
C Counting and Probability

This appendix reviews elementary combinatorics and probability theory. If you
have a good background in these areas, you may want to skim the beginning of this
appendix lightly and concentrate on the later sections. Most of this book’s chapters
do not require probability, but for some chapters it is essential.

Section C.1 reviews elementary results in counting theory, including standard
formulas for counting permutations and combinations. The axioms of probability
and basic facts concerning probability distributions form Section C.2. Random
variables are introduced in Section C.3, along with the properties of expectation
and variance. Section C.4 investigates the geometric and binomial distributions
that arise from studying Bernoulli trials. The study of the binomial distribution
continues in Section C.5, an advanced discussion of the “tails” of the distribution.

C.1 Counting

Counting theory tries to answer the question “How many?” without actually enu-
merating all the choices. For example, we might ask, “How many different n-bit
numbers are there?” or “How many orderings of n distinct elements are there?” In
this section, we review the elements of counting theory. Since some of the material
assumes a basic understanding of sets, you might wish to start by reviewing the
material in Section B.1.

Rules of sum and product
We can sometimes express a set of items that we wish to count as a union of disjoint
sets or as a Cartesian product of sets.

The rule of sum says that the number of ways to choose one element from one
of two disjoint sets is the sum of the cardinalities of the sets. That is, if A and B
are two finite sets with no members in common, then jA [ Bj D jAj C jBj, which
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follows from equation (B.3). For example, each position on a car’s license plate
is a letter or a digit. The number of possibilities for each position is therefore
26 C 10 D 36, since there are 26 choices if it is a letter and 10 choices if it is a
digit.

The rule of product says that the number of ways to choose an ordered pair is the
number of ways to choose the first element times the number of ways to choose the
second element. That is, if A and B are two finite sets, then jA ! Bj D jAj " jBj,
which is simply equation (B.4). For example, if an ice-cream parlor offers 28
flavors of ice cream and 4 toppings, the number of possible sundaes with one scoop
of ice cream and one topping is 28 " 4 D 112.

Strings
A string over a finite set S is a sequence of elements of S . For example, there are 8
binary strings of length 3:
000; 001; 010; 011; 100; 101; 110; 111 :

We sometimes call a string of length k a k-string. A substring s0 of a string s
is an ordered sequence of consecutive elements of s. A k-substring of a string
is a substring of length k. For example, 010 is a 3-substring of 01101001 (the
3-substring that begins in position 4), but 111 is not a substring of 01101001.

We can view a k-string over a set S as an element of the Cartesian product Sk

of k-tuples; thus, there are jS jk strings of length k. For example, the number of
binary k-strings is 2k . Intuitively, to construct a k-string over an n-set, we have n
ways to pick the first element; for each of these choices, we have n ways to pick the
second element; and so forth k times. This construction leads to the k-fold product
n " n " " " n D nk as the number of k-strings.

Permutations
A permutation of a finite set S is an ordered sequence of all the elements of S ,
with each element appearing exactly once. For example, if S D fa; b; cg, then S
has 6 permutations:
abc; acb; bac; bca; cab; cba :

There are nŠ permutations of a set of n elements, since we can choose the first
element of the sequence in n ways, the second in n # 1 ways, the third in n # 2
ways, and so on.

A k-permutation of S is an ordered sequence of k elements of S , with no ele-
ment appearing more than once in the sequence. (Thus, an ordinary permutation is
an n-permutation of an n-set.) The twelve 2-permutations of the set fa; b; c; dg are
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ab; ac; ad; ba; bc; bd; ca; cb; cd; da; db; dc :

The number of k-permutations of an n-set is

n.n # 1/.n # 2/ " " " .n # k C 1/ D
nŠ

.n # k/Š
; (C.1)

since we have n ways to choose the first element, n # 1 ways to choose the second
element, and so on, until we have selected k elements, the last being a selection
from the remaining n # k C 1 elements.

Combinations
A k-combination of an n-set S is simply a k-subset of S . For example, the 4-set
fa; b; c; dg has six 2-combinations:
ab; ac; ad; bc; bd; cd :

(Here we use the shorthand of denoting the 2-subset fa; bg by ab, and so on.)
We can construct a k-combination of an n-set by choosing k distinct (different)
elements from the n-set. The order in which we select the elements does not matter.

We can express the number of k-combinations of an n-set in terms of the number
of k-permutations of an n-set. Every k-combination has exactly kŠ permutations
of its elements, each of which is a distinct k-permutation of the n-set. Thus, the
number of k-combinations of an n-set is the number of k-permutations divided
by kŠ; from equation (C.1), this quantity is

nŠ

kŠ .n # k/Š
: (C.2)

For k D 0, this formula tells us that the number of ways to choose 0 elements from
an n-set is 1 (not 0), since 0Š D 1.

Binomial coefficients
The notation !

n
k

" (read “n choose k”) denotes the number of k-combinations of
an n-set. From equation (C.2), we have
 

n

k

!

D
nŠ

kŠ .n # k/Š
:

This formula is symmetric in k and n # k:
 

n

k

!

D

 
n

n # k

!

: (C.3)
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These numbers are also known as binomial coefficients, due to their appearance in
the binomial expansion:

.x C y/n D
nX

kD0

 
n

k

!

xkyn!k : (C.4)

A special case of the binomial expansion occurs when x D y D 1:

2n D
nX

kD0

 
n

k

!

:

This formula corresponds to counting the 2n binary n-strings by the number of 1s
they contain: !

n
k

" binary n-strings contain exactly k 1s, since we have !
n
k

" ways to
choose k out of the n positions in which to place the 1s.

Many identities involve binomial coefficients. The exercises at the end of this
section give you the opportunity to prove a few.

Binomial bounds
We sometimes need to bound the size of a binomial coefficient. For 1 $ k $ n,
we have the lower bound
 

n

k

!

D
n.n # 1/ " " " .n # k C 1/

k.k # 1/ " " " 1

D
#n

k

$ %
n # 1

k # 1

&
" " "

%
n # k C 1

1

&

%
#n

k

$k

:

Taking advantage of the inequality kŠ % .k=e/k derived from Stirling’s approxi-
mation (3.18), we obtain the upper bounds
 

n

k

!

D
n.n # 1/ " " " .n # k C 1/

k.k # 1/ " " " 1

$
nk

kŠ

$
#en

k

$k

: (C.5)

For all integers k such that 0 $ k $ n, we can use induction (see Exercise C.1-12)
to prove the bound
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n

k

!

