
Problem set for the Algoritmica 2 class (2015/16)

Roberto Grossi
Dipartimento di Informatica, Università di Pisa

grossi@di.unipi.it

December 3, 2015

Abstract

This is the problem set assigned during class. What is relevant during the resolution
of the problems is the reasoning path that leads to their solutions, thus offering the op-
portunity to learn from mistakes. This is why they are discussed by students in groups,
one class per week, under the supervision of the teacher to guide the brainstorming
process behind the solutions. The wrong way to use this problem set: accumulate the
problems and start solving them alone, a couple of weeks before the exam. The correct
way: solve them each week in groups, discussing them with classmates and teacher.

1. [Randomized selection] Consider the randomized quicksort, analyzed with the indicator
variables, discussed in class (also, paragraph 7.3 in the textbook CLRS - Comern,
Leiserson, Rivest, Stein, Introduction to Algorithms, 3rd edition, MIT Press). Show
how to modify the randomized quicksort so that, given an array A and an integer
1 ≤ k ≤ |A|, it finds the kth largest element in A without fully sorting A. Consider the
analysis with indicator variables seen in class, and adapt it to show that the selection
algorithm thus obtained requires linear expected time. [hint: since the algorithm has
A and k as input, define an indicator variable Xijk for zi and zj, where i < j, with
the knowledge that zk is looked for. The probability will have three cases, according
to the relative order of zk with respect to zi and zj.]

2. [Randomized min-cut algorithm] Consider the randomized min-cut algorithm discussed
in class. We have seen that its probability of success is about 2/n2.

• Describe how to implement the algorithm when the graph is represented by ad-
jacency lists, and analyze its running time.

• A weighted graph has a weight w(e) on each edge e, which is a positive real
number. The min-cut in this case is meant to be min-weighted cut, where the
sum of the weights in the cut edges is minimum. Describe how to extend the
algorithm to weighted graphs, and show that the probability of success is still
2/n2. [hint: define the weighted degree of a node]

1

• Show that running the algorithm for N = cn2 lnn times, for a constant c > 0,
and taking the minimum among the N min-cuts thus produced, the probability
of success can be made at least 1−1/nc (hence, with high probability). [hint: use
the fact that (1− 1/x)x ≈ e−x for small x.]

• Optional. When the graph becomes smaller, the probability of hitting a bad edge
is higher. To reduce this chance, what if the algorithm is stopped when the result-
ing graph contains half of the original vertices? Run it four times independently,
starting from the same graph G, and thus obtaining four graphs G1, G2, G3, G4,
each with n/2 vertices. Apply recursively this idea to each Gi independently.
Each time that two vertices are obtained, return the edges (as before). At the
end, choose the best min-cut thus found among all those generated. Show what is
the time complexity and the probability of error. [hint: it is a divide-and-conquer
approach whose time cost is a recurrence relation; same for the probability]

3. [External memory mergesort] In the external-memory model (hereater EM model),
show how to implement the k-way merge (where (k + 1)B ≤ M), namely, how to
simultaneously merge k sorted sequences of total length N , with an I/O cost of O(N/B)
where B is the block transfer size. Also, try to minimize and analyze the CPU time
cost. Using the above k-way merge, show how to implement the EM mergesort and
analyze its I/O complexity and CPU complexity.

4. [Family of uniform hash functions] Show that the family of hash functions H = {h(x) =
((ax + b)% p)%m} is (almost) “pairwise independent”, where a, b ∈ [m] with a 6= 0
and p is a sufficiently large prime number (m + 1 ≤ p ≤ 2m). The notion of pairwise
independence says that, for any x1, x2 and c1, c2 ∈ [m], we have that Prh∈H [h(x1) =
c1 ∧ h(x2) = c2] = Prh∈H [h(x1) = c1] × Prh∈H [h(x2) = c2]. In other words, the joint
probability is the product of the two individual probabilities.

