
COOLCAT: An entropy-based algorithm for categorical clustering �

Daniel Barbar�a Julia Couto Yi Li

George Mason University

Information and Software Engineering Department

Fairfax, VA 22030

Phone: 703-9931627, Fax=703-9931638

{dbarbara,jics,yli1}@gmu.edu

October 1, 2001

Abstract

Clustering of categorical attributes is a di�cult problem that has not received as much at-

tention as its numerical counterpart. In this paper we explore the connection between clustering

and entropy: clusters of similar points have lower entropy than those of dissimilar ones. We use

this connection to design a heuristic algorithm, COOLCAT, which is capable of e�ciently cluster

large data sets of records with categorical attributes. In contrast with other categorical clustering

algorithms published in the past, COOLCAT's clustering results are very stable for di�erent sam-

ple sizes and parameter settings. Also, the criteria for clustering is a very intuitive one, since it is

deeply rooted on the well-known notion of entropy. We demonstrate the e�ciency and scalability

of COOLCAT by a series of experiments on real and synthetic data sets.

1 Introduction

Clustering is a widely used technique in which data points are partitioned into groups, in such a
way that points in the same group, or cluster, are more similar among themselves than to those in
other clusters. Clustering of categorical attributes (i.e., attributes whose domain is not numeric) is
a di�cult, yet important task: many �elds, from statistics to psychology deal with categorical data.
In spite of its importance, the task of categorical clustering has received scant attention in the KDD
community as of late, with only a handful of publications addressing the problem ([15, 12, 10]).

Much of the published algorithms to cluster categorical data rely on the usage of a distance
metric that captures the separation between two vectors of categorical attributes, such as the Jaccard
coe�cient [26]. In this paper, we present COOLCAT (the name comes from the fact that we reduce
the entropy of the clusters, thereby \cooling" them), a novel method which uses the notion of entropy
to group records. We argue that a classical notion such as entropy is a more natural and intuitive
way of relating records, and more importantly does not rely in arbitrary distance metrics.

This paper is set up as follows. Section 2 o�ers the background and relationship between entropy
and clustering, and formulates the problem. Section 3 reviews the related work. Section 4 describes
COOLCAT, our algorithm. Section 5 presents the experimental evidence that demonstrates the
advantages of COOLCAT. Finally, Section 6 presents conclusions and future work.

�This work has been supported by NSF grant IIS-9732113

1

2 Background and problem formulation

In this section, we present the background of entropy and clustering and formulate the problem.

2.1 Entropy and Clustering

Entropy is the measure of information and uncertainty of a random variable [24]. Formally, if X is
a random variable, S(X) the set of values that X can take, and p(x) the probability function of X,
the entropy E(X) is de�ned as shown in Equation 1.

E(X) = �
X

x 2 S(X)

p(x)log(p(x)) (1)

The entropy of a multivariate vector x̂ = fX1; � � � ;Xng can be computed as shown in Equation
2.

E(x̂) = �
X

x1 2 S(X1)

� � �
X

xn 2 S(Xn)

p(x1; � � � ; xn)logp(x1; � � � ; xn) (2)

Entropy is sometimes referred to as a measure of the amount of "disorder" in a system. A room
with socks strewn all over the
oor has more entropy than a room in which socks are paired up,
neatly folded, and placed in one side of your sock and underwear drawer.

2.2 Problem formulation

The problem we are trying to solve can be formulated as follows. Given a data set D of N
points p̂1; � � � ; p̂N , where each point is a multidimensional vector of d categorical attributes, i.e.,
p̂j = (p1j ; � � � ; p

d
j), and given an integer k, we would like to separate the points into k groups

C1; � � � ; Ck, or clusters, in such a way that we minimize the entropy of the whole arrangement. Un-
fortunately, this problem is NP-Complete, and moreover, di�cult to approximate [11]. In fact, the
problem is NP-Complete for any distance function d(x; y), de�ned over pairs of points x; y, such
that the function maps pairs of points to real numbers (and hence, our entropic function quali�es),
therefore we need to resort to heuristics to solve it.

We �rst have to resolve the issue of what we mean by the \whole entropy of the system." In
other words, we have to make our objective function clear. We aim to minimize the expected entropy,
whose expression is shown in Equation 3, where E(P (C1)); � � � ; E(P (Ck)), represent the entropies of
each cluster, P (Ci) denotes the points assigned to cluster Ci, P (Ci) � D, with the property that
P (Ci) \ P (Cj) = ;, for all i; j = 1; ::; k i 6= j. The symbol �C = fC1; � � � ; Ckg represents the
clustering.

�E(�C) =
X

k

(
jP (Ck)j

jDj
(E(P (Ck)))) (3)

This function, as we will see later, allows us to implement an incremental algorithm that can
e�ectively deal with large datasets, since we do not need to look at the entire set of points to decide
about the entropy of an arrangement. Rather, we will be able to decide for each point, how it would
a�ect the entropy of each of the existing clusters if placed in each one of them.

The solution we propose in this paper (and present in Section 4) is a heuristic based in �nding
a set of initial clusters (using the entropic criteria), and then incrementally (greedily) add points to
the clusters according to a criteria that minimizes Equation 3.

