Design Patterns
Factories
Singleton

Roberta Gori, Laura Semini
Ingegneria del Software
Dipartimento di Informatica
Universita di Pisa

Se interessati: libri suggeriti

A Brain-Friendly Guide
Head First

Design Patterns

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph lohnson
John Vlissides

]
5
=
g
3
z
a
Z
o
Z
3
=
Z
=
b

L RERLY™

Definizione di design pattern?

“Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice”

= -- Christopher Alexander A Pattern Language, 1977

Definizione data da Christopher

Alexander

C. Alexander ha definito i design patterns studiando tecniche per
migliorare il processo di progettazione di edifici e aree urbane

Ogni pattern e una regola in tre parti, che esprime una relazione tra
= Un contesto

= Un problema

= Una soluzione

DEF: “una soluzione a un problema in un contesto”

| pattern possono essere applicati a diverse aree, compreso lo
sviluppo software

In che fase si applicano

analysis v

design v

implementation v

Architetural
Detailed

maintenance

e coding

® unit testing
e integration
e system
testing

GoF Design Patterns

Sono 23 design pattern suddivisi in base al loro scopo

Creazionali:

= propongono soluzioni per creare oggetti

Comportamentali:

= propongono soluzioni per gestire il modo in cui vengono
suddivise le responsabilita delle classi e degli oggetti

Strutturali:

= propongono soluzioni per la composizione strutturale di classi e
oggetti

Pattern creazionali: le factories

Factory: a class whose sole job is to easily create and return
instances of other classes
Creational patterns abstract the object instantiation process.

= They hide how objects are created and help make the overall system
independent of how its objects are created and composed.

= They make it easier to construct complex objects instead of calling a
constructor, use a method in a "factory" class to set up the object saves lines
and complexity to quickly construct / initialize objects

examples in Java:

= borders (BorderFactory),

= key strokes (KeyStroke),

= network connections (SocketFactory)

The Problem With “"New”

Each time we invoke the "new” command to
create a new object, we violate the "Code to an
Interface” design principle

Example

= List list = new ArrayList()

Even though our variable’s type is set to an
“interface”, in this case “List ”, the class that
contains this statement depends on “ArrayList”

In addition

if you have code that checks a few variables and instantiates a
particular type of class based on the state of those variables, then
the containing class depends on each referenced concrete class
if (condition) { return new ArrayList(); }
else { return new LinkedList();}

Obvious Problems: needs to be recompiled if classes change
= add new classes = change this code
= remove existing classes = change this code

This means that this code violates the open-closed and the
information hiding design principles

una Factory e un Pure Fabrication

In generale una Factory e un Pure Fabrication con

I'obiettivo di:

= Confinare la responsabilita di creazioni complesse in
oggetti coesi

= Incapsulare la complessita della logica di creazione

Vedremo 3 tipi di pattern Factories

Simple Factory (detto anche Concrete Factory)
= non e un pattern GoF
= & una semplificazione molto diffusa di AF

Abstract Factory (AF)

Factory Method (FM)

Cosa sono | Pure Fabrication

Problem:

= Not to violate High Cohesion and Low Coupling
Solution:

= Assign a highly cohesive set of responsibilities to an
artificial class that does not represent anything in the
problem domain, in order to support high cohesion,
low coupling, and reuse.

Pure Fabrication: discussion

The design of objects can be roughly partitioned to two groups
= Those chosen by representational decomposition

= Those chosen by behavioral decomposition

The latter group does not represent anything in the problem
domain, they are simply made up for the convenience of the
designer, thus the name pure fabrication.

The classes are designed to group together related behavior

A pure fabrication object is a kind of functioncentric (or
behavioral) object

13 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Simple Factory (aka concrete factory)

Problema

= Chideve essere responsabile di creare gli oggetti
quando la logica di creazione € complessa e si vuole
separare la logica di creazione dalle altre funzionalita
di un oggetto?

