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ABSTRACT 
This paper studies the problem of categorical data clustering, 
especially for transactional data characterized by high 
dimensionality and large volume. Starting from a heuristic method 
of increasing the height-to-width ratio of the cluster histogram, we 
develop a novel algorithm – CLOPE, which is very fast and 
scalable, while being quite effective. We demonstrate the 
performance of our algorithm on two real world datasets, and 
compare CLOPE with the state-of-art algorithms. 
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1. INTRODUCTION 
Clustering is an important data mining technique that groups 
together similar data records [12, 14, 4, 1]. Recently, more 
attention has been put on clustering categorical data [10, 8, 6, 5, 7, 
13], where records are made up of non-numerical attributes. 
Transactional data, like market basket data and web usage data, 
can be thought of a special type of categorical data having boolean 
value, with all the possible items as attributes. Fast and accurate 
clustering of transactional data has many potential applications in 
retail industry, e-commerce intelligence, etc. 

However, fast and effective clustering of transactional databases is 
extremely difficult because of the high dimensionality, sparsity, 
and huge volumes often characterizing these databases. Distance-
based approaches like k-means [11] and CLARANS [12] are 
effective for low dimensional numerical data. Their performances 
on high dimensional categorical data, however, are often 
unsatisfactory [7]. Hierarchical clustering methods like ROCK [7] 
have been demonstrated to be quite effective in categorical data 
clustering, but they are naturally inefficient in processing large 
databases.  

The LargeItem [13] algorithm groups large categorical databases 
by iterative optimization of a global criterion function. The 
criterion function is based on the notion of large item that is the 
item in a cluster having occurrence rates larger than a user-defined 
parameter minimum support. Computing the global criterion 
function is much faster than those local criterion functions defined 
on top of pair-wise similarities. This global approach makes 
LargeItem very suitable for clustering large categorical databases. 

In this paper, we propose a novel global criterion function that 
tries to increase the intra-cluster overlapping of transaction items 
by increasing the height-to-width ratio of the cluster histogram. 
Moreover, we generalize the idea by introducing a parameter to 
control the tightness of the cluster. Different number of clusters 
can be obtained by varying this parameter. Experiments show that 
our algorithm runs much faster than LargeItem, with clustering 
quality quite close to that of the ROCK algorithm [7]. 

To gain some basic idea behind our algorithm, let’s take a small 
market basket database with 5 transactions {(apple, banana}, 
(apple, banana, cake), (apple, cake, dish), (dish, egg), (dish, egg, 
fish)}. For simplicity, transaction (apple, banana) is abbreviated to 
ab, etc. For this small database, we want to compare the following 
two clustering (1) {{ab, abc, acd}, {de, def}} and (2) {{ab, abc}, 
{acd, de, def}}. For each cluster, we count the occurrence of every 
distinct item, and then obtain the height (H) and width (W) of the 
cluster. For example, cluster {ab, abc, acd} has the occurrences of 
a:3, b:2, c:2, and d:1, with H=2.0 and W=4. Figure 1 shows these 
results geometrically as histograms, with items sorted in reverse 
order of their occurrences, only for the sake of easier visual 
interpretation. 

Figure 1. Histograms of the two clusterings.
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We judge the qualities of these two clusterings geometrically, by 
analyzing the heights and widths of the clusters. Leaving out the 
two identical histograms for cluster {de, def} and cluster {ab, abc}, 
the other two histograms are of different quality. The histogram 
for cluster {ab, abc, acd} has only 4 distinct items for 8 blocks 
(H=2.0, H/W=0.5), but the one for cluster {acd, de, def} has 5, for 
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the same number of blocks  (H=1.6, H/W=0.32). Clearly, 
clustering (1) is better since we prefer more overlapping among 
transactions in the same cluster. 

From the above example, we can see that a larger height-to-width 
ratio of the histogram means better intra-cluster similarity. We 
apply this straightforward intuition as the basis of our clustering 
algorithm and define the global criterion function using the 
geometric properties of the cluster histograms. We call this new 
algorithm CLOPE - Clustering with sLOPE. While being quite 
effective, CLOPE is very fast and scalable when clustering large 
transactional databases with high dimensions, such as market-
basket data and web server logs. 