$
nn

kk.n # k/n!k
; (C.6)

where for convenience we assume that 00 D 1. For k D "n, where 0 $ " $ 1, we
can rewrite this bound as
 

n

"n

!

$
nn

."n/!n..1 # "/n/.1!!/n

D

 %
1

"

&! %
1

1 # "

&1!!
!n

D 2n H.!/ ;

where
H."/ D #" lg " # .1 # "/ lg.1 # "/ (C.7)
is the (binary) entropy function and where, for convenience, we assume that
0 lg 0 D 0, so that H.0/ D H.1/ D 0.

Exercises
C.1-1
How many k-substrings does an n-string have? (Consider identical k-substrings at
different positions to be different.) How many substrings does an n-string have in
total?
C.1-2
An n-input, m-output boolean function is a function from fTRUE; FALSEgn to
fTRUE; FALSEgm. How many n-input, 1-output boolean functions are there? How
many n-input, m-output boolean functions are there?
C.1-3
In how many ways can n professors sit around a circular conference table? Con-
sider two seatings to be the same if one can be rotated to form the other.
C.1-4
In how many ways can we choose three distinct numbers from the set f1; 2; : : : ; 99g
so that their sum is even?
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C.1-5
Prove the identity
 

n

k

!

D
n

k

 
n # 1

k # 1

!

(C.8)

for 0 < k $ n.
C.1-6
Prove the identity
 

n

k

!

D
n

n # k

 
n # 1

k

!

for 0 $ k < n.
C.1-7
To choose k objects from n, you can make one of the objects distinguished and
consider whether the distinguished object is chosen. Use this approach to prove
that 

n

k

!

D

 
n # 1

k

!

C

 
n # 1

k # 1

!

:

C.1-8
Using the result of Exercise C.1-7, make a table for n D 0; 1; : : : ; 6 and 0 $ k $ n
of the binomial coefficients !

n
k

" with !
0
0

" at the top, !
1
0

" and !
1
1

" on the next line, and
so forth. Such a table of binomial coefficients is called Pascal’s triangle.
C.1-9
Prove that

nX

iD1

i D

 
n C 1

2

!

:

C.1-10
Show that for any integers n % 0 and 0 $ k $ n, the expression !

n
k

" achieves its
maximum value when k D bn=2c or k D dn=2e.
C.1-11 ?
Argue that for any integers n % 0, j % 0, k % 0, and j C k $ n,
 

n

j C k

!

$

 
n

j

! 
n # j

k

!

: (C.9)
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Provide both an algebraic proof and an argument based on a method for choosing
j C k items out of n. Give an example in which equality does not hold.
C.1-12 ?
Use induction on all integers k such that 0 $ k $ n=2 to prove inequality (C.6),
and use equation (C.3) to extend it to all integers k such that 0 $ k $ n.
C.1-13 ?
Use Stirling’s approximation to prove that
 

2n

n

!

D
22n

p
#n

.1 C O.1=n// : (C.10)

C.1-14 ?
By differentiating the entropy function H."/, show that it achieves its maximum
value at " D 1=2. What is H.1=2/?
C.1-15 ?
Show that for any integer n % 0,

nX

kD0

 
n

k

!

k D n2n!1 : (C.11)

C.2 Probability

Probability is an essential tool for the design and analysis of probabilistic and ran-
domized algorithms. This section reviews basic probability theory.

We define probability in terms of a sample space S , which is a set whose ele-
ments are called elementary events. We can think of each elementary event as a
possible outcome of an experiment. For the experiment of flipping two distinguish-
able coins, with each individual flip resulting in a head (H) or a tail (T), we can view
the sample space as consisting of the set of all possible 2-strings over fH; Tg:
S D fHH; HT; TH; TTg :
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An event is a subset1 of the sample space S . For example, in the experiment of
flipping two coins, the event of obtaining one head and one tail is fHT; THg. The
event S is called the certain event, and the event ; is called the null event. We say
that two events A and B aremutually exclusive if A \ B D ;. We sometimes treat
an elementary event s 2 S as the event fsg. By definition, all elementary events
are mutually exclusive.

Axioms of probability
A probability distribution Pr fg on a sample space S is a mapping from events of S
to real numbers satisfying the following probability axioms:
1. Pr fAg % 0 for any event A.
2. Pr fSg D 1.
3. Pr fA [ Bg D Pr fAg C Pr fBg for any two mutually exclusive events A

and B . More generally, for any (finite or countably infinite) sequence of events
A1; A2; : : : that are pairwise mutually exclusive,

Pr
(
[

i

Ai

)

D
X

i

Pr fAig :

We call Pr fAg the probability of the event A. We note here that axiom 2 is a
normalization requirement: there is really nothing fundamental about choosing 1
as the probability of the certain event, except that it is natural and convenient.

Several results follow immediately from these axioms and basic set theory (see
Section B.1). The null event ; has probability Pr f;g D 0. If A & B , then
Pr fAg $ Pr fBg. Using A to denote the event S # A (the complement of A),
we have Pr ˚A'

D 1 # Pr fAg. For any two events A and B ,
Pr fA [ Bg D Pr fAg C Pr fBg # Pr fA \ Bg (C.12)

$ Pr fAg C Pr fBg : (C.13)

1For a general probability distribution, there may be some subsets of the sample space S that are not
considered to be events. This situation usually arises when the sample space is uncountably infinite.
The main requirement for what subsets are events is that the set of events of a sample space be closed
under the operations of taking the complement of an event, forming the union of a finite or countable
number of events, and taking the intersection of a finite or countable number of events. Most of
the probability distributions we shall see are over finite or countable sample spaces, and we shall
generally consider all subsets of a sample space to be events. A notable exception is the continuous
uniform probability distribution, which we shall see shortly.
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In our coin-flipping example, suppose that each of the four elementary events
has probability 1=4. Then the probability of getting at least one head is
Pr fHH; HT; THg D Pr fHHg C Pr fHTg C Pr fTHg

D 3=4 :

Alternatively, since the probability of getting strictly less than one head is
Pr fTTg D 1=4, the probability of getting at least one head is 1 # 1=4 D 3=4.