2

Cluster
#

Clustering 1 Clustering 2 Clustering 3

members E members E Members E

Cluster0 f"red"; "heavy"g 1.0 f"red"; "heavy"g 2:0 f"red"; heavy"g 0
f"red"; "medium"g f"blue"; "light"g

Cluster1 f"blue"; "light"g 0 f"red"; "medium"g 0 f"red"; "medium"g 2:0
f"blue"; "light"g

Exp.E 0:66 1:33 1:33

Figure 1: Three di�erent clusterings for the set v1; v2; v3. Clustering 1 minimizes the expected
entropy of the two clusters.

Furthermore, we make a simpli�cation in the computation of entropy of a set of records. We
assume independence of the attributes of the record, transforming Equation 2 into Equation 4. In
other words, the joint probability of the combined attribute values becomes the product of the
probabilities of each attribute, and hence the entropy can be calculated as the sum of entropies of
the attributes.

E(x̂) = �
X

x1 2 S(X1)

� � �
X

xn 2 S(Xn)

(p(x1) � � � p(xn))log(p(x1) � � � p(xn))

= E(X1) +E(X2) + � � � +E(Xn) (4)

Assume that we have a set of three records, v1; v2 as before, and v3 = f"red"; "medium"g,
and we want to form two clusters with them. Figure 1 shows all the possible arrangements, with
the entropy of each cluster, and the expected entropy in each arrangement. As we can see, the
minimum expected entropy is that of arrangement 1, which obviously is the correct way of clustering
the records (using two clusters).

However, in the cases we can demonstrate that there is a correlation between two or more
attributes of the data set, we will change the data points by creating attributes that re
ect these
correlations and then apply Equation 4 to compute the join entropy. For instance, if the data set
is composed of records of attributes A;B;C;D;E; F and we know that A;B, A;C and E;F are
correlated. we will convert the data set into one having records with attributes AB;AC;D;EF
and compute the entropy assuming that these new attributes are independent. Notice that for the
grouped attributes, we are in e�ect computing their joint probabilities.

2.3 Entropy and the similarity coe�cients

As we shall prove shortly, as a measure of the similarity between two vectors, the use of entropy
is equivalent to that of other widely-used similarity coe�cients [26]. Similarity coe�cients are best
explained by the 2x2 association table shown in Figure 2, where 1 refers to the presence of a variable
and 0 to its absence.

The simple matching coe�cient (SM) is de�ned as shown in Equation 5. Notice that this coe�-
cient takes into account the joint absence of a variable (as indicated by d in the table).

SM =
(a+ d)

(a+ b+ c+ d)
(5)

3

1 0
1 a b
0 c d

Figure 2: Association table: 1 refers to the presence of a variable, and 0 to its absence.

The Jaccard (J) coe�cient is shown in Equation 6. It avoids the use of joint absences of a variable
in the calculation of similarity.

J =
a

(a+ b+ c)
(6)

Lemma 1 For any vectors p; q; u; v in a data set, SM(fp; qg) = SM(fu; vg) i� E(fp; qg) =
E(fu; vg).

Proof: Throughout the proof, we will use SM(fp; qg = a1 + d1
a1 + b1 + c1 + d1

and SM(fu; vg) =

a2 + d2
a2 + b2 + c2 + d2

where a1; b1; c1; d1 are the entries of the association table of p; q, and a2; b2; c2; d2

those for the association table of u; v. Notice that since the vectors are drawn from the same data
set, they all have the same number of attributes, therefore, a1 + b1 + c1 + d1 = a2 + b2 + c2 + d2.
We shall proceed with the proof of the two implications.

Part a) If SM(fp; qg) = SM(fu; vg), then E(fp; qg) = E(fu; vg):
Since SM(fp; qg) = SM(fu; vg) = k, then a1 + d1 = k(a1 + b1 + c1 + d1) and a2 + d2 =

k(a2+b2+c2+d2). Also, since a1+b1+c1+d1 = a2+b2+c2+d2, it follows that a1+d1 = a2+d2,
and b1 + c1 = b2 + c2. Now, since for matching attributes, the entropy contribution will be 0,
and for non-matching attributes, the entropy contribution will be (21

2
log(1

2
)), then it follows that

E(fp; qg) = (b1 + c1)log(
1

2
) = (b2 + c2)log(

1

2
) = E(fu; vg).

Part b) If E(fp; qg) = E(fu; vg), then SM(fp; qg) = SM(fu; vg): Since for any pair of vectors,
the matching attributes will not contribute to the total entropy, while the non-matching attributes
will contribute log(1

2
) (i.e., an equal amount per attribute), then E(fp; qg) = E(fu; vg) implies that

b1+ c1 = b2+ c2. Now, since a1+ b1+ c1+d1 = a2+ b2+ c2+d2, it follows that a1+d1 = a2+d2
proving the implication.�

Lemma 2 For any vectors p; q; u; v in a data set, SM(fp; qg) > SM(fu; vg) i� E(fp; qg) <
E(fu; vg).

