
CLOPE: A Fast and Effective Clustering Algorithm for
Transactional Data

Yiling Yang Xudong Guan Jinyuan You
Dept. of Computer Science & Engineering., Shanghai Jiao Tong University

Shanghai, 200030, P.R.China
+86-21-52581638

{yang-yl, guan-xd, you-jy}@cs.sjtu.edu.cn

ABSTRACT
This paper studies the problem of categorical data clustering,
especially for transactional data characterized by high
dimensionality and large volume. Starting from a heuristic method
of increasing the height-to-width ratio of the cluster histogram, we
develop a novel algorithm – CLOPE, which is very fast and
scalable, while being quite effective. We demonstrate the
performance of our algorithm on two real world datasets, and
compare CLOPE with the state-of-art algorithms.

Keywords
data mining, clustering, categorical data, scalability

1. INTRODUCTION
Clustering is an important data mining technique that groups
together similar data records [12, 14, 4, 1]. Recently, more
attention has been put on clustering categorical data [10, 8, 6, 5, 7,
13], where records are made up of non-numerical attributes.
Transactional data, like market basket data and web usage data,
can be thought of a special type of categorical data having boolean
value, with all the possible items as attributes. Fast and accurate
clustering of transactional data has many potential applications in
retail industry, e-commerce intelligence, etc.

However, fast and effective clustering of transactional databases is
extremely difficult because of the high dimensionality, sparsity,
and huge volumes often characterizing these databases. Distance-
based approaches like k-means [11] and CLARANS [12] are
effective for low dimensional numerical data. Their performances
on high dimensional categorical data, however, are often
unsatisfactory [7]. Hierarchical clustering methods like ROCK [7]
have been demonstrated to be quite effective in categorical data
clustering, but they are naturally inefficient in processing large
databases.

The LargeItem [13] algorithm groups large categorical databases
by iterative optimization of a global criterion function. The
criterion function is based on the notion of large item that is the
item in a cluster having occurrence rates larger than a user-defined
parameter minimum support. Computing the global criterion
function is much faster than those local criterion functions defined
on top of pair-wise similarities. This global approach makes
LargeItem very suitable for clustering large categorical databases.

In this paper, we propose a novel global criterion function that
tries to increase the intra-cluster overlapping of transaction items
by increasing the height-to-width ratio of the cluster histogram.
Moreover, we generalize the idea by introducing a parameter to
control the tightness of the cluster. Different number of clusters
can be obtained by varying this parameter. Experiments show that
our algorithm runs much faster than LargeItem, with clustering
quality quite close to that of the ROCK algorithm [7].

To gain some basic idea behind our algorithm, let’s take a small
market basket database with 5 transactions {(apple, banana},
(apple, banana, cake), (apple, cake, dish), (dish, egg), (dish, egg,
fish)}. For simplicity, transaction (apple, banana) is abbreviated to
ab, etc. For this small database, we want to compare the following
two clustering (1) {{ab, abc, acd}, {de, def}} and (2) {{ab, abc},
{acd, de, def}}. For each cluster, we count the occurrence of every
distinct item, and then obtain the height (H) and width (W) of the
cluster. For example, cluster {ab, abc, acd} has the occurrences of
a:3, b:2, c:2, and d:1, with H=2.0 and W=4. Figure 1 shows these
results geometrically as histograms, with items sorted in reverse
order of their occurrences, only for the sake of easier visual
interpretation.

Figure 1. Histograms of the two clusterings.

ca b c fd e a

{ab, abc} {acd, de, def}

a b c d d e f

{ab, abc, acd} {de, def}

clustering (2)clustering (1)

H=1.67, W=3H=2.0, W=4 H=1.67, W=3 H=1.6, W=5

We judge the qualities of these two clusterings geometrically, by
analyzing the heights and widths of the clusters. Leaving out the
two identical histograms for cluster {de, def} and cluster {ab, abc},
the other two histograms are of different quality. The histogram
for cluster {ab, abc, acd} has only 4 distinct items for 8 blocks
(H=2.0, H/W=0.5), but the one for cluster {acd, de, def} has 5, for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGKDD ’02, July 23-26, 2002, Edmonton, Alberta, Canada.
Copyright 2002 ACM 1-58113-567-X/02/0007…$5.00.

the same number of blocks (H=1.6, H/W=0.32). Clearly,
clustering (1) is better since we prefer more overlapping among
transactions in the same cluster.

