Notes Accompanying Today's Class in Algorithm Design

Roberto Grossi
Università di Pisa

Feb. 28, 2020

1 Bloom Filters, Cuckoo Hashing, and Succinct Rank Data Structure

These notes are based on $[3,4]$. Consider a set S of n keys chosen from a universe U.
(1) For a given (1-side) error probability $0<f<1$, we learned that Bloom filters achieve probability f using $k \approx(m / n) \ln 2$ hash functions that map $U \rightarrow[m]$. They take $O(k)$ time, and use nearly $(\log (1 / f) / \ln 2) n \approx 1.44 \log (1 / f) n$ bits of space.
(2) We learned that Cuckoo hashing, using two hash functions $h_{1}, h_{2}: U \rightarrow[m]$, achieves worst-case constant-time lookup, by checking at most two positions indicated by these hash functions.
(3) Today, we look at a succinct Rank data structure R, which takes as input a bitvector B of m bits, where n of them are 1 s . The constant-time supported operation is $\operatorname{rank}_{B}(j)$ which returns the number of 1 s in the first j bits of B. Space is $\left\lceil\log \binom{m}{n}\right\rceil+o(m)$ bits for the entire structures (no need to store B explicitly ${ }^{1}$), where $\left\lceil\log \binom{m}{n}\right\rceil$ is the informationtheoretic lower bound for storing a binary string of length m with $n 1$ (equivalently, a set of n elements from a universe size m) $[2,1]$.

We show that using the data structures (2) and (3) we can improve the bounds of Bloom filters in 1) when S is static (i.e. S does not change over time) and $\log (1 / f)$ is a power of two.

Specifically, we see how to obtain a 1 -side error probability f for lookup/membership using nearly $\log (6 / f) n$ bits: as $\log (6 / f) \approx 2.58+\log (1 / f)$, we have an additive constant instead of a multiplicative in the space bound for (1), which is much better (e.g. try with $f=10^{-6}$). Moreover we use just three hash functions and lookup takes constant time.

Fingerprints. The first idea is to choose, randomly and uniformly, a hash function $h \in \mathcal{H}$ from a universal hash family \mathcal{H} (as the one seen in class), where $h: U \rightarrow\left[m^{\prime}\right]$.

We thus define $S^{\prime}=\{h(x) \mid x \in S\}$, where $\left|S^{\prime}\right| \leq|S|=n$. When we want to test, given any $y \in U$, whether $y \in S$, we lookup $h(y) \in S^{\prime}$. What is the lookup error? If $y \notin S$ but $h(y) \in S^{\prime}$, we have that there exists $x \in S$ such that $h(y)=h(x)$. And we saw that the latter collision probability is one over the range of the hash function, namley, $\operatorname{Pr}_{h \in \mathcal{H}}\{h(y)=h(x)\}=1 / m^{\prime}$. Thus the probability that there exists $x \in S$ such that $h(y)=h(x)$ is n / m^{\prime} by the union bound on x. In order to get the same error f as the Bloom filter in (1), we need to fix $f=n / m^{\prime}$.

[^0]Given $x \in S$, note that $h(x)$ uses $\log m^{\prime}=\log (n / f)$ bits and is called its signature. The elements of S^{\prime} require $\log (n / f) n$ bits in total: we only store S^{\prime}, not S to save space as each key in S could be very large (same motivation as Bloom filters). But still space is too much.

In the following, we want to store S^{\prime} in little additional space and access in constant-time.

Cuckoo hashing. Cuckoo hashing uses two randomly and independently chosen hash functions $h_{1}, h_{2} \in \mathcal{H}$, where $h_{1}, h_{2}:\left[m^{\prime}\right] \rightarrow[m]$ and $m=3\left|S^{\prime}\right| \leq 3 n .{ }^{2}$ Lookup to check whether $y^{\prime} \in S^{\prime}$ takes constant time as it probes locations $h_{1}\left(y^{\prime}\right)$ and $h_{2}\left(y^{\prime}\right)$ in a table T of m entries.