Soluzione

= La delega a un oggetto (Pure Fabrication) chiamato
Factory che gestisce la creazione

Simple(st) Factory: structure

Facory___ [ciemt |
1 — T CreateProductA()
CreateProductB() ‘ AbstractProductA }.7

A

I
I
|
I ProductA1
|
|
I

i
...new ProductA1
' | AbstractProducts fa———

A

ProductB1

Another simple Factory: structure

Fi Client
actory . |'

[— T CreateProductA()
CreateProductB() [AbstractProducta Ja——————

[proauanzl [pvodmm}

i -

_..new ProductA1
.... else new ProductA2
3

[AbstractProduct8 %—

{ Products2| | Productst |

Example: Consider a pizza store that

makes different types of pizzas

public class PizzaStore {

Pizza orderPizza(String type){

Pizza pizza;
If (type == CHEESE) . .

pizza = new CheesePizza(); This becomes unwieldy
else if (type == PEPPERONI) as we add to our menu

pizza = new PepperoniPizza();
else if (type == PESTO)

pizza = new PestoPizza();
pizza.prepare();
pizza.bake(); This part stays the same
pizza.package();
pizza.deliver();
return pizza

}

}
Idea: pull out the creation code and put it into an object that only
deals with creating pizzas - the PizzaFactory

Example3: Pizza

Simple solution: just a factory

public class PizzaStore { public class SimplePizzaFactory {
private SimplePizzaFactory factory;
public PizzaStore(SimplePizzaFactory factory) public Pizza createPizza(String type) {
{ if (type.equals("cheese")) {
this.factory =factory; return new CheesePizza();
}else if (type.equals("greek")) §

public Pizza orderPizza(String type) { return new GreekPizza();

Pizza pizza = factory.createPizza(type); }else if (type.equals("pepperoni")) §

pizza.prepare(); return new PepperoniPizza();
pizza.bake();
pizza.cut();
pizza.box();
return pizza;

}

}

Replace concrete instantiation with call to the PizzaFactory to create a new pizza
Now we don’t need to mess with this code if we add new pizzas

18 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Class Diagram of New Solution

; i factory [SimpiePizzaFactory
Client gli;ig;Plzza()_ createPizzal(): Pizza
Factory
Plzza
prepare()
Products |bake(
cut()
box” |
CheesePlzza VegglePlzza PepperoniPlzza

While this is nice, its not as flexible as it can be: to increase flexibility we
need to look at two design patterns: Factory Method and Abstract Factory

GoF Factory Patterns

Class creational patterns focus on the use of
inheritance to decide the object to be instantiated

= Factory Method

Object creational patterns focus on the delegation of
the instantiation to another object

= Abstract Factory

The Factory Method Pattern

Creator

Product =

FactoryMethody)
. 1=)
AnOperation() o ?rnduc. FactoryMethod()

~ Operates on products

produced by the Factory
method

ConcrsteProduct [---------—1 ConcreleCreator

FactoryMethod(} O-F------1 return new ConcreteProduct

In the official definition:
Factory method lets the subclasses decide which class to instantiate
Decide: --not because the classes themselves decide at runtime
-- but because the creator is written withount knowlwdge of the actual products
that will be created, which is decided by the choice of the subclass that is usd

Example3: Pizza

Simple Factory to Factory Method

To demonstrate the factory method pattern, the pizza store
example evolves

= toinclude the notion of different franchises

= that exist in different parts of the country (California, New York, Chicago)
Each franchise will need its own factory to create pizzas that
match the proclivities of the locals

= However, we want to retain the preparation process that has made
PizzaStore such a great success

The Factory Method Design Pattern allows you to do this by

= placing abstract, “code to an interface” code in a superclass

= placing object creation code in a subclass

= PizzaStore becomes an abstract class with an abstract createPizza() method
We then create subclasses that override createPizza() for each
region

