene Analysis. A
Wiley-Interscience Publication, New York, 1973.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algo-
rithm for discovering clusters in large spatial database with noise. In Int’l Conference
on Knowledge Discovery in Databases and Data Mining (KDD-96), Portland, Oregon,
August 1996.

[EKX95] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. A database interface for clustering
in large spatial databases. In Int’l Conference on Knowledge Discovery in Databases
and Data Mining (KDD-95), Montreal, Canada, August 1995.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: A clustering algorithm for
large databases. In Proc. of the ACM SIGMOD Conference on Management of Data,
May 1998.

[HKKM97] Eui-Hong Han, George Karypis, Vipin Kumar, and Bamshad Mobasher. Clustering
based on association rule hypergraphs. In 1997 SIGMOD Workshop on Research Issues
on Data Mining and Knowledge Discovery, June 1997.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

[KAKS97] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hy-
pergraph partitioning: Application in VLSI domain. In Proceedings of the ACM/IEEE
Design Automation Conference, Montreal, Canada, 1997.

[NH94] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for spatial
data mining. In Proc. of the VLDB Conference, Santiago, Chile, September 1994.

[SSA97] Kyuseok Shim, Ramakrishnan Srikant, and Rakesh Agrawal. High-dimensional simi-
larity joins. In IEEE 13th Int’l Conf. on Data Engineering, Birmingham, UK, April
1997.

[Vit85] Jeff Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37–57, 1985.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient data clustering
method for very large databases. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 103–114, Montreal, Canada, June 1996.

22

A Characteristics of Clusters for Real-life Data Sets

Cluster 1 (Republicans) Cluster 2 (Democrats)
(immigration,y,0.51) (immigration,y,0.51)
(export-administration-act-south-africa,y,0.55) (export-administration-act-south-africa,y,0.7)
(synfuels-corporation-cutback,n,0.77) (synfuels-corporation-cutback,n,0.56)
(adoption-of-the-budget-resolution,n,0.87) (adoption-of-the-budget-resolution,y,0.94)
(physician-fee-freeze,y,0.92) (physician-fee-freeze,n,0.96)
(el-salvador-aid,y,0.99) (el-salvador-aid,n,0.92)
(religious-groups-in-schools,y,0.93) (religious-groups-in-schools,n,0.67)
(anti-satellite-test-ban,n,0.84) (anti-satellite-test-ban,y,0.89)
(aid-to-nicaraguan-contras,n,0.9) (aid-to-nicaraguan-contras,y,0.97)
(mx-missile,n,0.93) (mx-missile,y,0.86)
(education-spending,y,0.86) (education-spending,n,0.9)
(crime,y,0.98) (crime,n,0.73)
(duty-free-exports,n,0.89) (duty-free-exports,y,0.68)
(handicapped-infants,n,0.85) (handicapped-infants,y,0.65)
(superfund-right-to-sue,y,0.9) (superfund-right-to-sue,n,0.79)
(water-project-cost-sharing,y,0.51)

Table 7: Characteristics of clusters in congressional voting data

23

Cluster 3
(cap-shape,convex,0.5) (cap-shape,bell,0.36) (cap-shape,flat,0.14)
(cap-surface,smooth,0.36) (cap-surface,scaly,0.64)
(cap-color,brown,0.14) (cap-color,white,0.36) (cap-color,yellow,0.5)
(bruises,bruises,1) (odor,anise,0.5) (odor,almond,0.5)
(gill-attachment,free,1) (gill-spacing,close,1) (gill-size,broad,1)
(gill-color,black,0.18) (gill-color,brown,0.27) (gill-color,gray,0.18)
(gill-color,pink,0.091) (gill-color,white,0.27)
(stalk-shape,enlarging,1) (stalk-root,rooted,0.27) (stalk-root,club,0.73)
(stalk-surface-above-ring,smooth,1)
(stalk-surface-below-ring,smooth,0.73) (stalk-surface-below-ring,scaly,0.27)
(stalk-color-above-ring,white,1) (stalk-color-below-ring,white,1)
(veil-type,partial,1) (veil-color,white,1)
(ring-number,one,1) (ring-type,pendant,1)
(spore-print-color,black,0.5) (spore-print-color,brown,0.5)
(population,scattered,0.5) (population,numerous,0.36) (population,solitary,0.14)
(habitat,grasses,0.5) (habitat,meadows,0.36) (habitat,paths,0.14)