Proof: Part a) If SM(fp; qg) > SM(fu; vg) then E(fp; qg) < E(fu; vg).
Since the �rst coe�cient is larger than the second, it means that more attribute values agree for

the two vectors (a1 + d1 > a2 + d2). This, obviously reduces the entropy of the pair, since agreeing
values contribute with 0 to the �nal entropy count.

Part b) If E(fp; qg) < E(fu; vg), then SM(fp; qg) > SM(fu; vg).
Since the entropy of the �rst pair is less than that of the second, it means that less attributes in

the vectors disagree (since those contribute with the value log(1
2
)), i.e., b1 + c1 < b2 + c2. Therefore,

the coe�cient will be larger (more values agree). �

Lemma 3 For any vectors p; q; u; v in a data set, SM(fp; qg) < SM(fu; vg) i� E(fp; qg) >
E(fu; vg).

Proof: Similar to Lemma 2. �

Theorem 1 Given two similarity matrices built over the same data set, one using SM and the

4

1 0
1 1 1
0 1 0

Figure 3: Association table for vectors v1 = 1; 1; 0 and v3 = 1; 0; 1.

other entropy, if we order the �rst matrix in descending order of entries, and the second in ascending

order, the relative ordering of the pairs of points is the same in both cases.

Proof: By Lemmas 1, 2 and 3. �

As a consequence of Theorem 1, in any algorithm that uses the SM coe�cient as a similarity
measure, we could also use entropy as well, obtaining identical results. For instance, ROCK [15]
(which we shall review in Section 3) uses an \extended" similarity measure in which the coe�cient
is computed as the number of attributes that agree divided by the total number of attribute val-
ues, calling this coe�cient the Jaccard coe�cient. (For instance, in the example shown in Section
2.2, the coe�cient J(fv1; v2g) = 0, since no values are the same in v1 = < red; heavy > and
v2 = < blue; light >; but J(fv1; v3g) = 1

3
, since one value out of three is the same in the pair

v1 = < red; heavy >, v3 = f"red"; "medium"g.) In fact, it is easy to see that if we convert
the "red", "heavy", and "medium" values into binary variables, the vectors become v1 = 1; 1; 0
and v3 = 1; 0; 1, and the association table for v1; v3 is the one shown in Figure 3. Then the SM
coe�cient can be easily computed as 1

3
. The Jaccard coe�cient in this case would also be the same,

as d = 0. This fact is true for every case in which we convert the values into binary variables since
we will never have a column in which the two binary values are 0. So, it is easy to see that Theorem
1 will always apply when the Jaccard coe�cient is applied to nominal attributes by converting the
values to binary variables, since then the Jaccard coe�cient and the SM coe�cient would be equal.

Our algorithm, COOLCAT, however, uses the fact that entropy, unlike the SM or Jaccard coef-
�cients, can serve as a measure of similarity among any set of vectors (not just two).

2.4 Expected entropy and the Minimum Description Length principle

The Minimum Description Length principle (MDL) [22, 23] recommends choosing the model that
minimizes the number of bits needed to encode it. This principle is widely used to compare classi�ers
(see [20]) but it has not been used much to deal with clustering. (An idea of how to do this by encoding
the clusters centers is sketched in [28]).

An optimal encoding for a set of clusters can be realized by assigning codes to each attribute of
the data based on the probability that the attribute appears on the cluster, using a Ho�man code.
This encoding will have length

P
i P (Ai = Vij)logP (Ai = Vij) for each cluster Ck. So, it can be

minimized by minimizing the expected value of that function. But, this is precisely the function we
have selected to minimize: the expected entropy of the clustering. So, our technique aims to �nd
the clustering that follows the MDL principle. This has important implications: the fact that the
encoding of the clusters is minimal implies that we can expect very concise representations of the
clusters we have found at any given point. This in turn makes possible the incremental processing
of further data points without having to keep all the previous data points in memory, but just the
concise representation of the clusters they form.

5

f1; 2; 3g f1; 2; 4g f1; 2; 5g f1; 3; 4g f1; 3; 5g f1; 4; 5g f2; 3; 4g
f2; 3; 5g f2; 4; 5g f3; 4; 5g f1; 2; 6g f1; 2; 7g f1; 6; 7g f2; 6; 7g

Figure 4: A market basket data set

Solution

Cluster1 f1; 2; 3g f1; 2; 4g f1; 2; 5g f1; 3; 4g f1; 3; 5g
f1; 4; 5g f2; 3; 4g f2; 3; 5g f2; 4; 5g f3; 4; 5g

Cluster2 f1; 2; 6g f1; 2; 7g f1; 6; 7g f2; 6; 7g

Figure 5: The clustering solution obtained by ROCK and by expected entropy for the data of Figure
4

2.5 Evaluating clustering results

This section illustrates the di�culties in evaluating the results of clustering algorithms. A frequent
problem one encounters when applying clustering algorithms in practice is the di�culty in evaluating
the solutions. Di�erent clustering algorithms (and sometimes multiple applications of the same
algorithm using slight variations of initial conditions or parameters) result in very di�erent solutions,
all of them looking plausible. This stems from the fact that there is no unifying criteria to de�ne
clusters, and more often than not, the �nal clusters found by the algorithm are in fact the ones that
correspond to the criteria used to drive the algorithm.