The rest of the paper is organized as follows. Section 2 analyzes 
the categorical clustering problem more formally and presents our 
criterion function. Section 3 details the CLOPE algorithm and its 
implementation issues. In Section 4, experiment results of CLOPE 
and LargeItem on real life datasets are compared. After some 
discussion of related works in Section 5, Section 6 concludes the 
paper. 

2. CLUSTERING WITH SLOPE 
Notations Throughout this paper, we use the following 
notations. A transactional database D is a set of transactions {t1, ..., 
tn}. Each transaction is a set of items {i1, ..., im}. A clustering 
{C1, ... Ck} is a partition of {t1, ..., tn}, that is, C1 ∪  … ∪  Ck = 
{t1, ..., tn} and Ci ≠ φ ∧  Ci ∩ Cj = φ for any 1 ≤ i, j ≤ k. Each Ci is 
called a cluster. Unless otherwise stated, n, m, k are used 
respectively for the number of transactions, the number of items, 
and the number of clusters. 

A good clustering should group together similar transactions. Most 
clustering algorithms define some criterion functions and optimize 
them, maximizing the intra-cluster similarity and the inter-cluster 
dissimilarity. The criterion function can be defined locally or 
globally. In the local way, the criterion function is built on the 
pair-wise similarity between transactions. This has been widely 
used for numerical data clustering, using pair-wise similarities like 
the Lp ((Σ|xi-yi|p)1/p) metric between two points. Common similarity 
measures for categorical data are the Jaccard coefficient (|t1∩t2| / 
|t1∪ t2|), the Dice coefficient (2×|t1∩t2| / (|t1|+|t2|)), or simply the 
number of common items between two transactions [10]. However, 
for large databases, the computational costs of these local 
approaches are heavy, compared with the global approaches. 

Pioneered by Wang et.al. in their LargeItem algorithm [13], global 
similarity measures can also be used in categorical data clustering. 
In global approaches, no pair-wise similarity measures between 
individual transactions are required. Clustering quality is measured 
in the cluster level, utilizing information like the sets of large and 
small items in the clustering. Since the computations of these 
global metrics are much faster than that of pair-wise similarities, 
global approaches are very efficient for the clustering of large 
categorical databases. 

Compared with LargeItem, CLOPE uses a much simpler but 
effective global metric for transactional data clustering. A better 
clustering is reflected graphically as a higher height-to-width ratio. 

Given a cluster C, we can find all the distinct items in the cluster, 
with their respective occurrences, that is, the number of 
transactions containing that item. We write D(C) the set of distinct 
items, and Occ(i, C) the occurrence of item i in cluster C. We can 

then draw the histogram of a cluster C, with items as the X-axis, 
decreasingly ordered by their occurrences, and occurrence as the 
Y-axis. We define the size S(C) and width W(C) of a cluster C 
below: 
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The height of a cluster is defined as H(C)=S(C)/W(C). We will 
simply write S, W, and H for S(C), W(C), and H(C) when C is not 
important or can be inferred from context. 

To illustrate, we detailed the histogram of the last cluster in Figure 
1 below. Please note that, geometrically in Figure 2, the histogram 
and the dashed rectangle with height H and width W have the same 
size S. 

Figure 2. The detailed histogram of cluster {acd, de, def}.
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It's straightforward that a larger height means a heavier overlap 
among the items in the cluster, and thus more similarity among the 
transactions in the cluster. In our running example, the height of 
{ab, abc, acd} is 2, and the height of {acd, de, def} is 1.6. We 
know that clustering (1) is better, since all the other characteristics 
of the two clusterings are the same. 

However, to define our criterion function, height alone is not 
enough. Take a very simple database {abc, def}. There is no 
overlap in the two transactions, but the clustering {{abc, def}} and 
the clustering {{abc}, {def}} have the same height 1. Another 
choice works better for this example. We can use gradient G(C) = 
H(C) / W(C)= S(C) / W(C)2 instead of H(C) as the quality measure 
for cluster C. Now, the clustering {{abc}, {def}} is better, since 
the gradients of the two clusters in it are all 1/3, larger than 1/6, the 
gradient of cluster {abc, def}. 