Discrete probability distributions
A probability distribution is discrete if it is defined over a finite or countably infinite
sample space. Let S be the sample space. Then for any event A,
Pr fAg D

X

s2A

Pr fsg ;

since elementary events, specifically those in A, are mutually exclusive. If S is
finite and every elementary event s 2 S has probability
Pr fsg D 1= jS j ;

then we have the uniform probability distribution on S . In such a case the experi-
ment is often described as “picking an element of S at random.”

As an example, consider the process of flipping a fair coin, one for which the
probability of obtaining a head is the same as the probability of obtaining a tail, that
is, 1=2. If we flip the coin n times, we have the uniform probability distribution
defined on the sample space S D fH; Tgn, a set of size 2n. We can represent each
elementary event in S as a string of length n over fH; Tg, each string occurring with
probability 1=2n. The event
A D fexactly k heads and exactly n # k tails occurg
is a subset of S of size jAj D

!
n
k

", since !
n
k

" strings of length n over fH; Tg contain
exactly k H’s. The probability of event A is thus Pr fAg D

!
n
k

"
=2n.

Continuous uniform probability distribution
The continuous uniform probability distribution is an example of a probability
distribution in which not all subsets of the sample space are considered to be
events. The continuous uniform probability distribution is defined over a closed
interval Œa; b$ of the reals, where a < b. Our intuition is that each point in the in-
terval Œa; b$ should be “equally likely.” There are an uncountable number of points,
however, so if we give all points the same finite, positive probability, we cannot si-
multaneously satisfy axioms 2 and 3. For this reason, we would like to associate a
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probability only with some of the subsets of S , in such a way that the axioms are
satisfied for these events.

For any closed interval Œc; d $, where a $ c $ d $ b, the continuous uniform
probability distribution defines the probability of the event Œc; d $ to be

Pr fŒc; d $g D
d # c

b # a
:

Note that for any point x D Œx; x$, the probability of x is 0. If we remove
the endpoints of an interval Œc; d $, we obtain the open interval .c; d/. Since
Œc; d $ D Œc; c$ [ .c; d/ [ Œd; d $, axiom 3 gives us Pr fŒc; d $g D Pr f.c; d/g. Gen-
erally, the set of events for the continuous uniform probability distribution contains
any subset of the sample space Œa; b$ that can be obtained by a finite or countable
union of open and closed intervals, as well as certain more complicated sets.

Conditional probability and independence
Sometimes we have some prior partial knowledge about the outcome of an exper-
iment. For example, suppose that a friend has flipped two fair coins and has told
you that at least one of the coins showed a head. What is the probability that both
coins are heads? The information given eliminates the possibility of two tails. The
three remaining elementary events are equally likely, so we infer that each occurs
with probability 1=3. Since only one of these elementary events shows two heads,
the answer to our question is 1=3.

Conditional probability formalizes the notion of having prior partial knowledge
of the outcome of an experiment. The conditional probability of an event A given
that another event B occurs is defined to be
Pr fA j Bg D

Pr fA \ Bg
Pr fBg

(C.14)

whenever Pr fBg ¤ 0. (We read “Pr fA j Bg” as “the probability of A given B .”)
Intuitively, since we are given that event B occurs, the event that A also occurs
is A \ B . That is, A \ B is the set of outcomes in which both A and B occur.
Because the outcome is one of the elementary events in B , we normalize the prob-
abilities of all the elementary events in B by dividing them by Pr fBg, so that they
sum to 1. The conditional probability of A given B is, therefore, the ratio of the
probability of event A \ B to the probability of event B . In the example above, A
is the event that both coins are heads, and B is the event that at least one coin is a
head. Thus, Pr fA j Bg D .1=4/=.3=4/ D 1=3.

Two events are independent if
Pr fA \ Bg D Pr fAg Pr fBg ; (C.15)
which is equivalent, if Pr fBg ¤ 0, to the condition
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Pr fA j Bg D Pr fAg :

For example, suppose that we flip two fair coins and that the outcomes are inde-
pendent. Then the probability of two heads is .1=2/.1=2/ D 1=4. Now suppose
that one event is that the first coin comes up heads and the other event is that the
coins come up differently. Each of these events occurs with probability 1=2, and
the probability that both events occur is 1=4; thus, according to the definition of
independence, the events are independent—even though you might think that both
events depend on the first coin. Finally, suppose that the coins are welded to-
gether so that they both fall heads or both fall tails and that the two possibilities are
equally likely. Then the probability that each coin comes up heads is 1=2, but the
probability that they both come up heads is 1=2 ¤ .1=2/.1=2/. Consequently, the
event that one comes up heads and the event that the other comes up heads are not
independent.

A collection A1; A2; : : : ; An of events is said to be pairwise independent if
Pr fAi \ Aj g D Pr fAig Pr fAj g

for all 1 $ i < j $ n. We say that the events of the collection are (mutually)
independent if every k-subset Ai1 ; Ai2 ; : : : ; Aik of the collection, where 2 $ k $ n
and 1 $ i1 < i2 < " " " < ik $ n, satisfies
Pr fAi1 \ Ai2 \ " " " \ Aikg D Pr fAi1g Pr fAi2g " " " Pr fAik g :

For example, suppose we flip two fair coins. Let A1 be the event that the first coin
is heads, let A2 be the event that the second coin is heads, and let A3 be the event
that the two coins are different. We have

Pr fA1g D 1=2 ;

Pr fA2g D 1=2 ;

Pr fA3g D 1=2 ;

Pr fA1 \ A2g D 1=4 ;

Pr fA1 \ A3g D 1=4 ;

Pr fA2 \ A3g D 1=4 ;

Pr fA1 \ A2 \ A3g D 0 :

Since for 1 $ i < j $ 3, we have Pr fAi \ Aj g D Pr fAig Pr fAj g D 1=4, the
events A1, A2, and A3 are pairwise independent. The events are not mutually inde-
pendent, however, because Pr fA1 \ A2 \ A3g D 0 and Pr fA1g Pr fA2g Pr fA3g D
1=8 ¤ 0.
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Bayes’s theorem
From the definition of conditional probability (C.14) and the commutative law
A \ B D B \ A, it follows that for two events A and B , each with nonzero
probability,
Pr fA \ Bg D Pr fBg Pr fA j Bg (C.16)

D Pr fAg Pr fB j Ag :

Solving for Pr fA j Bg, we obtain
Pr fA j Bg D

Pr fAg Pr fB j Ag
Pr fBg

; (C.17)
which is known as Bayes’s theorem. The denominator Pr fBg is a normalizing
constant, which we can reformulate as follows. Since B D .B \ A/ [ .B \ A/,
and since B \ A and B \ A are mutually exclusive events,
Pr fBg D Pr fB \ Ag C Pr ˚B \ A

'

D Pr fAg Pr fB j Ag C Pr ˚A' Pr ˚B j A
'

:

Substituting into equation (C.17), we obtain an equivalent form of Bayes’s theo-
rem:
Pr fA j Bg D

Pr fAg Pr fB j Ag
Pr fAg Pr fB j Ag C Pr ˚A' Pr ˚B j A

' : (C.18)

Bayes’s theorem can simplify the computing of conditional probabilities. For
example, suppose that we have a fair coin and a biased coin that always comes up
heads. We run an experiment consisting of three independent events: we choose
one of the two coins at random, we flip that coin once, and then we flip it again.
Suppose that the coin we have chosen comes up heads both times. What is the
probability that it is biased?

