
Problem set for the Algoritmica 2 class (2016/7)

Roberto Grossi
Dipartimento di Informatica, Università di Pisa

grossi@di.unipi.it

November 17, 2016

Abstract

This is the problem set assigned during class. What is relevant during the resolution
of the problems is the reasoning path that leads to their solutions, thus offering the op-
portunity to learn from mistakes. This is why they are discussed by students in groups,
one class per week, under the supervision of the teacher to guide the brainstorming
process behind the solutions. The wrong way to use this problem set: accumulate the
problems and start solving them alone, a couple of weeks before the exam. The correct
way: solve them each week in groups, discussing them with classmates and teacher.

1. [Range updates] Consider an array C of n integers, initially all equal to zero. We want
to support the following operations:

• update(i, j, c), where 0 ≤ i ≤ j ≤ n − 1 and c is an integer: it changes C such
that C[k] := C[k] + c for every i ≤ k ≤ j.

• query(i), where 0 ≤ i ≤ n− 1: it returns the value of C[i].

• sum(i, j), where 0 ≤ i ≤ j ≤ n− 1: it returns
∑j

k=iC[k].

Design a data structure that uses O(n) space, takes O(n log n) construction time, and
implements each operation above in O(log n) time. Note that query(i) = sum(i, i) but
it helps to reason.

[Hint: For the general case, use the segment tree seen in class, which uses O(n log n)
space: prove that its space is actually O(n) when it is employed for this problem.]
[Hint to further save space in practice when the only changes are update(i, i, c): use
an implicit tree such as the Fenwick tree (see wikipedia).]

2. [Depth of a node in a random search tree] A random search tree for a set S can be
defined as follows: if S is empty, then the null tree is a random search tree; otherwise,
choose uniformly at random a key k ∈ S: the random search tree is obtained by picking
k as root, and the random search trees on L = {x ∈ S : x < k} and R = {x ∈ S :

1

x > k} become, respectively, the left and right subtree of the root k. Consider the
randomized QuickSort discussed in class and analyzed with indicator variables [CLRS
7.3], and observe that the random selection of the pivots follows the above process,
thus producing a random search tree of n nodes. Using a variation of the analysis with
indicator variables, prove that the expected depth of a node (i.e. the random variable
representing the distance of the node from the root) is nearly 2 lnn. Prove that the
expected size of its subtree is nearly 2 lnn too, observing that it is a simple variation
of the previous analysis.

Prove that the probability that the expected depth of a node exceeds c2 lnn is small for
any given constant c > 1. [Note: the latter point can be solved after we see Chernoff’s
bounds.]

3. [Karp-Rabin fingerprinting on strings] Given a string S ≡ S[0 . . . n − 1], and two
positions 0 ≤ i < j ≤ n− 1, the longest common extension lceS(i, j) is the length of
the maximal run of matching characters from those positions, namely: if S[i] 6= S[j]
then lceS(i, j) = 0; otherwise, lceS(i, j) = max{` ≥ 1 : S[i . . . i + `− 1] = S[j . . . j +
` − 1]}. For example, if S = abracadabra, then lceS(1, 2) = 0, lceS(0, 3) = 1, and
lceS(0, 7) = 4. Given S in advance for preprocessing, build a data structure for S based
on the Karp-Rabin fingerprinting, in O(n log n) time, so that it supports subsequent
online queries of the following two types:

• lceS(i, j): it computes the longest common extension at positions i and j in
O(log n) time.

• equalS(i, j, `): it checks if S[i . . . i+ `− 1] = S[j . . . j + `− 1] in constant time.

Analyze the cost and the error probability. The space occupied by the data structure
can be O(n log n) but it is possible to use O(n) space. [Note: in this exercise, a one-time
preprocessing is performed, and then many online queries are to be answered on the
fly.]

