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Abstract. We present an approach to explain the decisions of black box
models for image classification. While using the black box to label im-
ages, our explanation method exploits the latent feature space learned
through an adversarial autoencoder. The proposed method first gener-
ates exemplar images in the latent feature space and learns a decision tree
classifier. Then, it selects and decodes exemplars respecting local decision
rules. Finally, it visualizes them in a manner that shows to the user how
the exemplars can be modified to either stay within their class, or to be-
come counter-factuals by “morphing” into another class. Since we focus
on black box decision systems for image classification, the explanation
obtained from the exemplars also provides a saliency map highlighting
the areas of the image that contribute to its classification, and areas of
the image that push it into another class. We present the results of an
experimental evaluation on three datasets and two black box models. Be-
sides providing the most useful and interpretable explanations, we show
that the proposed method outperforms existing explainers in terms of
fidelity, relevance, coherence, and stability.

Keywords: Explainable AI, Adversarial Autoencoder, Image Exemplars.

1 Introduction

Automated decision systems based on machine learning techniques are widely
used for classification, recognition and prediction tasks. These systems try to
capture the relationships between the input instances and the target to be pre-
dicted. Input attributes can be of any type, as long as it is possible to find a
convenient representation for them. For instance, we can represent images by
matrices of pixels, or by a set of features that correspond to specific areas or
patterns of the image. Many automated decision systems are based on very ac-
curate classifiers such as deep neural networks. They are recognized to be “black
box” models because of their opaque, hidden internal structure, whose complex-
ity makes their comprehension for humans very difficult [5]. Thus, there is an
increasing interest in the scientific community in deriving explanations able to
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describe the behavior of a black box [5,22,13,6], or explainable by design ap-
proaches [19,18]. Moreover, the General Data Protection Regulation5 has been
approved in May 2018 by the European Parliament. This law gives to individ-
uals the right to request “...meaningful information of the logic involved” when
automated decision-making takes place with “legal or similarly relevant effects”
on individuals. Without a technology able to explain, in a manner easily under-
standable to a human, how a black box takes its decision, this right will remain
only an utopia, or it will result in prohibiting the use of opaque, but highly
effective machine learning methods in socially sensitive domains.

In this paper, we investigate the problem of black box explanation for im-
age classification (Section 3). Explaining the reasons for a certain decision can
be particularly important. For example, when dealing with medical images for
diagnosing, how we can validate that a very accurate image classifier built to
recognize cancer actually focuses on the malign areas and not on the background
for taking the decisions?

In the literature (Section 2), the problem is addressed by producing explana-
tions through different approaches. On the one hand, gradient and perturbation-
based attribution methods [27,25] reveal saliency maps highlighting the parts of
the image that most contribute to its classification. However, these methods are
model speci�c and can be employed only to explain specific deep neural net-
works. On the other hand, model agnostic approaches can explain, yet through
a saliency map, the outcome of any black box [24,12]. Agnostic methods may
generate a local neighborhood of the instance to explain and mime the behavior
of the black box using an interpretable classifier. However, these methods exhibit
drawbacks that may negatively impact the reliability of the explanations. First,
they do not take into account existing relationships between features (or pixels)
during the neighborhood generation. Second, the neighborhood generation does
not produce “meaningful” images since, e.g., some areas of the image to explain
in [24] are obscured, while in [12] they are replaced with pixels of other im-
ages. Finally, transparent-by-design approaches produce prototypes from which
it should be clear to the user why a certain decision is taken by the model [18,19].
Nevertheless, these approaches cannot be used to explain a trained black box,
but the transparent model has to be directly adopted as a classifier, possibly
with limitations on the accuracy achieved.

We propose abele, an Adversarial Black box Explainer generating Latent
Exemplars (Section 5). abele is a local, model-agnostic explanation method able
to overcome the existing limitations of the local approaches by exploiting the
latent feature space, learned through an adversarial autoencoder [20] (Section 4),
for the neighborhood generation process. Given an image classified by a given
black box model, abele provides an explanation for the reasons of the proposed
classification. The explanation consists of two parts: (i) a set of exemplars and
counter-exemplars images illustrating, respectively, instances classified with the
same label and with a different label than the instance to explain, which may
be visually analyzed to understand the reasons for the classification, and (ii) a

5 https://ec.europa.eu/justice/smedataprotect/
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saliency map highlighting the areas of the image to explain that contribute to
its classification, and areas of the image that push it towards another label.