From the above example, we can see that a larger height-to-width
ratio of the histogram means better intra-cluster similarity. We
apply this straightforward intuition as the basis of our clustering
algorithm and define the global criterion function using the
geometric properties of the cluster histograms. We call this new
algorithm CLOPE - Clustering with sLOPE. While being quite
effective, CLOPE is very fast and scalable when clustering large
transactional databases with high dimensions, such as market-
basket data and web server logs.

The rest of the paper is organized as follows. Section 2 analyzes
the categorical clustering problem more formally and presents our
criterion function. Section 3 details the CLOPE algorithm and its
implementation issues. In Section 4, experiment results of CLOPE
and LargeItem on real life datasets are compared. After some
discussion of related works in Section 5, Section 6 concludes the
paper.

2. CLUSTERING WITH SLOPE
Notations Throughout this paper, we use the following
notations. A transactional database D is a set of transactions {t1, ...,
tn}. Each transaction is a set of items {i1, ..., im}. A clustering
{C1, ... Ck} is a partition of {t1, ..., tn}, that is, C1 ∪ … ∪ Ck =
{t1, ..., tn} and Ci ≠ φ ∧ Ci ∩ Cj = φ for any 1 ≤ i, j ≤ k. Each Ci is
called a cluster. Unless otherwise stated, n, m, k are used
respectively for the number of transactions, the number of items,
and the number of clusters.

A good clustering should group together similar transactions. Most
clustering algorithms define some criterion functions and optimize
them, maximizing the intra-cluster similarity and the inter-cluster
dissimilarity. The criterion function can be defined locally or
globally. In the local way, the criterion function is built on the
pair-wise similarity between transactions. This has been widely
used for numerical data clustering, using pair-wise similarities like
the Lp ((Σ|xi-yi|p)1/p) metric between two points. Common similarity
measures for categorical data are the Jaccard coefficient (|t1∩t2| /
|t1∪ t2|), the Dice coefficient (2×|t1∩t2| / (|t1|+|t2|)), or simply the
number of common items between two transactions [10]. However,
for large databases, the computational costs of these local
approaches are heavy, compared with the global approaches.

Pioneered by Wang et.al. in their LargeItem algorithm [13], global
similarity measures can also be used in categorical data clustering.
In global approaches, no pair-wise similarity measures between
individual transactions are required. Clustering quality is measured
in the cluster level, utilizing information like the sets of large and
small items in the clustering. Since the computations of these
global metrics are much faster than that of pair-wise similarities,
global approaches are very efficient for the clustering of large
categorical databases.

Compared with LargeItem, CLOPE uses a much simpler but
effective global metric for transactional data clustering. A better
clustering is reflected graphically as a higher height-to-width ratio.

Given a cluster C, we can find all the distinct items in the cluster,
with their respective occurrences, that is, the number of
transactions containing that item. We write D(C) the set of distinct
items, and Occ(i, C) the occurrence of item i in cluster C. We can

then draw the histogram of a cluster C, with items as the X-axis,
decreasingly ordered by their occurrences, and occurrence as the
Y-axis. We define the size S(C) and width W(C) of a cluster C
below:

∑∑
∈∈

==
Ct

i
CDi i

tCiOccCS
)(

),()(

)()(CDCW =

The height of a cluster is defined as H(C)=S(C)/W(C). We will
simply write S, W, and H for S(C), W(C), and H(C) when C is not
important or can be inferred from context.

To illustrate, we detailed the histogram of the last cluster in Figure
1 below. Please note that, geometrically in Figure 2, the histogram
and the dashed rectangle with height H and width W have the same
size S.

Figure 2. The detailed histogram of cluster {acd, de, def}.

H=1.6
c fd e a

3
2
1
0

S=8

W=5

occurrence

item

It's straightforward that a larger height means a heavier overlap
among the items in the cluster, and thus more similarity among the
transactions in the cluster. In our running example, the height of
{ab, abc, acd} is 2, and the height of {acd, de, def} is 1.6. We
know that clustering (1) is better, since all the other characteristics
of the two clusterings are the same.