We solve this problem using Bayes’s theorem. Let A be the event that we choose
the biased coin, and let B be the event that the chosen coin comes up heads both
times. We wish to determine Pr fA j Bg. We have Pr fAg D 1=2, Pr fB j Ag D 1,
Pr ˚A'

D 1=2, and Pr ˚B j A
'

D 1=4; hence,

Pr fA j Bg D
.1=2/ " 1

.1=2/ " 1 C .1=2/ " .1=4/

D 4=5 :

Exercises
C.2-1

Professor Guildenstern flips a fair

?
coin twice. What is the probability that Professor Rosencrantz obtains more heads
Professor Rosencrantz flips a fair coin once.

than Professor Guildenstern
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C.2-2
Prove Boole’s inequality: For any finite or countably infinite sequence of events
A1; A2; : : :,
Pr fA1 [ A2 [ " " "g $ Pr fA1g C Pr fA2g C " " " : (C.19)

C.2-3
Suppose we shuffle a deck of 10 cards, each bearing a distinct number from 1 to 10,
to mix the cards thoroughly. We then remove three cards, one at a time, from the
deck. What is the probability that we select the three cards in sorted (increasing)
order?
C.2-4
Prove that
Pr fA j Bg C Pr ˚A j B

'
D 1 :

C.2-5
Prove that for any collection of events A1; A2; : : : ; An,
Pr fA1 \ A2 \ " " " \ Ang D Pr fA1g " Pr fA2 j A1g " Pr fA3 j A1 \ A2g " " "

Pr fAn j A1 \ A2 \ " " " \ An!1g :

C.2-6 ?
Describe a procedure that takes as input two integers a and b such that 0 < a < b
and, using fair coin flips, produces as output heads with probability a=b and tails
with probability .b # a/=b. Give a bound on the expected number of coin flips,
which should be O.1/. (Hint: Represent a=b in binary.)
C.2-7 ?
Show how to construct a set of n events that are pairwise independent but such that
no subset of k > 2 of them is mutually independent.
C.2-8 ?
Two events A and B are conditionally independent, given C , if
Pr fA \ B j C g D Pr fA j C g " Pr fB j C g :

Give a simple but nontrivial example of two events that are not independent but are
conditionally independent given a third event.
C.2-9 ?
You are a contestant in a game show in which a prize is hidden behind one of
three curtains. You will win the prize if you select the correct curtain. After you
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have picked one curtain but before the curtain is lifted, the emcee lifts one of the
other curtains, knowing that it will reveal an empty stage, and asks if you would
like to switch from your current selection to the remaining curtain. How would
your chances change if you switch? (This question is the celebrated Monty Hall
problem, named after a game-show host who often presented contestants with just
this dilemma.)
C.2-10 ?
A prison warden has randomly picked one prisoner among three to go free. The
other two will be executed. The guard knows which one will go free but is forbid-
den to give any prisoner information regarding his status. Let us call the prisoners
X , Y , and Z. Prisoner X asks the guard privately which of Y or Z will be exe-
cuted, arguing that since he already knows that at least one of them must die, the
guard won’t be revealing any information about his own status. The guard tells X
that Y is to be executed. Prisoner X feels happier now, since he figures that either
he or prisoner Z will go free, which means that his probability of going free is
now 1=2. Is he right, or are his chances still 1=3? Explain.

C.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably infinite
sample space S to the real numbers. It associates a real number with each possible
outcome of an experiment, which allows us to work with the probability distribu-
tion induced on the resulting set of numbers. Random variables can also be defined
for uncountably infinite sample spaces, but they raise technical issues that are un-
necessary to address for our purposes. Henceforth, we shall assume that random
variables are discrete.

For a random variable X and a real number x, we define the event X D x to be
fs 2 S W X.s/ D xg; thus,
Pr fX D xg D

X

s2S WX.s/Dx

Pr fsg :

The function
f .x/ D Pr fX D xg

is the probability density function of the random variable X . From the probability
axioms, Pr fX D xg % 0 and Px Pr fX D xg D 1.

As an example, consider the experiment of rolling a pair of ordinary, 6-sided
dice. There are 36 possible elementary events in the sample space. We assume
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that the probability distribution is uniform, so that each elementary event s 2 S is
equally likely: Pr fsg D 1=36. Define the random variable X to be the maximum of
the two values showing on the dice. We have Pr fX D 3g D 5=36, since X assigns
a value of 3 to 5 of the 36 possible elementary events, namely, .1; 3/, .2; 3/, .3; 3/,
.3; 2/, and .3; 1/.

We often define several random variables on the same sample space. If X and Y
are random variables, the function
f .x; y/ D Pr fX D x and Y D yg

is the joint probability density function of X and Y . For a fixed value y,
Pr fY D yg D

X

x

Pr fX D x and Y D yg ;

and similarly, for a fixed value x,
Pr fX D xg D

X

y

Pr fX D x and Y D yg :

Using the definition (C.14) of conditional probability, we have

Pr fX D x j Y D yg D
Pr fX D x and Y D yg

Pr fY D yg
:

We define two random variables X and Y to be independent if for all x and y, the
events X D x and Y D y are independent or, equivalently, if for all x and y, we
have Pr fX D x and Y D yg D Pr fX D xg Pr fY D yg.

Given a set of random variables defined over the same sample space, we can
define new random variables as sums, products, or other functions of the original
variables.