To illustrate this point, let us consider the following example, taken from [15], a paper that
describes ROCK, a categorical clustering algorithm by Guha, Rastogi and Shim. Figure 4 shows
a series of transactions that represent \market baskets" of products acquired by clients in a shop.
(Each product represented by an integer.) The problem is to cluster these baskets into two clusters.
Figure 5 shows both the solution obtained by ROCK 1 and also by �nding the minimum expected
entropy (both solutions are identical).

How do we know this is a good solution? Authors have pondered about good ways to validate
clusters found by algorithms (e.g., see [17, 1, 6]). Two widely used methods are the following:

� Signi�cance Test on External Variables This technique calls for the usage of signi�cance tests
that compare the clusters on variables not used to generate them. One way of doing this is to
compute the entropy of the solution using a variable that did not participate in the clustering.
(A class attribute.) The entropy of an attribute C in a cluster Ck is computed as shown in
Equation 7, where Vi denotes one of the possible values that C can take. The evaluation is
performed by computing the expected entropy (taken into consideration the cluster sizes).

E(Ck) =
X

i

P (C = Vi)logP (C = Vi) (7)

� The category utility function The category utility (CU) function [13] attempts to maximize
both the probability that two objects in the same cluster have attribute values in common and

1ROCK, as we shall explain in Section 3, uses a combination of a Jaccard coe�cient [26] and computation of common
neighbors among points to drive the clustering algorithm.

6

the probability that objects from di�erent clusters have di�erent attributes. The expression to
calculate the expected value of the CU function is shown in Equation 8.

�CU =
X

k

kCkk

jDj

X

i

X

j

[P (Ai = Vij=Ck)
2 � P (Ai = Vij)

2] (8)

We have used both techniques in validating our results, as shall be seen in the experimental
section.

3 Related Work

Clustering is an extensively researched area not only by data mining and database researchers [21,
8, 29, 9, 14, 15, 2], but also by people in other disciplines [7, 26]. Most of the e�orts, however, have
been focused in clustering of numerical data records.

Among the numerical clustering algorithms, ENCLUS [4] uses entropy as a criteria to drive the
algorithm. However, ENCLUS follows a completely di�erent algorithm to our approach. ENCLUS
divides the hyperspace recursively, considering an additional dimension in each iteration. For each
subspace, ENCLUS estimates its density and entropy and determines if it satis�es the goodness
criteria: its entropy has to be lower than a threshold. The authors of ENCLUS prove the relationship
of their entropic measure with the de�nition of density. However, it is not possible to translate either
the algorithm or the relationships to the area of categorical clustering, since the notion of density
has no intuitive meaning when the attributes are categorical. The density estimation necessitates
of a de�nition of hypervolume of the subspace, which without setting an arbitrary distance between
two values of a categorical attribute (e.g., blue and red) is impossible to calculate.

In the area of clustering categorical records, a few recent publications are worth mentioning. In
[16], the authors address the problem of clustering transactions in a market basket database. To do
so, each frequent itemset is represented as a hyperedge in a weighted hypergraph. The weight of
the graph is computed as the average of the con�dences for all possible association rules that can be
generated from the itemset. Then, a hypergraph partitioning algorithm is employed to partition the
items, minimizing the weight of the cut hyperedges. The results is a clustering of items. However,
the algorithm does not produce a clustering of the transactions and it is not obvious how to obtain
one from the item clusters. A related paper by Gibson et al [12] also treats categorical clustering as
hypergraph partitioning, but uses a less combinatorial approach to solving it, based on non-linear
dynamical systems.

CACTUS [10], is an agglomerative algorithm that uses the author's de�nitions of support, strong
connection and similarity to cluster categorical data. Support for an attribute value pair (ai; aj),
where ai is in the domain of attribute Ai and aj in the domain of attribute Aj is de�ned as the
number of tuples that have these two values. The two attributes ai; aj are strongly connected if
their support exceeds the value expected under the attribute-independence. This concept is then
extended to sets of attributes. A cluster is de�ned as a region of attributes that are pairwise strongly
connected, no sub-region has the property, and its support exceeds the expected support under the
attribute-independence assumption. Similarity is used to connect attribute values (a1; a2) of the
same attribute Ai, and it measures how many \neighboring" values x belonging to other attributes
exist, such that a1; x and a2; x have positive support. Using support and similarity, CACTUS de�nes
inter-attribute and intra-attribute summaries which tell us how related values from di�erent and the
same attribute are respectively. CACTUS uses these summaries to compute the so-called cluster
projections on individual attributes and use these projections to obtain candidate clusters on a pair

7

of attributes, extending then to three and more attributes. CACTUS, obviously, bases its clustering
decisions on the \neighboring" concept of similarity, similar to the algorithms described in [16, 12].

Hierarchical agglomerative methods (e.g., [27, 19, 18]), cluster points by iteratively merging
clusters (at the start every point is a cluster by itself). For instance, the single linkage method [27]
begins searching for the two most similar points in a similarity matrix and puts them in the same
cluster. Then it searches for the most similar point to those in the cluster, making this point part
of the cluster. At every step, the algorithm looks for points to join into existing clusters (or among
themselves). The problem with agglomerative methods is that they do not scale, since they require
the calculation and storage of potentially large similarity matrices. They also lack stability when the
data is re-shu�ed in the similarity matrix.

ROCK [15] computes distances between records using the Jaccard coe�cient (rede�ned as shown
in Section 2.3). Using a threshold, it determines, for each record, who are its neighbors. For a given
point p, a point q is a neighbor of p if the Jaccard coe�cient J(p; q) exceeds the threshold. Then, it
computes the values of a matrix LINK, in which the entries link(p; q) are the number of common
neighbors between p and q. The algorithm then proceeds to cluster the records in an agglomerative
way, trying to maximize for the k clusters (k is a prede�ned integer) the function

Pk
i=1 ni

P
p;q2Ci

,
where � is the threshold, and f(�) is a function selected by the user. The ROCK solution o�ered in
Figure 5 for the data of Figure 4 was found using � = 0:5 and f(�) = 1��

1+�
. The choice of f(�) is

critical in de�ning the �tness of the clusters formed the the ROCK algorithm, and, as the authors
point out, the function is dependent on the data set as well as on the kind of cluster the user is
interested in. We feel that choosing the function is a delicate and di�cult task for users that may
be a roadblock to using ROCK e�ciently. In contrast, our algorithm o�ers a unique, well-de�ned
cluster �tness criteria, that is based on a solid and well understood property: entropy.

4 Our algorithm

Our entropy-based algorithm, COOLCAT, consists of two steps: initialization and incremental step.

4.1 Initialization

The initialization step \bootstraps" the algorithm, �nding a suitable set of clusters out of a sample
S, taken from the data set (jsj << N), where N is the size of the entire data set. We �rst �nd the
k most \dissimilar" records from the sample set by maximizing the minimum pairwise entropy of the
chosen points. We start by �nding the two points ps1 ; ps2 that maximize E(ps1 ; ps2) and placing
them in two separate clusters (C1; C2), marking the records (this takes O(jSj2)). From there, we
proceed incrementally, i.e., to �nd the record we will put in the j-th cluster, we choose an unmarked
point psj that maximizes mini=1;::;j�1(E(psi ; psj)).

The rest of the sample unmarked points (jSj � k), as well as the remaining points (outside the
sample), are placed in the clusters using the incremental step.

4.2 Incremental Step

After the initialization, we process the remaining records of the data set (the rest of the sample and
points outside the sample) incrementally, �nding a suitable cluster for each record. This is done by
computing the expected entropy that results of placing the point in each of the clusters and selecting
the cluster for which that expected entropy is the minimum. We proceed in the incremental step by
bringing a bu�er of points to main memory and clustering them one by one. The �rst batch of points
is composed by those records in the sample that were not selected to seed the clusters initially.

8

1.Given an initial set of clusters �C = C1; � � � ; Ck

2.Bring points to memory from disk and for each point p do
3. For i = 1; ::; k

4. Place p in Ci and compute �E(�Ci)

where �Ci denotes the clustering obtained by placing p in cluster Ci

5. Let j = argmini(�E(�Ci))
7. Place p in Cj

8. Until all points have been placed in some cluster

Figure 6: Incremental step.

The order of processing points has a de�nite impact on the quality of the clusters obtained. It is
possible that a point that seem a good �t for a cluster at a given point in time, becomes a poor �t as
more points are clustered. In order to reduce this e�ect, we enhanced the heuristic by re-processing
a fraction of the points in the batch. After a batch of points is clustered, we select a fraction m of
points in the batch that can be considered the worst �t for the clusters they were put in. We proceed
to remove these points from their clusters and re-cluster them. The way we �gure out how good a �t
a point is for the cluster where it landed originally, is by keeping track of the number of occurrences
of each of its attributes' values in that cluster. That is, at the end of the batch, we know the values of
qij, for each record i in the batch and each attribute j, where qij represent the number of times that
the value Vij appears in the cluster where i was placed. We convert these numbers into probabilities
by dividing qij by the cluster size (i.e., kClk, where Cl is the cluster where i was placed). Let us call
these numbers pij. For each record, we can compute a �tting probability pi =

Q
j(pij . Notice that

the lower the pi is, the worst �t the record is in that cluster (we can say that the global combination
of attributes is not very common in the cluster). We then sort records according to pi and select
the m records in the batch with lowest pi as the records to be reprocessed. Each re-processed record
is placed in the cluster that minimizes the expected entropy (as done originally in the incremental
step).

5 Experimental Results

We conducted a series of experiments to evaluate COOLCAT. The experiments were run in a DELL
server equipped with a Pentium III running at 800 MHz, and 1 Gigabyte of main memory, running
Red Hat Linux 2.2.14. We used two kinds of data sets: real data sets (for evaluating the quality of
our algorithm) and synthetic data sets (for the evaluation of scalability).

5.1 Real data sets

We used the following data sets

� Archaeological data set

Our �rst data set is a hypothetical collection of human tombs and artifacts from an archae-
ological site. The data set is taken from [1] and reproduced in Figure 7. The �rst attribute

9

Tomb # Sex A1 A2 A3 A4 A5 A6 A7 A8

0 M 1 0 0 1 0 0 0 0

1 M 0 0 0 1 0 0 0 0

2 M 1 0 0 1 0 0 1 1

3 F 1 0 1 0 0 0 0 0

4 F 0 0 1 0 0 0 1 0

5 F 1 0 1 0 0 0 1 0

6 M 1 1 0 1 0 0 0 0

7 M 0 1 0 1 1 0 0 0

8 M 1 0 0 1 1 0 0 0

9 M 1 1 0 1 1 0 0 0

10 M 1 1 0 1 1 0 1 1

11 F 0 0 0 0 1 0 0 0

12 F 1 0 0 0 1 0 0 0

13 F 1 0 0 0 1 0 1 0

14 M 1 1 0 1 1 0 0 0

15 F 0 0 0 0 0 1 0 0

16 F 1 0 0 0 0 1 0 0

17 F 0 0 0 0 1 1 0 0

18 F 1 0 0 0 0 0 0 0

19 F 1 0 0 0 1 1 1 1

Figure 7: Archaeological data set.

(not used for clustering but for veri�cation) indicates the sex (M for male, F for female) of
the individuals buried. The other eight attributes are binary (1 present, 0 non-present), and
represent artifacts types (e.g., ceramics, bracelets, arrow points) that were found (or not found)
in the tomb. Although this is not a real data set, it is realistic and we selected it because it
provides us with a small enough set to verify and analyze our results.

� Congressional votes This data set was obtained from the UCI Machine Learning Repository
([3]) and contains the United States Congressional Voting Records for the year 1984. Each
record contains a Congressman's votes on 16 issues. All the attributes are boolean ("yes" or
"no"), with a few of the votes containing missing values. We decided to treat missing values
as another domain value for the attribute. A classi�cation �eld with the labels "Democrat,"
or "Republican" is provided for each record, which are not used for clustering, but can be
loosely used for quality measuring. (Some congressmen \crossed" parties to vote.) There are
435 records in the set (267 Democrats and 168 Republicans).

� Mushroom data set The mushroom data set was also obtained from the UCI Repository ([3]).
Each record describes the physical characteristics (e.g., odor, shape) of a single mushroom.
There is a "poisonous," or "edible" �eld for each mushroom (which is not used for clustering).
All of the attributes are categorical and the set contains 8,124 records in all (4,208 edible
mushrooms and 3,916 poisonous ones).

5.2 Archaeological Data

Figure 8 show the results of using COOLCAT in the data set of Figure 7. We performed experiments
with two di�erent number of clusters, i.e., 3, and 6. We conducted experiments with the original
data set (which we label \independent"), and a modi�ed data set in which we grouped attributes
in the following way: (1); (24); (26); (34); (35); (46); (78), to re
ect the correlations found among the
attributes of the set. Moreover, for 3 clusters, we also conducted \brute force" experiments, in which
we found the optimum clustering, i.e., that for which the expected entropy was the minimum. We
did this to compare how well our heuristic (COOLCAT) performed. We also report in the table the
best results found by ROCK (which have to be found by varying the parameter � over a range of
values). The results shown in Figure 8 show that the expected entropy function does a good job in

10

Number of clusters = 3

Entropy-based Independent �CU Entropy
(Sex)

COOLCAT 1.062121 0.846717
Brute Force 1.211111 0.000000

Entropy-based Correlated �CU Entropy
(Sex)

COOLCAT 1.211111 0.000000
Brute Force 1.121111 0.000000

Rock � = 0:75 0.722917 0.800000

Number of clusters = 6

Entropy-based Independent COOLCAT 2.008333 0.000000

Entropy-based Correlated COOLCAT 1.990000 0.000000

Rock � = 0:75 1.998333 0.000000

Figure 8: Results for the Archaeological data set

Expected entropy COOLCAT, 3 clusters, m brute force
0% 10% (2) 20% (4) 40% (8)

Independent 4.2984 4.2964 4.3146 4.2790 3.9557

Correlated 4.4494 4.4410 4.4219 4.3930 4.2365

Figure 9: Expected entropy of the solutions on the Archaeological data as m varies.

clustering this data. In all cases, both the �CU function and the external entropy of the brute force
case (optimum) are better than those found for the best ROCK solution. Particularly encouraging is
the fact that the external entropy for the variable SEX (which the authors of the data set indicated
as the one being more correlated with the clusters), is 0, so a perfect separation is achieved. On
the other hand, COOLCAT (our heuristic) results are very similar to the optimum ones, and better
than those obtained by ROCK. In the case of 6 clusters (where we simply could not run the brute
force approach), COOLCAT obtained an external entropy (with respect to SEX) of 0 in both the
correlated and independent cases. COOLCAT's results shown in Figure 8 are obtained without
re-processing of points.

Figure 9 shows how the expected entropy of the solution found by COOLCAT decreases as the
percentage of points re-processed per batch increases. Since this is a small set, the batch consists
of all the records (20), and the number of reprocessed points was 2,4, and 8 (m = 10%; 20%; 40%).
The results indicate that after a certain percentage, the bene�t in re-processing points is small. In
the worst case re-processing 20% of the points (for the independent data set) resulted in an expected
entropy 9% worse than the optimum solution (4.3146 vs. 3.9557). The results reported on Figure 9
correspond to the means of 500 runs (each run follows a di�erent order of processing of the records).
Both COOLCAT and ROCK took 0.01 seconds to �nd a solution for this data set.

11

Metric COOLCAT, m ROCK
0% 10% (10) 20% (20) 40% (40)

�CU 2.928649 2.905248 2.932904 2.924817 2.628234

Entropy (political a�liation) 0.501475 0.525497 0.487478 0.506039 0.499362

Expected entropy 13.9632 13.9585 13.9283 13.9079 -

Running times(sec.) 0.16 0.26 0.28 0.29 0.51

Figure 10: Results for COOLCAT and ROCK in the Congressional Voting data set

Metric COOLCAT, m ROCK
0% 10% (20) 20% (40) 40% (80)

�CU 7.089928 7.110608 7.090686 7.125781 6.882149

Entropy (edible) 0.023374 0.030934 0.023575 0.03177 0.012389

Expected entropy 9.8744 9.8551 9.9241 10.0216 -

Running times(sec.) 2.91 4.16 4.51 5.90 254.91

Figure 11: Results for COOLCAT and ROCK in the Mushroom data set

5.3 Congressional Voting results

Figure 10 summarizes the results obtained by COOLCAT in the Congressional Voting records (no
grouping of attributes was performed), for four values of m. The results obtained for various sample
sizes are extremely stable. The �CU values for the clusterings obtained with COOLCAT are, in all
the cases superior to the one obtained by ROCK. (The values show small
uctuations on our results
as m changes, while all the values are at least 10% better than ROCK's value.) The external entropy
values of all the solutions (COOLCAT's and ROCK's) are comparable, and small enough to indicate
a good separation into Democrats and Republicans by the clusterings found. The expected entropy
of the solution found by COOLCAT as m varies is reported in the table of Figure 10, showing, as
expected, a decrease in entropy as m increases. The bu�er size (batch) in this experiment was 100
records, making the number of re-processed points 10,20, and 40 (m = 10%; 20%; 40%). The trend
stabilizes quickly, indicating that a small amount of re-processing is su�cient. (Again, these numbers
correspond to the means of 500 runs.)

5.4 Mushroom results

Figure 11 shows the results of using COOLCAT in the Mushroom data set for di�erent values of
m (percentage of reprocessed points per batch). No grouping of attributes was performed. We also
tried samples of various sizes with equal results. Again, the �CU values for all the solutions found
by COOLCAT are larger than the one for the ROCK solution. The external entropy values found
in all cases are comparable and very small, indicating a good separation of edible and non-edible
mushrooms in the clusters. The running times are reported in the table: those for COOLCAT are a
fraction (at most 2.3%) of the running time of ROCK. (The reported values for the expected entropy
as m increases are again means of 500 runs.) The bu�er size in this case was 200 records, so the
number of re-processed points was 20, 40, and 80.

12

5.5 Synthetic data set

We used a synthetic data generator ([5]) to generate data sets with di�erent number of records and
attributes. We used these data sets to test the scalability of COOLCAT. The results are shown
in the graph of Figure 12, where the y-axis shows the execution time of COOLCAT in seconds,
and the x-axis the number of records (in multiples of 103), for four di�erent number of attributes
(A = 5; 10; 20; 40). In all the cases, COOLCAT behaves linearly with respect to the number of
records, due to the incremental nature of the algorithm (it processes each record in the data set at
most twice: those that are selected for re-processing are clustered twice, the rest only once; moreover,
points are brought from disk to memory only once). We used for these experiments an m equal to
20%, and a bu�er size of 300 records. Notice that in this experiment, we do not report running times
for ROCK. The reason for this is that ROCK is designed to be a main memory algorithm. In [15],
the authors make it explicit that ROCK deals with large data sets by using random sampling (not
by looking at the entire set). Therefore, it would have been unfair to compare COOLCAT's running
times with those of ROCK (over samples of the sets).

6 Conclusions

In this paper we have introduced a new categorical clustering algorithm, COOLCAT, based in the
notion of entropy. The algorithm groups points in the data set trying to minimize the expected
entropy of the clusters. The experimental evaluation supports our claim that COOLCAT is an
e�cient algorithm, whose solutions are stable for di�erent samples (and sample sizes) and it is scalable
for large data sets (since it incrementally adds points to the initial clusters). We have evaluated our
results using category utility function, and the external entropy which determines if the clusters have
signi�cance with respect to external variables (i.e., variables not used in the clustering process). In
our comparisons with ROCK, COOLCAT always shows a small advantage in terms of the quality
measures (CU and external entropy). However, the real advantage of COOLCAT resides in the fact
that ROCK is extremely di�cult to tune (�nding the right �), while COOLCAT's behavior to its
only parameter (m) is extremely stable: small values of m are su�cient to obtain a good result.
In the largest data set for which we compared both techniques (Mushrooms), COOLCAT had a
signi�cantly better running time.

In the future, we plan to use COOLCAT in applications related to document (WEB) clustering
and bioinformatics.

7 Acknowledgments

We like to thank Vipin Kumar and Eui-Hong (Sam) Han for lending us their implementation of
ROCK.

References

[1] M.S. Aldenderfer and R.K. Blash�eld. Cluster Analysis. Sage Publications, (Sage University
Paper series on Quantitative Applications in the Social Sciences, No. 44), 1984.

[2] D. Barbar�a and P. Chen. Using the fractal dimension to cluster datasets. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston,

MA, August 2000.

13

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ex
ec

ut
io

n
tim

e

Number of records x 1000

A = 5
A = 10
A = 20
A = 40

Figure 12: COOLCAT's performance for the synthetic data sets: response time (in

seconds) vs. the number of records in the data set (in multiples of 103), for di�erent

number of attributes (A = 10; 20; 40).

[3] C. Blake(Librarian). UCI Machine Learning Repository.
http://www.ics.uci.edu/ mlearn/MLRepository.

[4] C. CHen, A.W. Fu, and Y. Zhang. Entropy-based Subspace Clustering for Mining Numerical
Data. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, San Diego, CA, August 1999.

[5] DataGen. Data Generator: Perfect data for an imperfect world.
http://www.datasetgenerator.com/.

[6] S. Dolnicar, F. Leisch, A. Weingessel, C. Buchta, and E. Dimitriadou. A comparison of several
cluster algorithms on arti�cial binary data scenarios from travel market segmentation. Working
Paper 7, SFB 'Adaptive Information Systems and Modeling in Economics and Management
Science', http://www.wu-wien.ac.at/am, April 1998.

[7] R.O. Duda and P.E. Hard. Pattern Classi�cation and Scene Analysis. Wiley-Interscience, New
York, 1973.

[8] M. Ester, H.P. Kriegel, and X. Wu. A database interface for clustering in large spatial databases.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining, Mon-

treal, Canada, August 1995.

[9] M. Ester, H.P. Kriegel, and X. Wu. A density-based algorithm for discovering clusters in
large spatial database with noise. In Proceedings of the International Conference on Knowledge

Discovery and Data Mining, Portland, Oregon, August 1996.

[10] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS-Clustering Categorical Data Using Sum-
maries. In Proceedings of the ACM-SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Diego, CA, 1999.

14

[11] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, 1979.

[12] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering Categorical Data: An Approach Based
on Dynamical Systems. In Proceedings of the International Conference on Very Large Databases

(VLDB), New York, NY, September 1998.

[13] A. Gluck and J. Corter. Information, uncertainty, and the utility of categories. In Proceedings

of the Seventh Annual Conference of the Cognitive Science Society, 1985.

[14] S. Guha, R. Rastogi, and K. Shim. CURE: A clustering algorithm for large databases. In
Proceedings of the ACM SIGMOD Conference on Management of Data, Seattle, WA, May 1998.

[15] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust Clustering Algorithm for Categorical
Attributes. In Proceedings of the 15th International Conference on Data Engineering, Sydney,

Australia, April 1999.

[16] E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on association rule
hypergraphs. In Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and

Knowledge Discovery, June 1997.

[17] A.K. Jain and R.C. Dubes. Algorithms for clustering data. Prentice Hall, 1988.

[18] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley & Sons, New York, 1990.

[19] L.L. McQuitty. Hierarchical linkage analysis for the isolation of types. Ed. Phychol. Measure-

ment, 20:56{67, 1960.

[20] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[21] R.T. Ng and J. Han. E�cient and e�ective clustering methods for spatial data mining. In
Proceedings of the VLDB Conference, Montreal, Canada, 1997.

[22] J. Rissanen. A universal prior for integers and estimation by minimum description length. The
Annals of Statistics, 1983.

[23] J. Rissanen. Stochastic complexity in statistical inquiry. World Scienti�c Pub., 1989.

[24] C.E. Shannon. A mathematical theory of communication. Bell System Techical Journal, pages
379{423, 1948.

[25] D. Slaven. The page of entropy. http://www.svsu.edu/ slaven/Entropy.html.

[26] P. Sneath and R. Sokal. Numerical Taxonomy. W. H. Freeman, San Francisco, 1973.

[27] P.H.A. Sneath. Some thoughts on bacterial classi�cations. Journal of General Microbiology,
17:201{226, 1957.

[28] I.H. Witten and E. Frank. Data Mining. Morgan Kaufmann, 2000.

[29] R. Zhang, R. Ramakrishnan, and M.Livny. Birch: An e�cient data clustering method for
very large databases. In Proceedingfs of the ACM SIGMOD Conference on Data Management,

Montreal, Canada, June 1996.

15