However, to define our criterion function, height alone is not
enough. Take a very simple database {abc, def}. There is no
overlap in the two transactions, but the clustering {{abc, def}} and
the clustering {{abc}, {def}} have the same height 1. Another
choice works better for this example. We can use gradient G(C) =
H(C) / W(C)= S(C) / W(C)2 instead of H(C) as the quality measure
for cluster C. Now, the clustering {{abc}, {def}} is better, since
the gradients of the two clusters in it are all 1/3, larger than 1/6, the
gradient of cluster {abc, def}.

To define the criterion function of a clustering, we need to take
into account the shape of every cluster as well as the number of
transactions in it. For a clustering C = {C1, ..., Ck},we use the
following as a straightforward definition of the criterion function.

∑

∑

∑

∑

=

=

=

=

×
=

×
= k

i
i

k

i
i

i

i

k

i
i

k

i
ii

C

C
CW
CS

C

CCG
Profit

1

1
2

1

1)(
)()(

)(C

In fact, the criterion function can be generalized using a parametric
power r instead of 2 as follows.

∑

∑

=

=

×
= k

i
i

k

i
ir

i

i

r

C

C
CW
CS

Profit

1

1)(
)(

)(C

Here, r is a positive1 real number called repulsion, used to control
the level of intra-cluster similarity. When r is large, transactions
within the same cluster must share a large portion of common
items. Otherwise, separating these transactions into different
clusters will result in a larger profit. For example, compare the two
clustering for database {abc, abcd, bcde,cde}: (1) {{abc, abcd,
bcde, cde}} and (2) {{abc, abcd}, {bcde, cde}}. In order to
achieve a larger profit for clustering (2), the profit for clustering

(2),
4

2
4
72

4
7 ×+× rr

, must be greater than that of (1),
4

4
5
14 ×r

.

This means that a repulsion greater than ln(14/7)/ln(5/4) ≈ 3.106
must be used.

On the contrary, small repulsion can be used to group sparse
databases. Transactions sharing few common items may be put in
the same cluster. For the database {abc, cde, fgh, hij}, a higher
profit of clustering {{abc, cde}, {fgh, hij}} than that of {{abc},
{cde}, {fgh}, {hij}} needs a repulsion smaller than ln(6/3)/ln(5/3)
≈ 1.357.

Now we state our problem of clustering transactional data below.

Problem definition Given D and r, find a clustering C that
maximize Profitr(C).

Figure 3. The sketch of the CLOPE algorithm.

 /* Phrase 1 - Initialization */
1: while not end of the database file
2: read the next transaction 〈t, unknown〉;
3: put t in an existing cluster or a new cluster Ci
 that maximize profit;
4: write 〈t, i〉 back to database;

/* Phrase 2 - Iteration */
5: repeat
6: rewind the database file;
7: moved = false;
8: while not end of the database file
9: read 〈t, i〉;
10: move t to an existing cluster or new cluster Cj

 that maximize profit;
11: if Ci ≠ Cj then
12: write 〈t, j〉;
13: moved = true;
14:until not moved;

3. IMPLEMENTATION
Like most partition-based clustering approaches, we approximate
the best solution by iterative scanning of the database. However, as
our criterion function is defined globally, only with easily
computable metrics like size and width, the execution speed is
much faster than the local ones.

Our implementation requires a first scan of the database to build
the initial clustering, driven by the criterion function Profitr . After

1 In most of the cases, r should be greater than 1. Otherwise, two
transactions sharing no common item can be put in the same
cluster.

that, a few more scans are required to refine the clustering and
optimize the criterion function. If no changes to the clustering are
made in a previous scan, the algorithm will stop, with the final
clustering as the output. The output is simply an integer label for
every transaction, indicating the cluster id that the transaction
belongs to. The sketch of the algorithm is shown in Figure 3.

RAM data structure In the limited RAM space, we keeps only
the current transaction and a small amount of information for each
cluster. The information, called cluster features 2 , includes the
number of transactions N, the number of distinct items (or width)
W, a hash of 〈item, occurrence〉 pairs occ, and a pre-computed
integer S for fast access of the size of cluster. We write C.occ[i] for
the occurrence of item i in cluster C, etc.