We present a deep experimentation (Section 6) on three datasets of images
and two black box models. We empirically prove that abele overtakes state of
the art methods based on saliency maps or on prototype selection by providing
relevant, coherent, stable and faithful explanations. Finally, we summarize our
contribution, its limitations, and future research directions (Section 7).

2 Related Work

Research on black box explanation methods has recently received much atten-
tion [5,22,13,6]. These methods can be characterized as model-specific vs model-
agnostic, and local vs global. The proposed explanation method abele is the
next step in the line of research on local, model-agnostic methods originated
with [24] and extended in different directions by [9] and by [11,12,23].

In image classification, typical explanations are the saliency maps, i.e., im-
ages that show each pixel’s positive (or negative) contribution to the black
box outcome. Saliency maps are efficiently built by gradient [27,25,30,1] and
perturbation-based [33,7] attribution methods by finding, through backpropa-
gation and differences on the neuron activation, the pixels of the image that
maximize an approximation of a linear model of the black box classification out-
come. Unfortunately, these approaches are specifically designed for deep neural
networks. They cannot be employed for explaining other image classifiers, like
tree ensembles or hybrid image classification processes [13]. Model-agnostic ex-
plainers, such as lime [24] and similar [12] can be employed to explain the classi-
fication of any image classifier. They are based on the generation of a local neigh-
borhood around the image to explain, and on the training of an interpretable
classifier on this neighborhood. Unlike the global distillation methods [17], they
do not consider (often non-linear) relationships between features (e.g. pixel prox-
imity), and thus, their neighborhoods do not contain “meaningful” images.

Our proposed method abele overcomes the limitations of both saliency-
based and local model-agnostic explainers by using AAEs, local distillation, and
exemplars. As abele includes and extends lore [11], an innovation w.r.t. state
of the art explainers for image classifiers is the usage of counter-factuals. Counter-
factuals are generated from “positive” instances by a minimal perturbation that
pushes them to be classified with a different label [31]. In line with this approach,
abele generates counter-factual rules in the latent feature space and exploits
them to derive counter-exemplars in the original feature space.

As the explanations returned by abele are based on exemplars, we need to
clarify the relationship between exemplars and prototypes. Both are used as a
foundation of representation of a category, or a concept [8]. In the prototype view,
a concept is the representation of a specific instance of this concept. In the ex-
emplar view, the concept is represented by means of a set of typical examples, or
exemplars. abele uses exemplars to represent a concept. In recent works [19,4],
image prototypes are used as the foundation of the concept for interpretabil-
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Fig. 1. Left : Adversarial Autoencoder architecture: the encoder turns the image x into
its latent representation z, the decoder re-builds an approximation ex of x from z, and
the discriminator identifies if a randomly generated latent instance h can be considered
valid or not. Right : Discriminator and Decoder (disde) module: input is a randomly
generated latent instance h and, if it is considered valid by the discriminator , it returns
it together with its decompressed version eh.

ity [2]. In [19], an explainable by design method, similarly to abele, generates
prototypes in the latent feature space learned with an autoencoder. However,
it is not aimed at explaining a trained black box model. In [4] a convolutional
neural network is adopted to provide features from which the prototypes are
selected. abele differs from these approaches because is model agnostic and the
adversarial component ensures the similarity of feature and class distributions.

3 Problem Formulation

In this paper we address the black box outcome explanation problem [13]. Given
a black box model b and an instance x classified by b, i.e., b(x) = y, our aim is
to provide an explanation e for the decision b(x) = y. More formally:

De�nition 1. Let b be a black box, and x an instance whose decision b(x) has
to be explained. The black box outcome explanation problem consists in finding
an explanation e 2 E belonging to a human-interpretable domain E.

We focus on the black box outcome explanation problem for image classifi-
cation, where the instance x is an image mapped by b to a class label y. In the
following, we use the notation b(X) = Y as a shorthand for fb(x) j x 2 Xg = Y .
We denote by b a black box image classifier, whose internals are either unknown
to the observer or they are known but uninterpretable by humans. Examples
are neural networks and ensemble classifiers.We assume that a black box b is a
function that can be queried at will.