Expected value of a random variable
The simplest and most useful summary of the distribution of a random variable is
the “average” of the values it takes on. The expected value (or, synonymously,
expectation or mean) of a discrete random variable X is
E ŒX $ D

X

x

x " Pr fX D xg ; (C.20)

which is well defined if the sum is finite or converges absolutely. Sometimes the
expectation of X is denoted by %X or, when the random variable is apparent from
context, simply by %.

Consider a game in which you flip two fair coins. You earn $3 for each head but
lose $2 for each tail. The expected value of the random variable X representing
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your earnings is
E ŒX $ D 6 " Pr f2 H’sg C 1 " Pr f1 H, 1 Tg # 4 " Pr f2 T’sg

D 6.1=4/ C 1.1=2/ # 4.1=4/

D 1 :

The expectation of the sum of two random variables is the sum of their expecta-
tions, that is,
E ŒX C Y $ D E ŒX $ C E ŒY $ ; (C.21)
whenever E ŒX $ and E ŒY $ are defined. We call this property linearity of expecta-
tion, and it holds even if X and Y are not independent. It also extends to finite and
absolutely convergent summations of expectations. Linearity of expectation is the
key property that enables us to perform probabilistic analyses by using indicator
random variables (see Section 5.2).

If X is any random variable, any function g.x/ defines a new random vari-
able g.X/. If the expectation of g.X/ is defined, then
E Œg.X/$ D

X

x

g.x/ " Pr fX D xg :

Letting g.x/ D ax, we have for any constant a,
E ŒaX $ D aE ŒX $ : (C.22)
Consequently, expectations are linear: for any two random variables X and Y and
any constant a,
E ŒaX C Y $ D aE ŒX $ C E ŒY $ : (C.23)

When two random variables X and Y are independent and each has a defined
expectation,
E ŒXY $ D

X

x

X

y

xy " Pr fX D x and Y D yg

D
X

x

X

y

xy " Pr fX D xg Pr fY D yg

D

 
X

x

x " Pr fX D xg

! 
X

y

y " Pr fY D yg

!

D E ŒX $ E ŒY $ :

In general, when n random variables X1; X2; : : : ; Xn are mutually independent,
E ŒX1X2 " " " Xn$ D E ŒX1$ E ŒX2$ " " " E ŒXn$ : (C.24)



C.3 Discrete random variables 1199

When a random variable X takes on values from the set of natural numbers
N D f0; 1; 2; : : :g, we have a nice formula for its expectation:

E ŒX $ D
1X

iD0

i " Pr fX D ig

D
1X

iD0

i.Pr fX % ig # Pr fX % i C 1g/

D
1X

iD1

Pr fX % ig ; (C.25)

since each term Pr fX % ig is added in i times and subtracted out i # 1 times
(except Pr fX % 0g, which is added in 0 times and not subtracted out at all).

When we apply a convex function f .x/ to a random variable X , Jensen’s in-
equality gives us
E Œf .X/$ % f .E ŒX $/ ; (C.26)
provided that the expectations exist and are finite. (A function f .x/ is convex
if for all x and y and for all 0 $ " $ 1, we have f ."x C .1 # "/y/ $
"f .x/ C .1 # "/f .y/.)

Variance and standard deviation
The expected value of a random variable does not tell us how “spread out” the
variable’s values are. For example, if we have random variables X and Y for which
Pr fX D 1=4g D Pr fX D 3=4g D 1=2 and Pr fY D 0g D Pr fY D 1g D 1=2,
then both E ŒX $ and E ŒY $ are 1=2, yet the actual values taken on by Y are farther
from the mean than the actual values taken on by X .

The notion of variance mathematically expresses how far from the mean a ran-
dom variable’s values are likely to be. The variance of a random variable X with
mean E ŒX $ is
Var ŒX $ D E (

.X # E ŒX $/2
)

D E (
X2 # 2XE ŒX $ C E2 ŒX $

)

D E (
X2

)
# 2E ŒXE ŒX $$ C E2 ŒX $

D E (
X2

)
# 2E2 ŒX $ C E2 ŒX $

D E (
X2

)
# E2 ŒX $ : (C.27)

To justify the equality E ŒE2 ŒX $$ D E2 ŒX $, note that because E ŒX $ is a real num-
ber and not a random variable, so is E2 ŒX $. The equality E ŒXE ŒX $$ D E2 ŒX $
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follows from equation (C.22), with a D E ŒX $. Rewriting equation (C.27) yields
an expression for the expectation of the square of a random variable:
E (

X2
)

D Var ŒX $ C E2 ŒX $ : (C.28)
The variance of a random variable X and the variance of aX are related (see

Exercise C.3-10):
Var ŒaX $ D a2Var ŒX $ :

When X and Y are independent random variables,
Var ŒX C Y $ D Var ŒX $ C Var ŒY $ :

In general, if n random variables X1; X2; : : : ; Xn are pairwise independent, then

Var
"

nX

iD1

Xi

#

D
nX

iD1

Var ŒXi $ : (C.29)

The standard deviation of a random variable X is the nonnegative square root
of the variance of X . The standard deviation of a random variable X is sometimes
denoted &X or simply & when the random variable X is understood from context.
With this notation, the variance of X is denoted &2.

Exercises
C.3-1
Suppose we roll two ordinary, 6-sided dice. What is the expectation of the sum
of the two values showing? What is the expectation of the maximum of the two
values showing?
C.3-2
An array AŒ1 : : n$ contains n distinct numbers that are randomly ordered, with each
permutation of the n numbers being equally likely. What is the expectation of the
index of the maximum element in the array? What is the expectation of the index
of the minimum element in the array?
C.3-3
A carnival game consists of three dice in a cage. A player can bet a dollar on any
of the numbers 1 through 6. The cage is shaken, and the payoff is as follows. If the
player’s number doesn’t appear on any of the dice, he loses his dollar. Otherwise,
if his number appears on exactly k of the three dice, for k D 1; 2; 3, he keeps his
dollar and wins k more dollars. What is his expected gain from playing the carnival
game once?
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C.3-4
Argue that if X and Y are nonnegative random variables, then
E Œmax.X; Y /$ $ E ŒX $ C E ŒY $ :

C.3-5 ?
Let X and Y be independent random variables. Prove that f .X/ and g.Y / are
independent for any choice of functions f and g.
C.3-6 ?
Let X be a nonnegative random variable, and suppose that E ŒX $ is well defined.
ProveMarkov’s inequality:
Pr fX % tg $ E ŒX $ =t (C.30)
for all t > 0.
C.3-7 ?
Let S be a sample space, and let X and X 0 be random variables such that
X.s/ % X 0.s/ for all s 2 S . Prove that for any real constant t ,
Pr fX % tg % Pr fX 0 % tg :

C.3-8
Which is larger: the expectation of the square of a random variable, or the square
of its expectation?
C.3-9
Show that for any random variable X that takes on only the values 0 and 1, we have
Var ŒX $ D E ŒX $ E Œ1 # X $.
C.3-10
Prove that Var ŒaX $ D a2Var ŒX $ from the definition (C.27) of variance.