Remark In fact, CLOPE is quite memory saving, even array
representation of the occurrence data is practical for most
transactional databases. The total memory required for item
occurrences is approximately M×K×4 bytes using array of 4-byte
integers, where M is the number of dimensions, and K the number
of clusters. Databases with up to 10k distinct items with a
clustering of 1k clusters can be fit into a 40M RAM.

The computation of profit It is easy to update the cluster
feature data when adding or removing a transaction. The
computation of profit through cluster features is also
straightforward, using S, W, and N of every cluster. The most time-
sensitive parts in the algorithm (statement 3 and 10 in Figure 3.)
are the comparison of different profits of adding a transaction to all
the clusters (including an empty one). Although computing the
profit requires summing up values from all the clusters, we can use
the value change of the current cluster being tested to achieve the
same but much faster judgement.

Figure 4. Computing the delta value of adding t to C.

1: int DeltaAdd(C, t, r) {
2: S_new = C.S + t.ItemCount;
3: W_new = C.W;
4: for (i = 0; i < t.ItemCount; i++)
5: if (C.occ[t.items[i]] == 0) ++W_new;
6: return S_new*(C.N+1)/(W_new)r-C.S*C.N /(C.W)r;
7: }

We use the function DeltaAdd(C, t, r) in Figure 4 to compute the

change of value rWC
NCSC

).(
.. × after adding transaction t to cluster C.

The following theorem guarantees the correctness of our
implementation.

Theorem If DeltaAdd(Ci, t) is the maximum, then putting t to Ci
will maximize Profitr.

Proof: Observing the profit function, we find that the profits of
putting t to different clusters only differ in the numerator part of
the formula. Assume that the numerator of the clustering profit
before adding t is X. Subtracting the constant X from these new
numerators, we get exactly the values returned by the DeltaAdd
function.

Time and space complexity From Figure 4, we know that the
time complexity of DeltaAdd is O(t.ItemCount). Suppose the

2 Named after BIRCH [14].

average length of a transaction is A, the total number of
transactions is N, and the maximum number of clusters is K, the
time complexity for one iteration is O(N × K × A), indicating that
the execution speed of CLOPE is affected linearly by the number
of clusters, and the I/O cost is linear to the database size. Since
only one transaction is kept in memory at any time, the space
requirement for CLOPE is approximately the memory size of the
cluster features. It is linear to the number of dimensions M times
the maximum number of clusters K. For most transactional
databases, it is not a heavy requirement.

4. EXPERIMENTS
In this section, we analyze the effectiveness and execution speed
of CLOPE with two real-life datasets. For effectiveness, we
compare the clustering quality of CLOPE on a labeled dataset
(mushroom from the UCI data mining repository) with those of
LargeItem [13] and ROCK [7]. For execution speed, we compare
CLOPE with LargeItem on a large web log dataset. All the
experiments in this Section are carried out on a PIII 450M Linux
machine with 128M memory.

4.1 Mushroom
The mushroom dataset from the UCI machine learning repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html) has been
used by both ROCK and LargeItem for effectiveness tests. It
contains 8,124 records with two classes, 4,208 edible mushrooms
and 3,916 poisonous mushrooms. By treating the value of each
attributes as items of transactions, we converted all the 22
categorical attributes to transactions with 116 distinct items
(distinct attribute values). 2480 missing values for the stalk-root
attribute are ignored in the transactions.

4000

5000

6000

7000

8000

9000

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
repulsion

pu
rit

y

0
20
40
60
80
100
120
140

no
. c

lu
st

er
s

purity no.clusters

Figure 5. The result of CLOPE on mushroom.

We try different repulsion value from 0.5 to 4, with a step of 0.1.
A few of the results are shown in Figure 5.

To make a general impression of the clustering quality, we use two
metrics in the chart. The purity metric is computed by summing up
the larger one of the number of edibles and the number of
poisonous in every cluster. It has a maximum of 8124, the total
number of transactions. The number of clusters should be as few
as possible, since a clustering with each transaction as a cluster
will surely achieve a maximum purity.

When r=2.6, the number of clusters is 27, and there is only one
clusters with mixed records: 32 poisonous and 48 edibles
(purity=8092). When r reaches 3.1, there are 30 clusters with
perfect classification (purity=8124). Most of these results require

at most 3 scans of the database. The number of transactions in
these clusters varies, from 1 to 1726 when r=2.6.