We tackle the above problem by deriving an explanation from the understand-
ing of the behavior of the black box in the local neighborhood of the instance to
explain [13]. To overcome the state of the art limitations, we exploit adversarial
autoencoders [20] for generating, encoding and decoding the local neighborhood.



5

4 Adversarial Autoencoders

An important issue arising in the use of synthetic instances generated when de-
veloping black box explanations is the question of maintaining the identity of the
distribution of the examples that are generated with the prior distribution of the
original examples. We approach this issue by using an Adversarial Autoencoder
(AAE) [20], which combines a Generative Adversarial Network (GAN) [10] with
the autoencoder representation learning algorithm. Another reason for the use
of AAE is that, as demonstrated in [29], the use of autoencoders enhances the
robustness of deep neural network classifiers more against malicious examples.

AAEs are probabilistic autoencoders that aim at generating new random
items that are highly similar to the training data. They are regularized by match-
ing the aggregated posterior distribution of the latent representation of the input
data to an arbitrary prior distribution. The AAE architecture (Fig. 1-left) in-
cludes an encoder : Rn!Rk, a decoder : Rk!Rn and a discriminator : Rk![0; 1]
where n is the number of pixels in an image and k is the number of latent fea-
tures. Let x be an instance of the training data, we name z the corresponding
latent data representation obtained by the encoder . We can describe the AAE
with the following distributions [20]: the prior distribution p(z) to be imposed
on z, the data distribution pd(x), the model distribution p(x), and the encoding
and decoding distributions q(zjx) and p(xjz), respectively. The encoding func-
tion q(zjx) defines an aggregated posterior distribution of q(z) on the latent
feature space: q(z)=

R
x
q(zjx)pd(x)dx. The AAE guarantees that the aggregated

posterior distribution q(z) matches the prior distribution p(z), through the la-
tent instances and by minimizing the reconstruction error. The AAE generator
corresponds to the encoder q(zjx) and ensures that the aggregated posterior
distribution can confuse the discriminator in deciding if the latent instance z
comes from the true distribution p(z).

The AAE learning involves two phases: the reconstruction aimed at training
the encoder and decoder to minimize the reconstruction loss; the regularization
aimed at training the discriminator using training data and encoded values.
After the learning, the decoder defines a generative model mapping p(z) to pd(x).

5 Adversarial Black Box Explainer

abele (Adversarial Black box Explainer generating Latent Exemplars) is a local
model agnostic explainer for image classifiers solving the outcome explanation
problem. Given an image x to explain and a black box b, the explanation provided
by abele is composed of (i) a set of exemplars and counter-exemplars, (ii) a
saliency map. Exemplars and counter-exemplars shows instances classified with
the same and with a different outcome than x. They can be visually analyzed to
understand the reasons for the decision. The saliency map highlights the areas
of x that contribute to its classification and areas that push it into another class.

The explanation process involves the following steps. First, abele generates
a neighborhood in the latent feature space exploiting the AAE (Sec. 4). Then, it
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Fig. 2. Latent Local Rules Extractor. It takes as input the image x to explain and
the black box b. With the encoder trained by the AAE, it turns x into its latent
representation z. Then, the neighgen module usesz and b to generate the latent local
neighborhood H . The valid instances are decoded in eH by the disde module. Images in
eH are labeled with the black box Y = b( eH ). H and Y are used to learn a decision tree
classi�er. At last, a decision rule r and the counter-factual rules � for z are returned.

learns a decision tree on that latent neighborhood providing local decision and
counter-factual rules. Finally, abele selects and decodes exemplars and counter-
exemplars satisfying these rules and extracts from them a saliency map.

Encoding. The image x2Rn to be explained is passed as input to the AAE
where the encoder returns the latent representation z 2 Rk using k latent fea-
tures with k � n. The number k is kept low by construction avoiding high di-
mensionality problems.

Neighborhood Generation. abele generates a setH of N instances in the
latent feature space, with characteristics close to those ofz. Since the goal is to
learn a predictor on H able to simulate the local behavior ofb, the neighborhood
includes instances with both decisions, i.e.,H = H= [ H6= where instances
h 2 H= are such that b(eh) = b(x), and h 2 H6= are such that b(eh) 6= b(x). We
name eh 2 Rn the decoded version of an instanceh 2 Rk in the latent feature
space. The neighborhood generation ofH (neighgenmodule in Fig. 2) may be
accomplished using di�erent strategies ranging from pure random strategy using
a given distribution to a genetic approach maximizing a �tness function [11]. In
our experiments we adopt the last strategy. After the generation process, for
any instance h 2 H , abele exploits the disde module (Fig. 1-right) for both
checking the validity of h by querying the discriminator 6 and decoding it into
eh. Then, abele queries the black boxb with eh to get the classy, i.e., b(eh) = y.