5. [Deterministic data streaming] Consider a stream of n items, where items can appear
more than once in the stream. The problem is to find the most frequently appearing
item in the stream (where ties broken arbitrarily if more than one item satisfies the
latter). Suppose that only k = O(logc n) items can be stored, one item per memory
cell, where the available storage is k + O(1) memory cells. Show that the problem
cannot be solved deterministically under the following rules: the algorithm can access
only O(logc n) information for each of the k items that it can store, and can read the
next item of the stream; you, the adversarty, have access to all the stream, and the
content of the k items stored by the algorithm, and can decide what is the next item
that the algorithm reads (please note that you cannot change the past, namely, the
items already read by the algorithm) . Hint: it is an adversarial argument based on
the k items chosen by the hypothetical determinist streaming algorithm, and the fact
that there can be a tie on > k items till the last minute.

6. [Special case of most frequent item in a stream] Suppose to have a stream of n items,
so that one of them occurs > n/2 times in the stream. Also, the main memory is

2

limited to keeping just two items and their counters, plus the knowledge of the value
of n beforehand. Show how to find deterministically the most frequent item in this
scenario. [Hint: since the problem cannot be solved deterministically if the most
frequent item occurs ≤ n/2 times, the fact that the frequency is > n/2 should be
exploited.]

7. [Count-min sketch: extension to negative counters] Check the analysis seen in class,
and discuss how to allow F [i] to change by arbirary values read in the stream. Namely,
the stream is a sequence of pairs of elements, where the first element indicates the
item i whose counter is to be changed, and the second element is the amount v of that
change (v can vary in each pair). In this way, the operation on the counter becomes
F [i] = F [i] + v, where the increment and decrement can be now seen as (i, 1) and
(i,−1).

8. [Count-min sketch: range queries] Show and analyze the application of count-min
sketch to range queries (i, j) for computing

∑j
k=i F [k]. Hint: reduce the latter query

to the estimate of just t ≤ 2 log n counters c1, c2, . . . , ct. Note that in order to obtain
a probability at most δ of error (i.e. that

∑t
l=1 cl >

∑j
k=i F [k] + 2ε log n||F ||), it does

not suffices to say that it is at most δ the probability of error of each counter cl: while
each counter is still the actual wanted value plus the residual as before, it is better to
consider the sum V of these t wanted values and the sum X of these residuals, and
apply Markov’s inequality to V and X rather than on the individual counters.

9. [Succinct data structure for range queries] Borrowing the idea of dyadic intervals em-
ployed in the above solution for the count-min sketch for range queries, design a data
structure that uses few additional bits to preprocess a bitvector B of length n, such
that B[i] is the bit in position i for 0 ≤ i < n. After that, the data structure must
support any query of the form xor(i, j) to return the bitwise exclusive or of the bits
B[i], B[i + 1], . . . , B[j] for 0 ≤ i ≤ j < n. Analyze the complexity of the proposed
solution.

10. [External memory implicit searching] Given a static input array A of N keys in EM,
describe how to organize the keys inside A by suitably permuting them during a prepro-
cessing step, so that any subequent search of a key requires O(logB N) block transfers
using just O(1) blocks of auxiliary storage (besides those necessary to store A). Clearly,
the CPU complexity should remain O(logN). Discuss the I/O complexity of the above
preprocessing, assuming that it can uses O(N/B) blocks of auxiliary storage. (Note
that the additional O(N/B) blocks are employed only during the preprocessing; after
that, they are discarded as the search is implicit and thus cannot use any extra block.)

11. [Number of splits for (a, b)-trees] Consider the (a, b)-trees with a = 2 and b = 3.
Describe an example of an (a, b)-tree with N keys and choose a value of the search
key k such that performing a sequence of m operations insert(k), delete(k), insert(k),
delete(k), insert(k), delete(k), etc. . . . , produces Θ(mH) split and fuse operations,
where H = O(logaN/a) is the height. Try to make the example as general as possible.

3

After that, consider the (a, b)-trees with a = 2 and b = 8: produce some examples to
check that the above situation cannot occur. Try to guess some properties from the
examples using the fact that a = b/4: if they are convincing, try to prove and use them
to show that the situation mentioned above cannot occur; in general, prove that, for
any sequence of m updates (arbitrarily chosen from insertions and deletions) starting
from an empty (, b)-tree, the number of split and fuse operations is O(m/a), which is
O(m/B) when a, b = Θ(B) in external memory.