To define the criterion function of a clustering, we need to take 
into account the shape of every cluster as well as the number of 
transactions in it. For a clustering C = {C1, ..., Ck},we use the 
following as a straightforward definition of the criterion function. 
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In fact, the criterion function can be generalized using a parametric 
power r instead of 2 as follows. 
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Here, r is a positive1 real number called repulsion, used to control 
the level of intra-cluster similarity. When r is large, transactions 
within the same cluster must share a large portion of common 
items. Otherwise, separating these transactions into different 
clusters will result in a larger profit. For example, compare the two 
clustering for database {abc, abcd, bcde,cde}: (1) {{abc, abcd, 
bcde, cde}}  and (2) {{abc, abcd}, {bcde, cde}}. In order to 
achieve a larger profit for clustering (2), the profit for clustering 

(2), 
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This means that a repulsion greater than ln(14/7)/ln(5/4) ≈ 3.106 
must be used. 

On the contrary, small repulsion can be used to group sparse 
databases. Transactions sharing few common items may be put in 
the same cluster. For the database {abc, cde, fgh, hij}, a higher 
profit of clustering {{abc, cde}, {fgh, hij}} than that of {{abc}, 
{cde}, {fgh}, {hij}} needs a repulsion smaller than ln(6/3)/ln(5/3) 
≈ 1.357. 

Now we state our problem of clustering transactional data below. 

Problem definition    Given D and r, find a clustering C that 
maximize Profitr(C). 

Figure 3. The sketch of the CLOPE algorithm.

 /* Phrase 1 - Initialization */
1: while not end of the database file
2:   read the next transaction 〈t, unknown〉;
3:   put t in an existing cluster or a new cluster Ci
      that maximize profit;
4:   write 〈t, i〉 back to database;

/* Phrase 2 - Iteration */
5: repeat
6:   rewind the database file;
7:   moved = false;
8:   while not end of the database file
9:     read 〈t, i〉;
10:    move t to an existing cluster or new cluster Cj

         that maximize profit;
11:     if Ci ≠ Cj then
12:      write 〈t, j〉;
13:      moved = true;
14:until not moved;

3. IMPLEMENTATION 
Like most partition-based clustering approaches, we approximate 
the best solution by iterative scanning of the database. However, as 
our criterion function is defined globally, only with easily 
computable metrics like size and width, the execution speed is 
much faster than the local ones. 

Our implementation requires a first scan of the database to build 
the initial clustering, driven by the criterion function Profitr . After 

                                                           
1 In most of the cases, r should be greater than 1. Otherwise, two 
transactions sharing no common item can be put in the same 
cluster. 

that, a few more scans are required to refine the clustering and 
optimize the criterion function. If no changes to the clustering are 
made in a previous scan, the algorithm will stop, with the final 
clustering as the output. The output is simply an integer label for 
every transaction, indicating the cluster id that the transaction 
belongs to. The sketch of the algorithm is shown in Figure 3. 

RAM data structure   In the limited RAM space, we keeps only 
the current transaction and a small amount of information for each 
cluster. The information, called cluster features 2 , includes the 
number of transactions N, the number of distinct items (or width) 
W, a hash of 〈item, occurrence〉 pairs occ, and a pre-computed 
integer S for fast access of the size of cluster. We write C.occ[i] for 
the occurrence of item i in cluster C, etc. 

Remark    In fact, CLOPE is quite memory saving, even array 
representation of the occurrence data is practical for most 
transactional databases. The total memory required for item 
occurrences is approximately M×K×4 bytes using array of 4-byte 
integers, where M is the number of dimensions, and K the number 
of clusters. Databases with up to 10k distinct items with a 
clustering of 1k clusters can be fit into a 40M RAM. 

The computation of profit    It is easy to update the cluster 
feature data when adding or removing a transaction. The 
computation of profit through cluster features is also 
straightforward, using S, W, and N of every cluster. The most time-
sensitive parts in the algorithm (statement 3 and 10 in Figure 3.) 
are the comparison of different profits of adding a transaction to all 
the clusters (including an empty one). Although computing the 
profit requires summing up values from all the clusters, we can use 
the value change of the current cluster being tested to achieve the 
same but much faster judgement. 