Local Classi�er Rule Extraction. Given the local neighborhoodH , abele
builds a decision tree classi�er c trained on the instances H labeled with the
black box decisionb( eH ). Such a predictor is intended to locally mimic the be-
havior of b in the neighborhood H . The decision tree extracts the decision rule
r and counter-factual rules � enabling the generation ofexemplarsand counter-
exemplars. abele considers decision tree classi�ers because:(i) decision rules can
naturally be derived from a root-leaf path in a decision tree; and,(ii) counter-
factual rules can be extracted by symbolic reasoning over a decision tree. The

6 In the experiments we use for the discriminator the default validity threshold 0 :5 to
distinguish between real and fake exemplars. This value can be increased to admit
only more reliable exemplars, or decreased to speed-up the generation process.
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Fig. 3. Left : (Counter-)Exemplar Generator: it takes a decision rule r and a randomly
generated latent instance h, checks if h satis�es r and applies the disde module (Fig.1-
right) to decode it. Right : abele architecture. It takes as input the image x for which
we require an explanation and the black box b. It extracts the decision rule r and
the counter-factual rules � with the llore module. Then, it generates a set of latent
instances H which are used as input with r and � for the eg module (Fig. 3-left) to
generate exemplars and counter-exemplars eH . Finally, x and eH are used by the se
module for calculating the saliency maps and returning the �nal explanation e.

premise p of a decision rule r = p! y is the conjunction of the splitting condi-
tions in the nodes of the path from the root to the leaf that is satis�ed by the
latent representation z of the instance to explain x, and setting y= c(z). For
the counter-factual rules � , abele selects the closest rules in terms of splitting
conditions leading to a label ŷ di�erent from y, i.e., the rules f q! ŷg such that
q is the conjunction of splitting conditions for a path from the root to the leaf
labeling an instance hc with c(hc)= ŷ and minimizing the number of splitting
conditions falsi�ed w.r.t. the premise p of the rule r . Fig. 2 shows the process
that, starting from the image to be explained, leads to the decision tree learning,
and to the extraction of the decision and counter-factual rules. We name this
module llore, as a variant of lore [11] operating in the latent feature space.

Explanation Extraction. Often, e.g. in medical or managerial decision
making, people explain their decisions by pointing to exemplars with the same
(or di�erent) decision outcome [8,4]. We follow this approach and we model the
explanation of an imagex returned by abele as a triple e = heHe; eH c; si com-
posed byexemplars eHe, counter-exemplars eH c and a saliency maps. Exemplars
and counter-exemplars are images representing instances similar tox, leading to
an outcome equal to or di�erent from b(x). Exemplars and counter-exemplars
are generated byabele exploiting the eg module (Fig. 3-left). It �rst generates
a set of latent instancesH satisfying the decision rule r (or a set of counter-
factual rules � ), as shown in Fig. 2. Then, it validates and decodes them into
exemplars eHe (or counter-exemplars eH c) using the disde module. The saliency
map s highlights areas ofx that contribute to its outcome and areas that push
it into another class. The map is obtained by the saliency extractorse module
(Fig. 3-right) that �rst computes the pixel-to-pixel-di�erence between x and each
exemplar in the set eHe, and then, it assigns to each pixel of the saliency maps
the median value of all di�erences calculated for that pixel. Thus, formally for
each pixel i of the saliency maps we have:s[i ] = median8ehe 2 eH e

(x[i ] � ehe[i ]):
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dataset resolution rgb train test RF DNN
mnist 28 � 28 7 60k 10k :9692 :9922

fashion 28 � 28 7 60k 10k :8654 :9207
cifar10 32 � 32 3 50k 10k :4606 :9216

Table 1. Datasets resolution, type of color, train
and test dimensions, and black box model accuracy.

dataset train test
mnist 39:80 43:64

fashion 27:41 30:15
cifar10 20:26 45:12

Table 2. AAEs reconstruc-
tion error in terms of RMSE.

In summary, abele (Fig. 3-right), takes as input the instance to explain x
and a black boxb, and returns an explanation e according to the following steps.
First, it adopts llore [11] to extract the decision rule r and the counterfactual
rules � . These rules, together with a set of latent random instancesH are the
input of the eg module returning exemplarsand counter-exemplars. Lastly, the
semodule extracts thesaliency mapstarting from the image x and its exemplars.

6 Experiments

We experimented with the proposed approach on three open source datasets7

(details in Table 1): the mnist dataset of handwritten digit grayscale images, the
fashion mnist dataset is a collection of Zalando's article grayscale images (e.g.
shirt, shoes, bag, etc.), and thecifar10 dataset of colored images of airplanes,
cars, birds, cats, etc. Each dataset has ten di�erent labels.

We trained and explained away the following black box classi�ers. Random
Forest [3] (RF) as implemented by the scikit-learn Python library, and Deep
Neural Networks (DNN) implemented with the keras library 8. For mnist and
fashion we used a three-layer CNN, while forcifar10 we used theResNet20
v1 network described in [16]. Classi�cation performance are reported in Table 1.

For mnist and fashion we trained AAEs with sequential three-layer encoder,
decoder and discriminator. For cifar10 we adopted a four-layer CNN for the
encoder and the decoder, and a sequential discriminator. We used 80% of the
test sets for training the adversarial autoencoders9. In Table 2 we report the
reconstruction error of the AAE in terms of Root Mean Square Error (RMSE)
between the original and reconstructed images. We employed the remaining 20%
for evaluating the quality of the explanations.

We compareabele against lime and a set of saliency-based explainers col-
lected in the DeepExplain package10: Saliency (sal ) [27], GradInput ( grad ) [25],
IntGrad ( intg ) [30], " -lrp ( elrp ) [1], and Occlusion (occ ) [33]. We refer to the

7 Dataset: http://yann.lecun.com/exdb/mnist/ , https://www.cs.toronto.edu/
~kriz/cifar.html , https://www.kaggle.com/zalando-research/ .

8 Black box: https://scikit-learn.org/ , https://keras.io/examples/ .
9 The encoding distribution of AAE is de�ned as a Gaussian distribution whose mean

and variance is predicted by the encoder itself [20]. We adopted the following number
of latent features k for the various datasets: mnist k=4, fashion k=8, cifar10 k=16.

10 Github code links: https://github.com/riccotti/ABELE , https://github.com/
marcotcr/lime , https://github.com/marcoancona/DeepExplain .
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Fig. 4. Explain by saliency map mnist . Fig. 5. Exemplars & counter-exemplars.

Fig. 6. Explain by saliency map fashion . Fig. 7. Exemplars & counter-exemplars.

set of testedDeepExplain methods asdex . We also compare the exemplars and
counter-exemplars generated byabele against the prototypes and criticisms11

selected by themmd and k-medoids [18]. mmd exploits the maximum mean dis-
crepancy and a kernel function for selecting the best prototypes and criticisms.

Saliency Map, Exemplars and Counter-Exemplars. Before assessing
quantitatively the e�ectiveness of the compared methods, we visually analyze
their outcomes. We report explanations of the DNNs for themnist and fashion
datasets in Fig. 4 and Fig. 6 respectively12. The �rst column contains the image
to explain x together with the label provided by the black box b, while the
second column contains the saliency maps provided byabele . Since they are
derived from the di�erence between the imagex and its exemplars, we indicate
with yellow color the areas that are common betweenx and the exemplars eHe,
with red color the areas contained only in the exemplars and blue color the
areas contained only inx. This means that yellow areas must remain unchanged
to obtain the same label b(x), while red and blue areas can change without
impacting the black box decision. In particular, with respect to x, an image
obtaining the same label can be darker in blue areas and lighter in red areas. In
other words, blue and red areas express the boundaries that can be varied, and
for which the class remains unchanged. For example, with this type of saliency
map we can understand that anine may have a more compact circle, azero may
be more inclined (Fig. 4), acoat may have no space between the sleeves and the

11 Criticisms are images not well-explained by prototypes with a regularized kernel
function [18].

12 Best view in color. Black lines are not part of the explanation, they only highlight
borders. We do not report explanations for cifar10 and for RF for the sake of space.
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Fig. 8. Interpolation from the image to explain x to one of its counter-exemplars ehc .

body, and that a boot may have a higher neck (Fig. 6). Moreover, we can notice
how, besides the background, there are some \essential" yellow areas within the
main �gure that can not be di�erent from x: e.g. the leg of thenine, the crossed
lines of the four, the space between the twotrousers.