Are we happy? We use fingerprint h, but this time we fix $m^{\prime}=2 / f$. Given any $y \in U$, we check whether $y \in S$ by computing its fingerprint $y^{\prime}=h(y)$ and checking whether $y^{\prime} \in S^{\prime}$ in constant time. We observe that now the probability that there exists $x \in S$ such that $h(y)=h(x)$, is $2 / m^{\prime}=f$ by the union bound on x, as x can stay in just two positions.

But what about the space? Since T uses $m \leq 3 n$ entries, each capable of storing $\log (2 / f)$ bits, we use a total of $3 \log (2 / f) n$ bits, more than twice those required by the Bloom filters in (1)!

We observe that we waste space for at least $2 n$ empty entries of T. To put a remedy on that we proceed as follows.

- We mark with a 1 which positions in T contains a nonempty entry, and 0 othwerise. This yields a bitvector B of m bits, where $\left|S^{\prime}\right| \leq n$ of them are 1 s . In the following, let us assume $\left|S^{\prime}\right|=n$ wlog. Recall that $m=3 n$.
- We pack the n nonempty entries of T into an array P of n entries. Note that P stores a permuation of the elements in S^{\prime}, and thus takes $\log (2 / f) n$ bits.

We observe that the nonempty entries in T in left-to-right order are in 1-to- 1 correspondence with the 1 s in B and the elements in P, both in left-to-right order. Thus the i th nonempty entry in T corresponds to the i th 1 in B and the i th element in P.

Now, in order to check whether $y^{\prime} \in S^{\prime}$ in constant time using cuckoo hashing, we need to check whether $T\left[h_{1}\left(y^{\prime}\right)\right]=y^{\prime}$ or $T\left[h_{2}\left(y^{\prime}\right)\right]=y^{\prime}$. Since we do not want to use T anymore, we equivalently perform the following test.

1. If $B\left[h_{1}\left(y^{\prime}\right)\right]=B\left[h_{2}\left(y^{\prime}\right)\right]=0$, then $y^{\prime} \notin S^{\prime}$ (and thus $y \notin S$, with no error).
2. Otherwise, let $B\left[h_{1}\left(y^{\prime}\right)\right]=1$, wlog. If $B\left[h_{1}\left(y^{\prime}\right)\right]$ is the i th bit 1 in B, we test whether $P[i]=y^{\prime}$. Same test when $B\left[h_{2}\left(y^{\prime}\right)\right]=1$.

Note that the missing piece in the puzzle is how to test if $B\left[h_{1}\left(y^{\prime}\right)\right]=1$ is the i th bit 1 in B. Letting $j=h_{1}\left(y^{\prime}\right)$, this requires to check whether $B[j]=1$ (easy), and there are i s in the first j bits of B. For the latter, we need to introduce and use the Rank succinct data structure in (3).

Rank data structure. The input is a bitvector B of m bits, where n of them are 1 s . We want to replace B with a succinct Rank data structure R that answser constant-time $\operatorname{rank} k_{B}(\cdot)$ queries. Recall that $\operatorname{rank}_{B}(j)$ returns the number of 1 s in the first j bits of B. Note that $B[j]=1$ iff $\operatorname{rank}_{B}(j) \neq \operatorname{rank}_{B}(j-1)$, so it is enough to store R in place of B.

The best implementations of R use $\left\lceil\log \binom{m}{n}\right\rceil+o(m)$ bits. Thus we can replace T in cuckoo hashing with P and R. Hence, we can simulate Bloom filters with our claimed bounds, storing three hash functions h, h_{1}, h_{2}, which take $O(\log (1 / f)+\log n)$ bits, plus P, which takes $\log (2 / f) n$

[^1]bits, plus R, which takes $\left\lceil\log \binom{m}{n}\right\rceil+o(m) \approx n \log (m / n)+o(m)=n \log 3+0(n)$ bits as $m=3 n$. Overall this is $\log (6 / f) n+o(n)$ bits as claimed.

In the class, we described a less space-efficient implementation of R for illustrative purposes. It uses $3 m+o(m)$ bits, but it gives an idea on how R works.