Figure 4. Computing the delta value of adding t to C.

1: int DeltaAdd(C, t, r) {
2:   S_new = C.S + t.ItemCount;
3:   W_new = C.W;
4:   for (i = 0; i < t.ItemCount; i++)
5:     if (C.occ[t.items[i]] == 0) ++W_new;
6:   return S_new*(C.N+1)/(W_new)r-C.S*C.N /(C.W)r;
7: }

 
We use the function DeltaAdd(C, t, r) in Figure 4 to compute the 

change of value rWC
NCSC

).(
.. × after adding transaction t to cluster C. 

The following theorem guarantees the correctness of our 
implementation. 

Theorem   If DeltaAdd(Ci, t) is the maximum, then putting t to Ci 
will maximize Profitr. 

Proof:  Observing the profit function, we find that the profits of 
putting t to different clusters only differ in the numerator part of 
the formula. Assume that the numerator of the clustering profit 
before adding t is X. Subtracting the constant X from these new 
numerators, we get exactly the values returned by the DeltaAdd 
function. 

Time and space complexity    From Figure 4, we know that the 
time complexity of DeltaAdd is O(t.ItemCount). Suppose the 
                                                           
2 Named after BIRCH [14]. 



average length of a transaction is A, the total number of 
transactions is N, and the maximum number of clusters is K, the 
time complexity for one iteration is O(N × K × A), indicating that 
the execution speed of CLOPE is affected linearly by the number 
of clusters, and the I/O cost is linear to the database size. Since 
only one transaction is kept in memory at any time, the space 
requirement for CLOPE is approximately the memory size of the 
cluster features. It is linear to the number of dimensions M times 
the maximum number of clusters K. For most transactional 
databases, it is not a heavy requirement. 

4. EXPERIMENTS 
In this section, we analyze the effectiveness and execution speed 
of  CLOPE with two real-life datasets. For effectiveness, we 
compare the clustering quality of CLOPE on a labeled dataset 
(mushroom from the UCI data mining repository) with those of 
LargeItem [13] and ROCK [7]. For execution speed, we compare 
CLOPE with LargeItem on a large web log dataset. All the 
experiments in this Section are carried out on a PIII 450M Linux 
machine with 128M memory. 

4.1 Mushroom 
The mushroom dataset from the UCI machine learning repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html) has been 
used by both ROCK and LargeItem for effectiveness tests. It 
contains 8,124 records with two classes, 4,208 edible mushrooms 
and 3,916 poisonous mushrooms. By treating the value of each 
attributes as items of transactions, we converted all the 22 
categorical attributes to transactions with 116 distinct items 
(distinct attribute values). 2480 missing values for the stalk-root 
attribute are ignored in the transactions. 
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Figure 5. The result of CLOPE on mushroom. 

We try different repulsion value from 0.5 to 4, with a step of 0.1. 
A few of the results are shown in Figure 5. 

To make a general impression of the clustering quality, we use two 
metrics in the chart. The purity metric is computed by summing up 
the larger one of the number of edibles and the number of 
poisonous in every cluster. It has a maximum of 8124, the total 
number of transactions. The number of clusters should be as few 
as possible, since a clustering with each transaction as a cluster 
will surely achieve a maximum purity. 

When r=2.6, the number of clusters is 27, and there is only one 
clusters with mixed records: 32 poisonous and 48 edibles 
(purity=8092). When r reaches 3.1, there are 30 clusters with 
perfect classification (purity=8124). Most of these results require 

at most 3 scans of the database. The number of transactions in 
these clusters varies, from 1 to 1726 when r=2.6. 

The above results are quite close to results presented in the ROCK 
paper [7], where the only result given is 21 clusters with only one 
impure cluster with 72 poisonous and 32 edibles (purity=8092), by 
a support of 0.8. Consider the quadratic time and space complexity 
of ROCK, the results of CLOPE are quite appealing. 