Example3: Pizza: Factory Method

public abstract class PizzaStore {
protected abstract createPizza(String type);
public Pizza orderPizza(String type) {
Pizza pizza = createPizza(type);

public class NYPizzaStore extends PizzaStore {
pizza.prepare();

public Pizza createPizza(String type) {

pizza bake(); if (type.equals("cheese")) {
pizza.cut(); return new NYCheesePizza();
pizza.box();

} else if (type.equals("greek")) {

T

rewrn pizza; /™S return new NYGreekPizza();

} / /§ (V } else if (type.equals("pepperoni")) {
77/
4 S return new NYPepperoniPizza();

O =9 / .
F/8F $/
AN/ /YA

return null;

f—

23

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Abstract Factory

Intent

Provide an interface for creating families of related or

dependent objects without specifying their concrete

classes.

The Abstract Factory pattern is very similar to the

Factory Method pattern.

= One difference between the two is that with the Abstract
Factory pattern, a class delegates the responsibility of object
instantiation to another object via composition whereas the

Factory Method pattern uses inheritance and relies on a
subclass to handle the desired object instantiation.

Actually, the delegated object frequently uses factory
methods to perform the instantiation!

Abstract Factory: structure

AbstractFactory Client
CreateProductaf)
AN
-l productaz | | Productar e --.
ConcreteFactoryl = ConcreteFactory2 |- -
CraataProductAl) 1 CreateProductA{) 1
CreateProductBi) " CreateProductBl] | AbsiractProductB
A

Factory Method Abstract Factory

MazeGame

ConcreteFactoryl |- ConcreteFactory2 |-
\ CraataProductA[) ' CreateProductA()
\ CreatsPreductB()] CreateProduciBi)
e

Creator

FactoryMethod()

AnOperation()

N e |
Client of the
Factory method public Wall makeWall()
Uses the products

A
" {return new
ConcreteProduct [~ ConcreleCreator

EnchantedWall();}
FactoryMethod() <

Moving On the Pizza Store

The factory method approach to the pizza store is a big success

allowing our company to create multiple franchises across the
country quickly and easily

But, bad news, we have learned that some of the franchises

= while following our procedures (the abstract code in PizzaStore forces them
to)

= are skimping on ingredients in order to lower costs and increase margins
Our company'’s success has always been dependent on the use of
fresh, quality ingredients

= so“Something Must Be Done!”

Abstract Factory to the Rescue!

We will alter our design such that a factory is used to
supply the ingredients that are needed during the pizza
creation process

= Since different regions use different types of ingredients, we'll

create region-specific subclasses of the ingredient factory to
ensure that the right ingredients are used
= But, even with region-specific requirements, since we are
supplying the factories, we'll make sure that ingredients that
meet our quality standards are used by all franchises
They'll have to come up with some other way to lower costs.

First, We need a Factory Interface

public interface PizzaIngredientFactory {

1

o

3 public Dough createDough();

4 public Sauce createSauce();

5 public Cheese createCheese();

6 public Veggies[] createVeggies();
7 public Pepperoni createPepperoni();
g public Clams createClam();

9

0

1

Note the introduction of more abstract classes:
Dough, Sauce, Cheese, etc.

Second, We implement a Region-

Specific Factory

1| public class chicagoPizzaIngredientFactory
2 implements PizzaIngredientFactory
EY R
4
5 public Dough createDough() {
& return new ThickCrustDough():
7
8
9 public Sauce createsauce(|) {
10 return new PlumTomatoSauce();
11
13 public cheese createcheese() [
14 return new Mozz 1laChees=();
1s §
16
17 public Veggies[] createveggies{) {
18 veggies veggies[] = { mew Blackolives(},
19 new Spinach().
20 new Eggplant(} }:
21 return veggies;
22 }
23
24 public Peppercni createPepperoni() {
25 return new SlicedPepperomni():
26 ¥
27
28 public clams createclam(} {
29 return new FrozenClams{):
30 }
31y
32 |

This factory ensures that
quality ingredients are
used during the pizza
creation process...