Let $\ell=(1 / 2) \log m$. We build, using the so-called Four-Russians trick, a two dimensional table L of $2^{\ell} \times \ell=O(\sqrt{m} \log m)$ entries. Entry $L\left[\alpha, j^{\prime \prime}\right]$ returns the number of 1 s contained in the first $j^{\prime \prime}$ bits of binary string α. We build L by brute force, generating all binary strings α of length ℓ, and scanning each of them for each $j^{\prime \prime}$. Since there are $2^{\ell}=O(\sqrt{m})$ such strings α, we take $O(\sqrt{m} \operatorname{polylog}(m))=o(m)$ time to build it. Moreover, since each entry of L uses $O(\log \log m)$ bits, the space occupied by L is $O(\sqrt{m}$ polylog $(m))=o(m)$ bits. Clearly, L can be queried in constant time.

Now, consider B and partition it into chunks of ℓ bits each. Each chunk is a string α, so we can use L to compute in constant time how many 1 s are found in the first $j^{\prime \prime}$ bits of α. Because of that, we can conceputally see B as an array B^{\prime} of m / ℓ chunks. We store an array C, so that $C[t]$ explicitly contains an integer that tells how many 1 s are found in the the first $t-1$ chunks of B^{\prime}. Array C uses $m / \ell \cdot \log m=2 m$ bits. Hence, L, B, and C occupy a total of $3 m+o(m)$ bits to implement R.

In order to answer $\operatorname{rank}_{B}(j)$, let us take the chunk of B within which j falls. It corresponds to $\alpha=B^{\prime}\left[j^{\prime}\right]$, where $j^{\prime}=1+\lfloor j / \ell\rfloor$. Observe that the j th bit in B is the $j^{\prime \prime}$ th bit in α where $j^{\prime \prime}=1+j \bmod \ell$. Thus we return $C\left[j^{\prime}\right]+L\left[\alpha, j^{\prime \prime}\right]$ as the value of $\operatorname{rank}_{B}(j)$, in constant time.

Simpler Approach. Suppose that we stick to the first choice of the fingerprtins, where $m^{\prime}=n / f$. Let S^{\prime} be stored in this way. Using the Rank data structure in (3), we can store S^{\prime} in place of S. Note that while the universe of S is U, now the universe of S^{\prime} is $[n / f]$. Exercise: Show that we get almost $\log (1 / f) n+o(n / f)$ bits in this way.

Lower bound. We now see why $n \log (1 / f)$ bits are needed to store S and check membership with error f. Suppose that b is the minumum number of bits to store S, so that we can establish membership on S with error f of false positives. Since $S \subseteq U$, having error probability f means that we provide a positive answer to membership for $|S|+f|U|=n+f|U|$ elements from U, rather than $|S|=n$, using b bits. Note that we can optimally mark these $f|U|$ false positives using not less than $\log \binom{|U|}{f|U|}$ bits. In other words, using $b+\log \binom{|U|}{f|U|}$ bits we can store S without errors. By the information-theoretic lower bound, we cannot take less than $\log \binom{|U|}{|S|}$ bits: that is, $b+\log \binom{|S|+f|U|}{|S|} \geq \log \binom{|U|}{|S|}$, from which we get $b \geq \log \left[\frac{\binom{|U|}{|S|}}{\binom{|S|+|U|}{|S|}}\right]$. Using the approximation that $\log \binom{a}{b} \approx b \log (a / b)$, we get that approximately $b \geq n \log (1 / f)$ ignoring lower order terms.

References

[1] M. Patrascu. Succincter. In IEEE, editor, Proceedings of the 49 th Annual IEEE Symposium on Foundations of Computer Science: October 25-23, 2008, Philadelphia, Pennsylvania, $U S A$, pages 305-313. IEEE Computer Society Press, 2008.
[2] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3(4):43, 2007.
[3] I. Razenshteyn. Cuckoo hashing for sketching sets. http://blog.ilyaraz.org/?go=all/ cuckoo-hashing-for-sketching-sets/, 2019. [Online; accessed 28-Feb-2020].
[4] R. Venturini. Simple lower bound for approximate set query. Personal communication, 2020.

[^0]: ${ }^{1}$ We observe that $\log \binom{m}{n} \leq m$, thus R is always preferred instead of storing B explicitly.

[^1]: ${ }^{2}$ In class we saw that $m>2 c n$ for any constant $c>2$, but the choice $m=3 n$ works fine as we saw.