The above results are quite close to results presented in the ROCK
paper [7], where the only result given is 21 clusters with only one
impure cluster with 72 poisonous and 32 edibles (purity=8092), by
a support of 0.8. Consider the quadratic time and space complexity
of ROCK, the results of CLOPE are quite appealing.

The results of LargeItem presented in [13] on the mushroom
dataset were derived hierarchically by recursive clustering of
impure clusters, and are not comparable directly. We try our
LargeItem implementation to get the direct result. The criterion
function of LargeItem is defined as [13]:

Costθ ,w (C) = w × Intra + Inter

Here θ is the minimum support in percentage for an item to be
large in a cluster. Intra is number of distinct small (non-large)
items among all clusters, and Inter the number of overlapping
large items, which equals to the total number of large items minus
the distinct number of large items, among all clusters. A weight w
is introduced to control the different importance of Intra and Inter.
The LargeItem algorithm tries to minimize the cost during the
iterations. In our experiment, when a default w=1 was used, no
good clustering was found with different θ from 0.1 to 1.0 (Figure
6(a)). After analyzing the results, we found that there was always a
maximum value for Intra, for all the results. We increased w to
make a larger Intra more expensive. When w reached 10, we found
pure results with 58 clusters at support 1. The result of w=10 is
shown in Figure 6(b).

4000

5000

6000

7000

8000

9000

0.1 0.3 0.5 0.7 0.9
minimum support

pu
rit

y

0
20
40
60
80
100
120
140

no
. c

lu
st

er
s

purity no.clusters

(a) weight for Intra = 1

4000

5000

6000

7000

8000

9000

0.1 0.3 0.5 0.7 0.9
minimum support

pu
rit

y

0
20
40
60
80
100
120
140

no
. c

lu
st

er
s

purity no.clusters

(b) weight for Intra=10

Figure 6. The result of LargeItem on mushroom.

Our experiment results on the mushroom dataset show that with
very simple intuition and linear complexity, CLOPE is quite
effective. The result of CLOPE on mushroom is better than that of
LargeItem and close to that of ROCK, which has quadratic
complexity to the number of transactions. The comparison with
LargeItem also shows that the simple idea behind CLOPE works
quite well even without any explicit constraint on inter-cluster
dissimilarity.

Sensitivity to data order We also perform sensitivity test of
CLOPE on the order of input data using mushroom. The result in
Figure 5 and 6 are all derived with the original data order. We test
CLOPE with randomly ordered mushroom data. The results are
different but very close to the original ones, with a best result of
reaching purity=8124 with 28 clusters, at r=2.9, and a worst result
of reaching purity=8124 with 45 clusters, at r=3.9. It shows that
CLOPE is not very sensitive to the order of input data. However,
our experiment results on randomly ordered mushroom data show
that LargeItem is more sensitive to data order than CLOPE.

4.2 Berkeley web logs
Apart from market basket data, web log data is another typical
category of transactional databases. We choose the web log files
from http://www.cs.berkeley.edu/logs/ as the dataset for our
second experiment and test the scalability as well as performance
of CLOPE. We use the web logs of November 2001 and
preprocess it with methods proposed in [3]. There are about 7
million entries in the raw log file and 2 million of them are kept
after non-html3 entries removed. Among these 2 million entries,
there are a total of 93,665 distinct pages. The only available client
IP field is used for user identification. With a session idle time of
15 minutes, 613,555 sessions are identified. The average session
length is 3.34.

For scalability test, we set the maximum number of clusters to 100
and run CLOPE (r=1.0, 1.5, 2.0) and LargeItem (θ =0.2, 0.6, and 1,
with w=1) on 10%, 50% and 100% of the sessions respectively.
The average per-iteration running time is shown in Figure 7.

0

200

400

600

800

1000

10% 50% 100%
percentage of the input data

(total = 613,555 sessions)

ex
ec
ut
io
n
ti
me
 (
se
co
nd
s)

LargeItem
MinSupp=0.2

LargeItem
MinSupp=0.6

LargeItem
MinSupp=1.0

CLOPE r=1.0

CLOPE r=1.5

CLOPE r=2.0

Figure 7. The running time of CLOPE and LargeItem on the

Berkeley web log data.