Cluster 5
(cap-shape,convex,0.5) (cap-shape,flat,0.5)
(cap-surface,smooth,0.5) (cap-surface,fibrous,0.5)
(cap-color,white,0.33) (cap-color,brown,0.33) (cap-color,gray,0.33)
(bruises,no,1) (odor,none,1)
(gill-attachment,free,1) (gill-spacing,crowded,1) (gill-size,broad,1)
(gill-color,black,0.25) (gill-color,brown,0.25) (gill-color,pink,0.25) (gill-color,chocolate,0.25)
(stalk-shape,tapering,1) (stalk-root,equal,1)
(stalk-surface-above-ring,smooth,0.5) (stalk-surface-above-ring,ibrous,0.5)
(stalk-surface-below-ring,ibrous,0.5) (stalk-surface-below-ring,smooth,0.5)
(stalk-color-above-ring,white,1) (stalk-color-below-ring,white,1)
(veil-type,partial,1) (veil-color,white,1)
(ring-number,one,1) (ring-type,evanescent,1)
(spore-print-color,black,0.5) (spore-print-color,brown,0.5)
(population,scattered,0.5) (population,abundant,0.5)
(habitat,grasses,1)

Cluster 7
(cap-shape,convex,0.5) (cap-shape,flat,0.5)
(cap-surface,fibrous,0.5) (cap-surface,scaly,0.5)
(cap-color,brown,0.33) (cap-color,red,0.33) (cap-color,gray,0.33)
(bruises,bruises,1) (odor,none,1)
(gill-attachment,free,1) (gill-spacing,close,1) (gill-size,broad,1)
(gill-color,brown,0.25) (gill-color,pink,0.25) (gill-color,white,0.25) (gill-color,purple,0.25)
(stalk-shape,tapering,1) (stalk-root,bulbous,1)
(stalk-surface-above-ring,smooth,1)
(stalk-surface-below-ring,smooth,1)
(stalk-color-above-ring,gray,0.33) (stalk-color-above-ring,pink,0.33) (stalk-color-above-ring,white,0.33)
(stalk-color-below-ring,pink,0.33) (stalk-color-below-ring,gray,0.33) (stalk-color-below-ring,white,0.33)
(veil-type,partial,1) (veil-color,white,1)
(ring-number,one,1) (ring-type,pendant,1)
(spore-print-color,black,0.5) (spore-print-color,brown,0.5)
(population,solitary,0.5) (population,several,0.5)
(habitat,woods,1)

Table 8: Characteristics of large clusters in mushroom data: edible

24

Cluster 9
(cap-shape,convex,0.5) (cap-shape,flat,0.5)
(cap-surface,scaly,0.5) (cap-surface,fibrous,0.5)
(cap-color,yellow,0.5) (cap-color,gray,0.5)
(bruises,no,1) (odor,foul,1)
(gill-attachment,free,1) (gill-spacing,close,1) (gill-size,broad,1)
(gill-color,gray,0.33) (gill-color,pink,0.33) (gill-color,chocolate,0.33)
(stalk-shape,enlarging,1) (stalk-root,bulbous,1)
(stalk-surface-above-ring,silky,1) (stalk-surface-below-ring,silky,1)
(stalk-color-above-ring,pink,0.33) (stalk-color-above-ring,brown,0.33) (stalk-color-above-ring,buff,0.33)
(stalk-color-below-ring,pink,0.33) (stalk-color-below-ring,brown,0.33) (stalk-color-below-ring,buff,0.33)
(veil-type,partial,1) (veil-color,white,1)
(ring-number,one,1) (ring-type,large,1)
(spore-print-color,chocolate,1)
(population,several,0.5) (population,solitary,0.5)
(habitat,grasses,0.33) (habitat,woods,0.33) (habitat,paths,0.33)

Cluster 16
(cap-shape,convex,0.33) (cap-shape,flat,0.33) (cap-shape,knobbed,0.33)
(cap-surface,smooth,0.5) (cap-surface,scaly,0.5)
(cap-color,brown,0.5) (cap-color,red,0.5)
(bruises,no,1) (odor,fishy,0.3) (odor,foul,0.33) (odor,spicy,0.33)
(gill-attachment,free,1) (gill-spacing,close,1) (gill-size,narrow,1)
(gill-color,buff,1)
(stalk-shape,tapering,1)
(stalk-surface-above-ring,smooth,0.5) (stalk-surface-above-ring,silky,0.5)
(stalk-surface-below-ring,smooth,0.5) (stalk-surface-below-ring,silky,0.5)
(stalk-color-above-ring,white,0.5) (stalk-color-above-ring,pink,0.5)
(stalk-color-below-ring,white,0.5) (stalk-color-below-ring,pink,0.5)
(veil-type,partial,1) (veil-color,white,1)
(ring-number,one,1) (ring-type,evanescent,1)
(spore-print-color,white,1)
(population,several,1)
(habitat,woods,0.33) (habitat,paths,0.33) (habitat,leaves,0.33)

Table 9: Characteristics of large clusters in mushroom data: poisonous

25