... while also taking into
account the tastes of
people who live in
Chicago

But how (or where) is this
factory used?

Within Pizza Subclasses... (I)

17 void cut() {

First, alter the Pizza abstract base class to make
the prepare method abstract...

l||public abstract class Pizza {
2 string name;

3

4 Dough dough;

5 Sauce sauce;

[Veggles veggles[];

7 Cheose cheeose;

g Peppercni pepperoni;

9 Clams clam;

10

EE abstract wvoid prepare(};
12

13 void bake() {

14 system.out.println{~Bake for 25 minutes at 350");
15 }

16

Within Pizza Subclasses... (Il)

Then, update Pizza subclasses to make use of the
factory! Note: we no longer need subclasses like
NYCheesePizza and ChicagoCheesePizza because

1||public class CheesePizza extends Pizza {

2 PizzaIngredientFactory ingredientFactory;

3

4 public CheesePizza(PizzaIngredientFactory ingredientFactory) {
5 this.ingredientFactory = ingredientFactory;
6 }

7

8 void prepare() {

9 System.out.println("Preparing " + name);

10 dough = ingredientFactory.createDough();

11 sauce = ingredientFactory.createSauce();

12 cheese = ingredientFactory.createChesse();
13 }

14}

15

One last step...

l||public class ChicagoPizzaStore extends PizzaStore { We need to

. e . o update our

3 protected Pizza createPizza(String item) {

4 Pizza pizza = null; PizzaStore

5 PizzalngredientFactory ingredientFactory = subclasses to

6 | new ChicagoPizzalngredientFactory(); create the

7 .

8 | if {item.eguals({"cheese"}) { appropnate

5 ingredient

10 pizza = new CheesePizza(ingredientFactory); factoryand pass
11 pizza.setName(Chicago E:gl+ Cheese Pizza"); ittoeach Pizza
12

13| } else if (item.equals({"wveggie")) { subclass in the
14| createPizza

15 pizza = new VeggiePizza(ingredientFactory); factoryrnethod.
16 | pizza.setName{ "Chicago Style Veggie Pizza");

17

Summary: What did we just do?

We created an ingredient factory interface to allow for the

creation of a family of ingredients for a particular pizza

This abstract factory gives us an interface for creating a family of

products

= The factory interface decouples the client code from the actual factory
implementations that produce context-specific sets of products

Our client code (PizzaStore) can then pick the factory appropriate

to its region, plug it in, and get the correct style of pizza (Factory

Method) with the correct set of ingredients (Abstract Factory)

Singleton

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Singleton pattern

Intent

= Ensure a class only has one instance

= Provide a global point of access to it

Motivation

= Sometimes we want just a single instance of a class to exist in
the system;

For example, we want just one window manager. Or just one factory for a
family of products.

= We need to have that one instance easily accessible

= And we want to ensure that additional instances of the class can
not be created

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Recognizing Singleton

Unique objects are not uncommon

Most objects in an application bear a unique
responsibility

Yet singleton classes are relatively rare

Fact that an object/class is unique doesn’t mean
that the Singleton pattern is at work

Chocolate Factory Case Study

Choc-O-Holic Inc’s industrial B
strength Chocolate Boiler mixes ChocolateBaoiler
ingredients and milk at a high “emply - bool
temperature to make liquid _boilad * boal
chocolate T

The ChocolateBoiler class also has +-:Ir;.|Jir'-|;;|

two boolean attributes empty and rl‘u:lifl'j

boiled | | +:1-'.Eri'|p1*_,'lff| - by
The ChocolateBoiler class contains LieBalled(} - bool
five methods fill(), drain(), boil(),
isEmpty() and isBoiled()

Problems...

The Chocolate Boiler has overflowed! It added
more milk to the mix even though it was full!!
What happened?