The results of LargeItem presented in [13] on the mushroom 
dataset were derived hierarchically by recursive clustering of 
impure clusters, and are not comparable directly. We try our 
LargeItem implementation to get the direct result. The criterion 
function of LargeItem is defined as [13]: 

Costθ ,w (C) = w × Intra + Inter 

Here θ is the minimum support in percentage for an item to be 
large in a cluster. Intra is number of distinct small (non-large) 
items among all clusters, and Inter the number of overlapping 
large items, which equals to the total number of large items minus 
the distinct number of large items, among all clusters. A weight w 
is introduced to control the different importance of Intra and Inter. 
The LargeItem algorithm tries to minimize the cost during the 
iterations. In our experiment, when a default w=1 was used, no 
good clustering was found with different θ  from 0.1 to 1.0 (Figure 
6(a)). After analyzing the results, we found that there was always a 
maximum value for Intra, for all the results. We increased w to 
make a larger Intra more expensive. When w reached 10, we found 
pure results with 58 clusters at support 1. The result of w=10 is 
shown in Figure 6(b). 
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Figure 6. The result of LargeItem on mushroom. 



Our experiment results on the mushroom dataset show that with 
very simple intuition and linear complexity, CLOPE is quite 
effective. The result of CLOPE on mushroom is better than that of 
LargeItem and close to that of ROCK, which has quadratic 
complexity to the number of transactions. The comparison with 
LargeItem also shows that the simple idea behind CLOPE works 
quite well even without any explicit constraint on inter-cluster 
dissimilarity. 

Sensitivity to data order   We also perform sensitivity test of 
CLOPE on the order of input data using mushroom. The result in 
Figure 5 and 6 are all derived with the original data order. We test 
CLOPE with randomly ordered mushroom data. The results are 
different but very close to the original ones, with a best result of 
reaching purity=8124 with 28 clusters, at r=2.9, and a worst result 
of reaching purity=8124 with 45 clusters, at r=3.9. It shows that 
CLOPE is not very sensitive to the order of input data. However, 
our experiment results on randomly ordered mushroom data show 
that LargeItem is more sensitive to data order than CLOPE. 

4.2 Berkeley web logs 
Apart from market basket data, web log data is another typical 
category of transactional databases. We choose the web log files 
from http://www.cs.berkeley.edu/logs/ as the dataset for our 
second experiment and test the scalability as well as performance 
of CLOPE. We use the web logs of November 2001 and 
preprocess it with methods proposed in [3]. There are about 7 
million entries in the raw log file and 2 million of them are kept 
after non-html3 entries removed. Among these 2 million entries, 
there are a total of 93,665 distinct pages. The only available client 
IP field is used for user identification. With a session idle time of 
15 minutes, 613,555 sessions are identified. The average session 
length is 3.34. 

For scalability test, we set the maximum number of clusters to 100 
and run CLOPE (r=1.0, 1.5, 2.0) and LargeItem (θ =0.2, 0.6, and 1, 
with w=1) on 10%, 50% and 100% of the sessions respectively. 
The average per-iteration running time is shown in Figure 7. 
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Figure 7. The running time of CLOPE and LargeItem on the 

Berkeley web log data. 

From Figure 7, we can see that the execution time of both CLOPE 
and LargeItem are linear to the database size. For non-integer 
repulsion values, CLOPE runs slower for the float point 

                                                           
3 Those non-directory requests having extensions other than 
“.[s]htm[l]”. 

computational overhead. All these results reach the maximum 
number of clusters allowed, except CLOPE with r=1, in which 
only 30 clusters were found for the whole session file. That’s the 
reason for a very fast speed of less than 1 minute per iteration for 
the whole dataset. The execution time of LargeItem is roughly 3-5 
times as that of CLOPE, while LargeItem uses about 2 times the 
memory of CLOPE for the cluster feature data. 

To have some impression on the effectiveness of CLOPE on noisy 
data, we run CLOPE on the November session data with r=1.5 and 
a maximum number of 1,000 clusters. The resulting clusters are 
ordered by the number of transactions they contain. Table 1 shows 
the largest cluster (C1000) with 20,089 transactions and other two 
high quality clusters found by CLOPE. These three clusters are 
quite good, but in many of the other clusters, pages from different 
paths are grouped together. Some of these may actually reveal 
some common visiting patterns, while others may due to noises 
inherited in the web log. However, our results of the LargeItem 
algorithm are not very satisfying. 
Table 1. Some clusters of CLOPE on the log data (r=1.5). 