The rest of the columns in Fig. 4 and 6 contain the explanations of the
competitors: red areas contribute positively to the black box outcome, blue areas
contribute negatively. For lime 's explanations, nearly all the content of the image
is part of the saliency areas13. In addition, the areas have either completely
positive or completely negative contributions. These aspects can be not very
convincing for a lime user. On the other hand, thedex methods return scattered
red and blue points which can also be very close to each other and are not
clustered into areas. It is not clear how a user could understand the black box
outcome decision process from this kind of explanation.

Since theabele 's explanations also provide exemplars and counter-exemplars,
they can also be visually analyzed by a user for understanding which are possi-
ble similar instances leading to the same outcome or to a di�erent one. For each
instance explained in Fig. 4 and 6, we show three exemplars and two counter-
exemplars for the mnist and fashion datasets in Fig. 5 and 7, respectively.
Observing these images we can notice how the labelnine is assigned to images
very close to a four (Fig. 5, 1st row, 2nd column) but until the upper part of
the circle remains connected, it is still classi�ed as anine. On the other hand,
looking at counter-exemplars, if the upper part of the circle has a hole or the
lower part is not thick enough, then the black box labels them as afour and a
seven, respectively. We highlight similar phenomena for other instances: e.g. a
boot with a neck not well de�ned is labeled as asneaker (Fig. 7).

To gain further insights on the counter-exemplars, inspired by [28], we ex-
ploit the latent representations to visually understand how the black box la-
beling changes w.r.t. real images. In Fig. 8 we show, for some instances pre-
viously analyzed, how they can be changed to move from the original label to
the counter-factual label. We realize this change in the class through the latent
representationsz and hc of the image to explain x and of the counter-exemplar

13 This e�ect is probably due to the �gure segmentation performed by lime .
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Fig. 9. Box plots of �delity . Numbers on top: mean values (the higher the better).

Fig. 10. 1-NN exemplar classi�er accuracy varying the number of (counter-)exemplars.

ehc, respectively. Givenz and hc, we generate through linear interpolation in the
latent feature space intermediate latent representationsz<h ( i )

c <h c respecting
the latent decision or counter-factual rules. Finally, using thedecoder, we obtain
the intermediate images eh( i )

c . This convincing and useful explanation analysis
is achieved thanks toabele 's ability to deal with both real and latent feature
spaces, and to the application of latent rules to real images which are human
understandable and also clear exemplar-based explanations.

Lastly, we observe that prototype selector methods, likemmd [18] and k-
medoids cannot be used for the same type of analysis because they lack any
link with either the black box or the latent space. In fact, they propose as
prototypes (or criticism) existing images of a given dataset. On the other hand,
abele generates and does not select (counter-)exemplars respecting rules.

Interpretable Classi�er Fidelity. We compareabele and lime in terms
of �delity [11,5], i.e., the ability of the local interpretable classi�er c14 of mimick-
ing the behavior of a black boxb in the local neighborhoodH : �delity (H; eH ) =
accuracy(b( eH ); c(H )). We report the �delity as box plots in Fig. 9. The results
show that on all datasetsabele outperforms lime with respect to the RF black
box classi�er. For the DNN the interpretable classi�er of lime is slightly more
faithful. However, for both RF and DNN, abele has a �delity variance markedly
lower than lime , i.e., more compact box plots also without any outlier15. Since
these �delity results are statistically signi�cant, we observe that the local inter-
pretable classi�er of abele is more faithful than the one of lime .

Nearest Exemplar Classi�er. The goal of abele is to provide useful ex-
emplars and counter-exemplars as explanations. However, since we could not val-
idate them with an experiment involving humans, inspired by [18], we tested their
e�ectiveness by adopting memory-based machine learning techniques such as the
k-nearest neighbor classi�er [2] (k-NN). This kind of experiment provides an ob-
jective and indirect evaluation of the quality of exemplars and counter-exemplars.

14 A decision tree for abele and a linear lasso model for lime .
15 These results con�rm the experiments reported in [11].
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