C.4 The geometric and binomial distributions

We can think of a coin flip as an instance of a Bernoulli trial, which is an experi-
ment with only two possible outcomes: success, which occurs with probability p,
and failure, which occurs with probability q D 1#p. When we speak of Bernoulli
trials collectively, we mean that the trials are mutually independent and, unless we
specifically say otherwise, that each has the same probability p for success. Two
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Figure C.1 A geometric distribution with probability p D 1=3 of success and a probability
q D 1 # p of failure. The expectation of the distribution is 1=p D 3.

important distributions arise from Bernoulli trials: the geometric distribution and
the binomial distribution.

The geometric distribution
Suppose we have a sequence of Bernoulli trials, each with a probability p of suc-
cess and a probability q D 1#p of failure. How many trials occur before we obtain
a success? Let us define the random variable X be the number of trials needed to
obtain a success. Then X has values in the range f1; 2; : : :g, and for k % 1,
Pr fX D kg D qk!1p ; (C.31)
since we have k # 1 failures before the one success. A probability distribution sat-
isfying equation (C.31) is said to be a geometric distribution. Figure C.1 illustrates
such a distribution.
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Assuming that q < 1, we can calculate the expectation of a geometric distribu-
tion using identity (A.8):

E ŒX $ D
1X

kD1

kqk!1p

D
p

q

1X

kD0

kqk

D
p

q
"

q

.1 # q/2

D
p

q
"

q

p2

D 1=p : (C.32)
Thus, on average, it takes 1=p trials before we obtain a success, an intuitive result.
The variance, which can be calculated similarly, but using Exercise A.1-3, is
Var ŒX $ D q=p2 : (C.33)

As an example, suppose we repeatedly roll two dice until we obtain either a
seven or an eleven. Of the 36 possible outcomes, 6 yield a seven and 2 yield an
eleven. Thus, the probability of success is p D 8=36 D 2=9, and we must roll
1=p D 9=2 D 4:5 times on average to obtain a seven or eleven.

The binomial distribution
How many successes occur during n Bernoulli trials, where a success occurs with
probability p and a failure with probability q D 1 # p? Define the random vari-
able X to be the number of successes in n trials. Then X has values in the range
f0; 1; : : : ; ng, and for k D 0; 1; : : : ; n,

Pr fX D kg D

 
n

k

!

pkqn!k ; (C.34)

since there are !
n
k

" ways to pick which k of the n trials are successes, and the
probability that each occurs is pkqn!k . A probability distribution satisfying equa-
tion (C.34) is said to be a binomial distribution. For convenience, we define the
family of binomial distributions using the notation

b.kI n; p/ D

 
n

k

!

pk.1 # p/n!k : (C.35)

Figure C.2 illustrates a binomial distribution. The name “binomial” comes from the
right-hand side of equation (C.34) being the kth term of the expansion of .p Cq/n.
Consequently, since p C q D 1,
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Figure C.2 The binomial distribution b.kI 15; 1=3/ resulting from n D 15 Bernoulli trials, each
with probability p D 1=3 of success. The expectation of the distribution is np D 5.

nX

kD0

b.kI n; p/ D 1 ; (C.36)

as axiom 2 of the probability axioms requires.
We can compute the expectation of a random variable having a binomial distri-

bution from equations (C.8) and (C.36). Let X be a random variable that follows
the binomial distribution b.kI n; p/, and let q D 1 # p. By the definition of expec-
tation, we have

E ŒX $ D
nX

kD0

k " Pr fX D kg

D
nX

kD0

k " b.kI n; p/

D
nX

kD1

k

 
n

k

!

pkqn!k

D np

nX

kD1

 
n # 1

k # 1

!

pk!1qn!k (by equation (C.8))

D np

n!1X

kD0

 
n # 1

k

!

pkq.n!1/!k
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D np

n!1X

kD0

b.kI n # 1; p/

D np (by equation (C.36)) . (C.37)
By using the linearity of expectation, we can obtain the same result with sub-

stantially less algebra. Let Xi be the random variable describing the number of
successes in the i th trial. Then E ŒXi $ D p " 1 C q " 0 D p, and by linearity of
expectation (equation (C.21)), the expected number of successes for n trials is

E ŒX $ D E
"

nX

iD1

Xi

#

D
nX

iD1

E ŒXi $

D
nX

iD1

p

D np : (C.38)
We can use the same approach to calculate the variance of the distribution. Using

equation (C.27), we have Var ŒXi $ D E ŒX2
i $ # E2 ŒXi $. Since Xi only takes on the

values 0 and 1, we have X2
i D Xi , which implies E ŒX2

i $ D E ŒXi $ D p. Hence,
Var ŒXi $ D p # p2 D p.1 # p/ D pq : (C.39)

To compute the variance of X , we take advantage of the independence of the n
trials; thus, by equation (C.29),

Var ŒX $ D Var
"

nX

iD1

Xi

#

D
nX

iD1

Var ŒXi $

D
nX

iD1

pq

D npq : (C.40)
As Figure C.2 shows, the binomial distribution b.kI n; p/ increases with k until

it reaches the mean np, and then it decreases. We can prove that the distribution
always behaves in this manner by looking at the ratio of successive terms:
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b.kI n; p/

b.k # 1I n; p/
D

!
n
k

"
pkqn!k

!
n

k!1

"
pk!1qn!kC1

D
nŠ.k # 1/Š.n # k C 1/Šp

kŠ.n # k/ŠnŠq

D
.n # k C 1/p

kq
(C.41)

D 1 C
.n C 1/p # k

kq
:

This ratio is greater than 1 precisely when .n C 1/p # k is positive. Conse-
quently, b.kI n; p/ > b.k # 1I n; p/ for k < .n C 1/p (the distribution increases),
and b.kI n; p/ < b.k # 1I n; p/ for k > .n C 1/p (the distribution decreases).
If k D .n C 1/p is an integer, then b.kI n; p/ D b.k # 1I n; p/, and so the distri-
bution then has two maxima: at k D .nC1/p and at k#1 D .nC1/p#1 D np # q.
Otherwise, it attains a maximum at the unique integer k that lies in the range
np # q < k < .n C 1/p.