C781: N=554, W=6, S=1083 
        /~lazzaro/sa/book/simple/index.html, occ=426 
        /~lazzaro/sa/index.html, occ=332 
        /~lazzaro/sa, occ=170 
        /~lazzaro/sa/book/index.html, occ=120 
        /~lazzaro/sa/video/index.html, occ=26 
        /~lazzaro/sa/sfman/user/network/index.html, occ=9 
C815: N=619, W=6, S=1172 
        /~russell/aima.html, occ=388 
        /~russell/code/doc/install.html, occ=231 
        /~russell/code/doc/overview.html, occ=184 
        /~russell/code/doc/user.html, occ=158 
        /~russell/intro.html, occ=150 
        /~russell/aima-bib.html, occ=61 
C1000: N=20089, W=2, S=22243 
        /, occ=19517 
        /Students/Classes, occ=2726 

* number after page name is the occurrence in the cluster  

5. RELATED WORK 
There are many works on clustering large databases, e.g. 
CLARANS [12], BIRCH [14], DBSCAN [4], CLIQUE [1]. Most 
of them are designed for low dimensional numerical data, 
exceptions are CLIQUE which finds dense subspaces in higher 
dimensions.  

Recently, many works on clustering large categorical databases 
began to appear. The k-modes [10] approach represents a cluster of 
categorical value with the vector that has the minimal distance to 
all the points. The distance in k-modes is measured by number of 
common categorical attributes shared by two points, with optional 
weights among different attribute values. Han et.al. [8] use 
association rule hypergraph partitioning to cluster items in large 
transactional database. STIRR [6] and CACTUS [5] also model 
categorical clustering as a hypergraph-partitioning problem, but 
these approaches are more suitable for database made up of tuples. 
ROCK [7] uses the number of common neighbors between two 
transactions for similarity measure, but the computational cost is 
heavy, and sampling has to be used when scaling to large dataset.  



The most similar work to CLOPE is LargeItem [13]. However, our 
experiments show that CLOPE is able to find better clusters, even 
at a faster speed. Moreover, CLOPE requires only one parameter, 
repulsion, which gives the user much control over the approximate 
number of the resulting clusters, with little domain knowledge. 
The minimal support θ  and the weight w of LargeItem are more 
difficult to determine. Our sensitivity tests of these two algorithms 
also show that CLOPE is less sensitive than LargeItem to the order 
of the input data. 

Moreover, many works on document clustering are quite related 
with transactional data clustering. In document clustering, each 
document is represented as a weighted vector of words in it. 
Clustering is carried out also by optimizing a certain criterion 
function. However, document clustering tends to assume different 
weights on words with respect to their frequencies. See [15] for 
some common approaches in document clustering. 

Also, there are some similarities between transactional data 
clustering and association analysis [2]. Both of these two popular 
data mining techniques can reveal some interesting properties of 
item co-occurrence and relationship in transactional databases. 
Moreover, current approaches [9] for association analysis needs 
only very few scans of the database. However, there are 
differences. On the one hand, clustering can give a general 
overview property of the data, while association analysis only 
finds the strongest item co-occurrence pattern. On the other hand, 
association rules are actionable directly, while clustering for large 
transactional data is not enough, and are mostly used as 
preprocessing phrase for other data mining tasks like association 
analysis. 

6. CONCLUSION 
In this paper, a novel algorithm for categorical data clustering 
called CLOPE is proposed based on the intuitive idea of increasing 
the height-to-width ratio of the cluster histogram. The idea is 
generalized with a repulsion parameter that controls tightness of 
transactions in a cluster, and thus the resulting number of clusters. 
The simple idea behind CLOPE makes it fast, scalable, and 
memory saving in clustering large, sparse transactional databases 
with high dimensions. Our experiments show that CLOPE is quite 
effective in finding interesting clusterings, even though it doesn’t 
specify explicitly any inter-cluster dissimilarity metric. Moreover, 
CLOPE is not very sensitive to data order, and requires little 
domain knowledge in controlling the number of clusters. These 
features make CLOPE a good clustering as well as preprocessing 
algorithm in mining transactional data like market basket data and 
web usage data. 
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