12. [1-D range query] Describe how to perform a one-dimensional range queries in (a, b)-
trees with a, b = Θ(B). Given two keys k1 ≤ k2, the query asks to report all the keys
k in the (a, b)-tree such that k1 ≤ k ≤ k2. Give an analysis of the cost of the proposed
algorithm, which should be output-sensitive, namely, O(logB N+R/B) block transfers,
where R is the number of reported keys.

After that, for a given set of N keys, describe how to build an (a, b)-tree for them
using O(sort(N)) block transfers, where sort(N) = Θ(N/B logM/B N/B) is the optimal
bound for sorting N keys in external memory.

13. [External memory (EM) permuting] Given two input arrays A and π, where A contains
N elements and π contains a permutation of {1, . . . , N}, describe and analyze an
optimal external-memory algorithm for producing an output array C of N elements
such that C[π[i]] = A[i] for 1 ≤ i ≤ N .

After that, extend the lower bound argument given for the sorting problem in the
EM model to the permutation problem: given N input elements e1, e2, . . . , eN and an
input array π containing a permutation of the integers in [1, 2, . . . , N], rearrange in
EM the elements according to the permutation in π, so that they appear in the order
eπ[1], eπ[2], . . . , eπ[N].

14. [Lower bound for searching] For the best possible comparison-based searching algorithm
in a sorted array of N elements stored in external memory, prove that each search
requires Ω(logB N) I/Os in the worst case.

15. [Cache-oblivious selection] Consider the linear-time deterministic selection discussed
in class (see paragraph 9.3 in the textbook CLRS - Comern, Leiserson, Rivest, Stein,
Introduction to Algorithms, 3rd edition, MIT Press). Prove that this algorithm is cache-
oblivious with complexity O(N/B) block transfers (i.e. cache misses) for N elements
stored in an array and any unknown block size B.

16. [Implicit navigation in vEB layout] Consider N = 2h− 1 keys where h is a power of 2,
and the implicit cache-oblivious vEB layout of their corresponding complete binary
tree, where the keys are suitably permuted and stored in an array of length N without
using pointers (as it happens in the classical implicit binary heap but the rule here is
different). The root is in the first position of the array. Find a rule that, given the
position of the current node, it is possible to locate in the array the positions of its

4

left and right children. Discuss how to apply this layout to obtain (a) a static binary
search tree and (b) a heap data structure, discussing the cache complexity.

17. [MapReduce indegree distribution] Use the basic cache-oblivious operations of scan and
sort as building blocks for computing the degree distribution of a graph (e.g. a web
graph), assuming that this graph is already given and represented by adjacency lists:
the output lists all possible indgree values d and, for each such d, the number of nodes
having indegree d. Equivalently, see this computation in terms of MapReduce/Haddop:
just sketch the code for map and reduce, leaving the rest.

18. [MapReduce prefix sums] Given a huge array A of N entries, define the ith prefix sum of
A as Si =

∑i
j=1A[i]. Show how to compute simultaneously all Si, for i = 1, 2, . . . , N , us-

ing overall O(logN) calls to scan/sort/MapReduce/Hadoop and producing O(N logN)
or less pairs 〈key,value〉. [Hint: Easy with O(N) calls. Instead, use partial sums of 2k

entries of A for all suitable values of k.]

19. [Suffix sorting in EM] Using the DC3 algorithm seen in class, and based on a varia-
tion of mergesort, design an EM algorithm to build the suffix array for a text of N
symbols. The I/O complexity should be the same as that of standard sorting, namely,
O(N/B logM/B N/B) block transfers.

20. [Euler tour] Given a connect graph G with n vertices and m edges, where each node
has even degree, design an algorithm to build an Euler tour for G in O(n+m) time.

21. [Wrong greedy for minimum vertex cover] Find an example of (family of) graphs for
which the following greedy approach fails to give a 2-approximation for the minimum
vertex cover problem (and prove why this is so). Start out with an empty S̃. Choose
each time a vertex v with the largest number of incident edges in the current graph.
Add v to S̃ and remove its incident edges. Repeat the process on the resulting graph
as long as there are edges in it. Return |S̃| as the approximation of the minimal size
of a vertex cover for the original input graph. Generalize your argument to show that
the above greedy algorithm cannot actually provide an r-approximation for any given
constant r > 1.

5