The following lemma provides an upper bound on the binomial distribution.

Lemma C.1
Let n % 0, let 0 < p < 1, let q D 1 # p, and let 0 $ k $ n. Then

b.kI n; p/ $
#np

k

$k # nq

n # k

$n!k

:

Proof Using equation (C.6), we have

b.kI n; p/ D

 
n

k

!

pkqn!k

$
#n

k

$k # n

n # k

$n!k

pkqn!k

D
#np

k

$k # nq

n # k

$n!k

:

Exercises
C.4-1
Verify axiom 2 of the probability axioms for the geometric distribution.
C.4-2
How many times on average must we flip 6 fair coins before we obtain 3 heads
and 3 tails?
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C.4-3
Show that b.kI n; p/ D b.n # kI n; q/, where q D 1 # p.
C.4-4
Show that value of the maximum of the binomial distribution b.kI n; p/ is approx-
imately 1=

p
2#npq, where q D 1 # p.

C.4-5 ?
Show that the probability of no successes in n Bernoulli trials, each with probability
p D 1=n, is approximately 1=e. Show that the probability of exactly one success
is also approximately 1=e.
C.4-6 ?
Professor Rosencrantz flips a fair coin n times, and so does Professor Guildenstern.
Show that the probability that they get the same number of heads is !

2n
n

"
=4n. (Hint:

For Professor Rosencrantz, call a head a success; for Professor Guildenstern, call
a tail a success.) Use your argument to verify the identity

nX

kD0

 
n

k

!2

D

 
2n

n

!

:

C.4-7 ?
Show that for 0 $ k $ n,
b.kI n; 1=2/ $ 2n H.k=n/!n ;

where H.x/ is the entropy function (C.7).
C.4-8 ?
Consider n Bernoulli trials, where for i D 1; 2; : : : ; n, the i th trial has probabil-
ity pi of success, and let X be the random variable denoting the total number of
successes. Let p % pi for all i D 1; 2; : : : ; n. Prove that for 1 $ k $ n,

Pr fX < kg %
k!1X

iD0

b.i I n; p/ :

C.4-9 ?
Let X be the random variable for the total number of successes in a set A of n
Bernoulli trials, where the i th trial has a probability pi of success, and let X 0

be the random variable for the total number of successes in a second set A0 of n
Bernoulli trials, where the i th trial has a probability p0

i % pi of success. Prove that
for 0 $ k $ n,
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Pr fX 0 % kg % Pr fX % kg :

(Hint: Show how to obtain the Bernoulli trials in A0 by an experiment involving
the trials of A, and use the result of Exercise C.3-7.)

? C.5 The tails of the binomial distribution

The probability of having at least, or at most, k successes in n Bernoulli trials,
each with probability p of success, is often of more interest than the probability of
having exactly k successes. In this section, we investigate the tails of the binomial
distribution: the two regions of the distribution b.kI n; p/ that are far from the
mean np. We shall prove several important bounds on (the sum of all terms in) a
tail.

We first provide a bound on the right tail of the distribution b.kI n; p/. We can
determine bounds on the left tail by inverting the roles of successes and failures.

Theorem C.2
Consider a sequence of n Bernoulli trials, where success occurs with probability p.
Let X be the random variable denoting the total number of successes. Then for
0 $ k $ n, the probability of at least k successes is

Pr fX % kg D
nX

iDk

b.i I n; p/

$

 
n

k

!

pk :

Proof For S & f1; 2; : : : ; ng, we let AS denote the event that the i th trial is a
success for every i 2 S . Clearly Pr fAS g D pk if jS j D k. We have
Pr fX % kg D Pr fthere exists S & f1; 2; : : : ; ng W jS j D k and ASg

D Pr
* [

S"f1;2;:::;ngWjS jDk

AS

+

$
X

S"f1;2;:::;ngWjS jDk

Pr fASg (by inequality (C.19))

D

 
n

k

!

pk :
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The following corollary restates the theorem for the left tail of the binomial
distribution. In general, we shall leave it to you to adapt the proofs from one tail to
the other.

Corollary C.3
Consider a sequence of n Bernoulli trials, where success occurs with probabil-
ity p. If X is the random variable denoting the total number of successes, then for
0 $ k $ n, the probability of at most k successes is

Pr fX $ kg D
kX

iD0

b.i I n; p/

$

 
n

n # k

!

.1 # p/n!k

D

 
n

k

!

.1 # p/n!k :

Our next bound concerns the left tail of the binomial distribution. Its corollary
shows that, far from the mean, the left tail diminishes exponentially.

Theorem C.4
Consider a sequence of n Bernoulli trials, where success occurs with probability p
and failure with probability q D 1 # p. Let X be the random variable denoting the
total number of successes. Then for 0 < k < np, the probability of fewer than k
successes is

Pr fX < kg D
k!1X

iD0

b.i I n; p/

<
kq

np # k
b.kI n; p/ :

Proof We bound the series Pk!1
iD0 b.i I n; p/ by a geometric series using the tech-

nique from Section A.2, page 1151. For i D 1; 2; : : : ; k, we have from equa-
tion (C.41),
b.i # 1I n; p/

b.i I n; p/
D

iq

.n # i C 1/p

<
iq

.n # i/p

$
kq

.n # k/p
:
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If we let

x D
kq

.n # k/p

<
kq

.n # np/p

D
kq

nqp

D
k

np

< 1 ;

it follows that
b.i # 1I n; p/ < x b.i I n; p/

for 0 < i $ k. Iteratively applying this inequality k # i times, we obtain
b.i I n; p/ < xk!i b.kI n; p/

for 0 $ i < k, and hence
k!1X

iD0

b.i I n; p/ <

k!1X

iD0

xk!ib.kI n; p/

< b.kI n; p/

1X

iD0

xi

D
x

1 # x
b.kI n; p/

D
kq

np # k
b.kI n; p/ :

Corollary C.5
Consider a sequence of n Bernoulli trials, where success occurs with probability p
and failure with probability q D 1 # p. Then for 0 < k $ np=2, the probability of
fewer than k successes is less than one half of the probability of fewer than k C 1
successes.