Hint: What happens if more than two instances of
ChocolateBoiler are created?

The problem is with two instances controlling the
same phisycal boiler

Prevent multiple instances

How can you prevent other developers from
constructing new instances of your class?

= Create a single constructor with private access

private static ChocolateBoiler _chocolateboiler = new ChocolateBoiler()

= Make the unique instance available through a public
static GetChocolateBoiler() method

Lazy Initialization

Rather than creating a singleton instance ahead of time — wait
until instance is first needed

= public static ChocolateBoiler GetChocolateBoiler()

= {

= if (_chocolateboiler == null)

=

. _chocolateboiler = new ChocolateBoiler();

" /...

=}

= return _chocolateboiler

"3

Why use Lazy Initialization?

Might not have enough information to instantiate
a singleton at static initialization time

= Example: a ChocolateBoiler singleton may have to wait
for the real factory’s machines to establish
communication channels

If the singleton is resource intensive and may not
be required

= Example: a program that has an optional query
function that requires a database connection

Full Picture

public class ChocolateBoiler {

private static ChocolateBoiler _chocolateboiler;
private ChocolateBoiler () {};
public static ChocolateBoiler GetChocolateBoiler()
{

if (_chocolateboiler == null)

{

_chocolateboiler = new ChocolateBoiler();

/7
}

return _chocolateboiler

UML Class Diagram

Singleton

- singleton : Singleton

- Singleton()
+ getinstance() : Singleton

Our class so far...

ChocolateBoiler

~ampty | bool

~boiled © bool

~fill()

~drain()

bl

HsEmpty() ; bool
HsSotled() © bool
+GatChocolateBaoiler()

» as itis, problems with threads ...

Thread Example

environment it is possible for two threads to

initialize two singletons at roughly the same time
Thread 1 Thread 2

public stat ChocolateBoiler
getInstance ()

public stat ChocolateBoiler
getInstance ()

if (uniqueInstance == null)
if (uniquelInstance == null)
uniquelnstance =
new ChocolateBoiler ()
uniquelnstance =

new ChocolateBoiler ()
return uniqueInstance;

return uniquelInstance;

Problems with Multithreading

In the case of multithreading with more than one processor the
getinstance() method could be called at more or less the same
time resulting in to more than one instance being created.
Possible solutions:
1. Move to an eagerly created instance rather than a lazily created one.
Easy! But memory may be allocated and not used.
2. Synchronize the getinstance() method
Disadvantage — synchronizing can decrease system performance.
3. Use double—checked—locking

The idea is to avoid the costly synchronization for all invocations of the method
except the first.

49

Problems With Subclassing

What if we want to be able to subclass Singleton and have the

single instance be a subclass instance?

How could we do this?

= Have the static instance() method determine the particular subclass instance
to instantiate. This could be done via an argument or environment variable.

The constructors of the subclasses can not be private in this case, and thus
clients could instantiate other instances of the subclasses.

= Have each subclass provide a static instance() method. Now the subclass
constructors can be private.

50

Better using singletons or static

classes?

With a singleton you can pass the object as a
parameter to another method;

With a singleton you can implement interfaces or
derive a base class;

With a singleton you can use a factory pattern to
build up your instance (and/or choose which class
to instantiate).

In both cases care with multithreading.

Homework

Apply the factory patterns to produce:
= Products: TVs and Remote controls (RC)
= Of two brands: Samsung and Philips

With Simple Factory: using parameters. Fare in modo di avere
una sola factory

With Factory method: creator builds a TV and its RC, then packs
them togheter.

With Abstract Factory: a client chooses the factory and asks for
the product(s) he needs, for instance one TV and two
(compatible) remote controllers.

Homework

Apply Singleton to define a class of the television
receiving commands from the remote
controller(s) to set the volume of the TV:

Offered methods are:

= void increase() {volume++}

= void decrease() {volume--}