From Figure 7, we can see that the execution time of both CLOPE
and LargeItem are linear to the database size. For non-integer
repulsion values, CLOPE runs slower for the float point

3 Those non-directory requests having extensions other than
“.[s]htm[l]”.

computational overhead. All these results reach the maximum
number of clusters allowed, except CLOPE with r=1, in which
only 30 clusters were found for the whole session file. That’s the
reason for a very fast speed of less than 1 minute per iteration for
the whole dataset. The execution time of LargeItem is roughly 3-5
times as that of CLOPE, while LargeItem uses about 2 times the
memory of CLOPE for the cluster feature data.

To have some impression on the effectiveness of CLOPE on noisy
data, we run CLOPE on the November session data with r=1.5 and
a maximum number of 1,000 clusters. The resulting clusters are
ordered by the number of transactions they contain. Table 1 shows
the largest cluster (C1000) with 20,089 transactions and other two
high quality clusters found by CLOPE. These three clusters are
quite good, but in many of the other clusters, pages from different
paths are grouped together. Some of these may actually reveal
some common visiting patterns, while others may due to noises
inherited in the web log. However, our results of the LargeItem
algorithm are not very satisfying.
Table 1. Some clusters of CLOPE on the log data (r=1.5).

C781: N=554, W=6, S=1083
 /~lazzaro/sa/book/simple/index.html, occ=426
 /~lazzaro/sa/index.html, occ=332
 /~lazzaro/sa, occ=170
 /~lazzaro/sa/book/index.html, occ=120
 /~lazzaro/sa/video/index.html, occ=26
 /~lazzaro/sa/sfman/user/network/index.html, occ=9
C815: N=619, W=6, S=1172
 /~russell/aima.html, occ=388
 /~russell/code/doc/install.html, occ=231
 /~russell/code/doc/overview.html, occ=184
 /~russell/code/doc/user.html, occ=158
 /~russell/intro.html, occ=150
 /~russell/aima-bib.html, occ=61
C1000: N=20089, W=2, S=22243
 /, occ=19517
 /Students/Classes, occ=2726

* number after page name is the occurrence in the cluster

5. RELATED WORK
There are many works on clustering large databases, e.g.
CLARANS [12], BIRCH [14], DBSCAN [4], CLIQUE [1]. Most
of them are designed for low dimensional numerical data,
exceptions are CLIQUE which finds dense subspaces in higher
dimensions.

Recently, many works on clustering large categorical databases
began to appear. The k-modes [10] approach represents a cluster of
categorical value with the vector that has the minimal distance to
all the points. The distance in k-modes is measured by number of
common categorical attributes shared by two points, with optional
weights among different attribute values. Han et.al. [8] use
association rule hypergraph partitioning to cluster items in large
transactional database. STIRR [6] and CACTUS [5] also model
categorical clustering as a hypergraph-partitioning problem, but
these approaches are more suitable for database made up of tuples.
ROCK [7] uses the number of common neighbors between two
transactions for similarity measure, but the computational cost is
heavy, and sampling has to be used when scaling to large dataset.

The most similar work to CLOPE is LargeItem [13]. However, our
experiments show that CLOPE is able to find better clusters, even
at a faster speed. Moreover, CLOPE requires only one parameter,
repulsion, which gives the user much control over the approximate
number of the resulting clusters, with little domain knowledge.
The minimal support θ and the weight w of LargeItem are more
difficult to determine. Our sensitivity tests of these two algorithms
also show that CLOPE is less sensitive than LargeItem to the order
of the input data.

Moreover, many works on document clustering are quite related
with transactional data clustering. In document clustering, each
document is represented as a weighted vector of words in it.
Clustering is carried out also by optimizing a certain criterion
function. However, document clustering tends to assume different
weights on words with respect to their frequencies. See [15] for
some common approaches in document clustering.

Also, there are some similarities between transactional data
clustering and association analysis [2]. Both of these two popular
data mining techniques can reveal some interesting properties of
item co-occurrence and relationship in transactional databases.
Moreover, current approaches [9] for association analysis needs
only very few scans of the database. However, there are
differences. On the one hand, clustering can give a general
overview property of the data, while association analysis only
finds the strongest item co-occurrence pattern. On the other hand,
association rules are actionable directly, while clustering for large
transactional data is not enough, and are mostly used as
preprocessing phrase for other data mining tasks like association
analysis.