Proof Because k $ np=2, we have
kq

np # k
$

.np=2/q

np # .np=2/
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D
.np=2/q

np=2

$ 1 ; (C.42)
since q $ 1. Letting X be the random variable denoting the number of successes,
Theorem C.4 and inequality (C.42) imply that the probability of fewer than k suc-
cesses is

Pr fX < kg D
k!1X

iD0

b.i I n; p/ < b.kI n; p/ :

Thus we have
Pr fX < kg

Pr fX < k C 1g
D

Pk!1
iD0 b.i I n; p/

Pk
iD0 b.i I n; p/

D
Pk!1

iD0 b.i I n; p/
Pk!1

iD0 b.i I n; p/ C b.kI n; p/

< 1=2 ;

since Pk!1
iD0 b.i I n; p/ < b.kI n; p/.

Bounds on the right tail follow similarly. Exercise C.5-2 asks you to prove them.

Corollary C.6
Consider a sequence of n Bernoulli trials, where success occurs with probability p.
Let X be the random variable denoting the total number of successes. Then for
np < k < n, the probability of more than k successes is

Pr fX > kg D
nX

iDkC1

b.i I n; p/

<
.n # k/p

k # np
b.kI n; p/ :

Corollary C.7
Consider a sequence of n Bernoulli trials, where success occurs with probability p
and failure with probability q D 1 # p. Then for .np C n/=2 < k < n, the
probability of more than k successes is less than one half of the probability of
more than k # 1 successes.

The next theorem considers n Bernoulli trials, each with a probability pi of
success, for i D 1; 2; : : : ; n. As the subsequent corollary shows, we can use the



1212 Appendix C Counting and Probability

theorem to provide a bound on the right tail of the binomial distribution by setting
pi D p for each trial.

Theorem C.8
Consider a sequence of n Bernoulli trials, where in the i th trial, for i D 1; 2; : : : ; n,
success occurs with probability pi and failure occurs with probability qi D 1 # pi .
Let X be the random variable describing the total number of successes, and let
% D E ŒX $. Then for r > %,
Pr fX # % % rg $

#%e

r

$r

:

Proof Since for any ˛ > 0, the function e˛x is strictly increasing in x,
Pr fX # % % rg D Pr ˚e˛.X!"/ % e˛r

'
; (C.43)

where we will determine ˛ later. Using Markov’s inequality (C.30), we obtain
Pr ˚e˛.X!"/ % e˛r

'
$ E (

e˛.X!"/
)

e!˛r : (C.44)
The bulk of the proof consists of bounding E (

e˛.X!"/
) and substituting a suit-

able value for ˛ in inequality (C.44). First, we evaluate E (
e˛.X!"/

). Using the
technique of indicator random variables (see Section 5.2), let Xi D I fthe i th
Bernoulli trial is a successg for i D 1; 2; : : : ; n; that is, Xi is the random vari-
able that is 1 if the i th Bernoulli trial is a success and 0 if it is a failure. Thus,

X D
nX

iD1

Xi ;

and by linearity of expectation,

% D E ŒX $ D E
"

nX

iD1

Xi

#

D
nX

iD1

E ŒXi $ D
nX

iD1

pi ;

which implies

X # % D
nX

iD1

.Xi # pi / :

To evaluate E (
e˛.X!"/

), we substitute for X # %, obtaining
E (

e˛.X!"/
)

D E (
e˛

Pn
iD1.Xi !pi /

)

D E
"

nY

iD1

e˛.Xi !pi /

#

D
nY

iD1

E (
e˛.Xi !pi /

)
;
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which follows from (C.24), since the mutual independence of the random vari-
ables Xi implies the mutual independence of the random variables e˛.Xi !pi / (see
Exercise C.3-5). By the definition of expectation,
E (

e˛.Xi !pi /
)

D e˛.1!pi /pi C e˛.0!pi /qi

D pie
˛qi C qie

!˛pi

$ pie
˛ C 1 (C.45)

$ exp.pie
˛/ ;

where exp.x/ denotes the exponential function: exp.x/ D ex . (Inequality (C.45)
follows from the inequalities ˛ > 0, qi $ 1, e˛qi $ e˛, and e!˛pi $ 1, and the last
line follows from inequality (3.12).) Consequently,

E (
e˛.X!"/

)
D

nY

iD1

E (
e˛.Xi !pi /

)

$
nY

iD1

exp.pie
˛/

D exp
 

nX

iD1

pie
˛

!

D exp.%e˛/ ; (C.46)
since % D

Pn
iD1 pi . Therefore, from equation (C.43) and inequalities (C.44)

and (C.46), it follows that
Pr fX # % % rg $ exp.%e˛ # ˛r/ : (C.47)
Choosing ˛ D ln.r=%/ (see Exercise C.5-7), we obtain
Pr fX # % % rg $ exp.%eln.r="/ # r ln.r=%//

D exp.r # r ln.r=%//

D
er

.r=%/r

D
#%e

r

$r

:

When applied to Bernoulli trials in which each trial has the same probability of
success, Theorem C.8 yields the following corollary bounding the right tail of a
binomial distribution.
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Corollary C.9
Consider a sequence of n Bernoulli trials, where in each trial success occurs with
probability p and failure occurs with probability q D 1 # p. Then for r > np,

Pr fX # np % rg D
nX

kDdnpCre

b.kI n; p/

$
#npe

r

$r

:

Proof By equation (C.37), we have % D E ŒX $ D np.

Exercises
C.5-1 ?
Which is less likely: obtaining no heads when you flip a fair coin n times, or
obtaining fewer than n heads when you flip the coin 4n times?
C.5-2 ?
Prove Corollaries C.6 and C.7.
C.5-3 ?
Show that
k!1X

iD0

 
n

i

!

ai < .a C 1/n k

na # k.a C 1/
b.kI n; a=.a C 1//

for all a > 0 and all k such that 0 < k < na=.a C 1/.
C.5-4 ?
Prove that if 0 < k < np, where 0 < p < 1 and q D 1 # p, then
k!1X

iD0

piqn!i <
kq

np # k

#np

k

$k # nq

n # k

$n!k

:

C.5-5 ?
Show that the conditions of Theorem C.8 imply that

Pr f% # X % rg $
%

.n # %/e

r

&r

:

Similarly, show that the conditions of Corollary C.9 imply that
Pr fnp # X % rg $

#nqe

r

$r

:


