4.5 The master method for solving recurrences

The master method provides a “cookbook™ method for solving recurrences of the
form

T(n)y =aT(n/b) + f(n). (4.20)

where @ > 1 and b > 1 are constants and f(n) is an asymptotically positive
function. To use the master method, you will need to memorize three cases, but

then you will be able to solve many recurrences quite easily, often without pencil
and paper.

|
i
&

94

Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size n into a subproblems, each of size n/b, where a and b are positive
constants. The a subproblems are solved recursively, each in time 7'(n/b). The
function f(n) encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm has ¢ = 7, b = 2, and f(n) = ©(n?).

As a matter of technical correctness, the recurrence is not actually well defined,
because n/b might not be an integer. Replacing each of the a terms T'(n/b) with
either T({n/b]) or T([n/b]) will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)

Leta > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be defined
on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

where we interpret n /b to mean either |n/b| or [n/b]. Then T(n) has the follow-
ing asymptotic bounds:

1. If f(n) = O(n"%9~¢) for some constant € > 0, then T'(n) = O(n'°8»2).
2. If f(n) = ©(n'er9), then T(n) = O(n'e%1gn).

3. If f(n) = Q(n'8»2*€) for some constant € > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O(f(n)). =

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f(n) with the function n'°¢¢. Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function 7'°%5 9 is the
larger, then the solution is T'(n) = ©®(n'°8»9), If, as in case 3, the function f(r)
is the larger, then the solution is 7'(n) = O(f(n)). If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T(n) = O(n"“1gn) = O(f(n)lgn).

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f(n) be smaller than 1'% 2, it must be polynomially smaller.

4.5 The master method for solving recurrences 95

That is, f(n) must be asymptotically smaller than 1'°%» % by a factor of n¢ for some
constant € > 0. In the third case, not only must f(n) be larger than n'°#»2_ it also
must be polynomially larger and in addition satisfy the “regularity” condition that
af(n/b) < cf(n). This condition is satisfied by most of the polynomially bounded
functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f(n). There is
a gap between cases 1 and 2 when f(n) is smaller than 1'% % byt not polynomi-
ally smaller. Similarly, there is a gap between cases 2 and 3 when f(n) is larger
than 1'°8 4 but not polynomially larger. If the function f(n) falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master
method to solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the master
theorem applies and write down the answer.
As a first example, consider

T(n)=9T(n/3)+n.

For this recurrence, we have g = 9,b = 3, f(n) = n, and thus we have that

n'% 4 = plgs® — ©(n?), Since f(n) = O(n'*83°-€), where € = 1, we can apply

case 1 of the master theorem and conclude that the solution is T(n) = O(n?).
Now consider

T(n) =T@n/3) + 1,

inwhicha = 1,b = 3/2, f(n) = 1, and n'#2 = plogs2l — ,0 — 1. Case 2
applies, since f(n) = @(n'22) = ®(1), and thus the solution to the recurrence
is T(n) = O(Ign).

For the recurrence

T(n) =3T(n/4) +nlgn,

wehave a = 3,b = 4, f(n) = nlgn, and n'era — ploes3 — O(n%793).
Since f(n) = Q(n'#+3*¢), where ¢ ~ 0.2, case 3 applies if we can show that
the regularity condition holds for Sf(n). For sufficiently large n, we have that
af(n/b) = 3(n/4)1g(n/4) < (B/4)nlgn = cf(n) forc = 3/4. Consequently,
by case 3, the solution to the recurrence is T(n) = O(nlgn).

The master method does not apply to the recurrence

T(n) =2T(n/2) +nlgn,

even though it appears to have the proper form: g = 2,b =2, f(n) = nlgn,
and n'°%9 = p. You might mistakenly think that case 3 should apply, since

96

Chapter 4 Divide-and-Conquer

f(n) = nlgn is asymptotically larger than n'°8? = n. The problem is that it
is not polynomially larger. The ratio f(n)/n'%% = (nlgn)/n = lgn is asymp-
totically less than n€ for any positive constant €. Consequently, the recurrence falls
into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let’s use the master method to solve the recurrences we saw in Sections 4.1
and 4.2. Recurrence (4.7),

T(n) =2T(n/2) + O(n),

characterizes the running times of the divide-and-conquer algorithm for both the
maximum-subarray problem and merge sort. (As is our practice, we omit stating
the base case in the recurrence.) Here, we have a = 2, b = 2, f(n) = ©O(n), and
thus we have that n'86¢ = pn'°222 = p_ Case 2 applies, since f(n) = ®(n), and so
we have the solution T(n) = ©(nlgn).

Recurrence (4.17),

T(n) = 8T(n/2) + O(n?),

describes the running time of the first divide-and-conquer algorithm that we saw
for matrix multiplication. Now we have @ = 8, b = 2, and f(n) = O(n?),
and so n'r¢ = p'°828 = p3 Since n? is polynomially larger than f(n) (that is,
f(n) = O(n>) for € = 1), case 1 applies, and T'(n) = O(n?).

Finally, consider recurrence (4.18),

T(n) = 7T(n/2) + O(n3),

which describes the running time of Strassen’s algorithm. Here, we have a = 7,
b = 2, f(n) = O(n?), and thus n'°e? = p'®27 Rewriting log, 7 as 1g7 and
recalling that 2.80 < 1g7 < 2.81, we see that f(n) = O(n'®7~°) for e = 0.8.
Again, case 1 applies, and we have the solution 7'(n) = @(n'7).

Exercises

4.5-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.

a. T(n)=2Tn/4 + 1.
b. T(n) =2T(n/4) + /n.
T(n) =2T(n/4) + n.
d. T(n) =2T(n/4) + n%

o