6. CONCLUSION
In this paper, a novel algorithm for categorical data clustering
called CLOPE is proposed based on the intuitive idea of increasing
the height-to-width ratio of the cluster histogram. The idea is
generalized with a repulsion parameter that controls tightness of
transactions in a cluster, and thus the resulting number of clusters.
The simple idea behind CLOPE makes it fast, scalable, and
memory saving in clustering large, sparse transactional databases
with high dimensions. Our experiments show that CLOPE is quite
effective in finding interesting clusterings, even though it doesn’t
specify explicitly any inter-cluster dissimilarity metric. Moreover,
CLOPE is not very sensitive to data order, and requires little
domain knowledge in controlling the number of clusters. These
features make CLOPE a good clustering as well as preprocessing
algorithm in mining transactional data like market basket data and
web usage data.

7. ACKNOWLEDGEMENTS
We are grateful to Rajeev Rastogi, Vipin Kumar for providing us
the ROCK code and the technical report version of [7]. We wish to
thank the providers of the UCI ML Repository and Web log files
of http://www.cs.berkeley.edu/. We also wish to thank the
authors of [13] for their help. Comments from the three
anonymous referees are invaluable for us to prepare the final
version.

8. REFERENCES
[1] Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.

Automatic subspace clustering of high dimensional data for
data mining applications. In Proc. SIGMOD’98, Seattle,
Washington, June 1998.

[2] Agrawal, R., Imielinski, T., and Swami, A. Mining
association rules between sets of items in large databases. In
Proc. SIGMOD’93, Washington, D.C., 1993.

[3] Cooley, R., Mobasher, B., and Srivastava, J. Data preparation
for mining world wide web browsing patterns. Knowledge
and Information Systems, 1(1):5-32, 1999.

[4] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proc. KDD’96, Portland, Oregon,
1996.

[5] Ganti, V., Gehrke, J., and Ramakrishnan, R. CACTUS:
Clustering categorical data using summaries. In Proc.
KDD'99, San Diego, CA, 1999.

[6] Gibson, D., Kleinberg, J., Raghavan, P. Clustering categorical
data: an approach based on dynamical systems. In Proc.
VLDB'98, New York, NY, 1998.

[7] Guha, S., Rastogi, R., and Shim, K. ROCK: A robust
clustering algorithm for categorical attributes. In Proc.
ICDE'99, Sydney, Australia 1999.

[8] Han. E.H., Karypis G., Kumar, V., and Mobashad, B.
Clustering based on association rule hypergraphs. In Proc.
SIGMOD Workshop on Research Issues on Data Mining and
Knowledge Discovery, 1997.

[9] Han, J., Pei, J., and Yin, Y. Mining frequent patterns without
candidate generation. In Proc. SIGMOD '00, Dallas, TX,
2000.

[10] Huang Z. A fast clustering algorithm to cluster very large
categorical data sets in data mining. In Proc. SIGMOD
Workshop on Research Issues on Data Mining and
Knowledge Discovery, 1997.

[11] MacQueen, J.B. Some methods for classification and analysis
of multivariate observations. In Proc. 5th Berkeley
Symposium on Math. Stat. and Prob., 1967.

[12] Ng, R.T., and Han, J.W. Efficient and effective clustering
methods for spatial data mining. In Proc. VLDB'94, Santiago,
Chile, 1994.

[13] Wang, K., Xu, C., and Liu, B. Clustering transactions using
large items. In Proc. CIKM'99, Kansas, Missouri, 1999.

[14] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: An
efficient data clustering method for very large databases. In
Proc SIGMOD’96, Montreal, Canada, 1996.

[15] Zhao, Y. and Karypis, G. Criterion functions for document
clustering: experiments and analysis. Tech. Report #01-40,
Department of Comp. Sci. & Eng., U. Minnesota, 2001.
Avaliable as: http://www-users.itlabs.umn.edu/~karypis/
publications/Papers/Postscript/vscluster.ps

http://www.cs.berkeley.edu/