4. [Hashing sets] Your company has a database S ⊆ U of keys. For this database, it uses
a hash function h uniformly chosen at random from a universal family H (as seen in
class); it also keeps a bit vector BS of m entries, initialized to zeroes, which are then
set BS[h(k)] = 1 for every k ∈ S (note that collisions may happen). Unfortunately,
the database S has been lost, thus only BS and h are known, and the rest is no more
accessible. Now, given k ∈ U , how can you establish if k was in S or not? What is the
probability of error? [Note: you are not choosing k and S randomly as the they are
both given... randomization here is in the choice of h ∈ H performed when building
BS.]

Under the hypothesis that m ≥ c |S| for some c > 1, find the expected number of 1s
in BS under a uniform choice at random of h ∈ H.

2

5. [Family of uniform hash functions] The notion of pairwise independence says that, for
any x1 6= x2 and c1, c2 ∈ Zp, we have that

Pr
h∈H

[h(x1) = c1 ∧ h(x2) = c2] = Pr
h∈H

[h(x1) = c1]× Pr
h∈H

[h(x2) = c2]

In other words, the joint probability is the product of the two individual probabilities.
Show that the family of hash functions H = {hab(x) = ((ax + b) mod p) mod m : a ∈
Z∗p , b ∈ Zp} (seen in class) is “pairwise independent”, where p is a sufficiently large
prime number (m+ 1 ≤ p ≤ 2m).

6. [Deterministic data streaming] Consider a stream of n items, where items can appear
more than once. The problem is to find the most frequently appearing item in the
stream (where ties are broken arbitrarily if more than one item satisfies the latter).
For any fixed integer k ≥ 1, suppose that only k items and counters can be stored,
one item per memory cell, where each counter can use only O(polylog(n)) bits (i.e.
O(logc n) for any fixed constant c > 0): in other words, only b = O(k polylog(n)) bits
of space are available. (Note that, even though we call them counters, they can actually
contain any kind of information as long as it does not exceed that amount of bits.)

Show that the problem cannot be solved deterministically under the following rules:
the algorithm can only use b bits, and read the next item of the stream, one item at
a time. You, the adversary, have access to all the stream, and the content of the b
bits stored by the algorithm: you cannot change those b bits and the past, namely, the
items already read by the algorithm, but you can change the future, namely, the next
item to be read. Since the algorithm must be correct for any input, you can use any
amount of streams to be fed to the algorithm and as many distinct items as you want.
[Hint: it is an adversarial argument based on the fact that, for many streams, there
can be a tie on the items.]

7. [Special case of most frequent item in a stream] Suppose to have a stream of n items,
so that one of them occurs > n/2 times in the stream. Also, the main memory is
limited to keeping just O(1) items and their counters, plus the knowledge of the value
of n beforehand. Show how to find deterministically the most frequent item in this
scenario (see Problem 6 for the general case). [Hint: since the problem cannot be
solved deterministically if the most frequent item occurs ≤ n/2 times, the fact that
the frequency is > n/2 should be exploited.]

8. [Count-min sketch: extension to negative counters] Check the analysis seen in class,
and discuss how to allow F [i] to change by arbirary values read in the stream. Namely,
the stream is a sequence of pairs of elements, where the first element indicates the
item i whose counter is to be changed, and the second element is the amount v of that
change (v can vary in each pair). In this way, the operation on the counter becomes
F [i] = F [i] + v, where the increment and decrement can be now seen as (i, 1) and
(i,−1).

3

9. [Count-min sketch: range queries] Show and analyze the application of count-min sketch
to range queries (i, j) for computing

∑j
k=i F [k]. Hint: reduce the latter query to the

estimate of just t ≤ 2 log n counters c1, c2, . . . , ct. Note that in order to obtain a prob-
ability at most δ of error (i.e. that

∑t
l=1 cl >

∑j
k=i F [k] + 2ε log n||F ||), it does not

suffices to say that it is at most δ the probability of error of each counter cl: while
each counter is still the actual wanted value plus the residual as before, it is better to
consider the sum V of these t wanted values and the sum X of these residuals, and
apply Markov’s inequality to V and X rather than on the individual counters.

10. [Space-efficient perfect hash] Consider the two-level perfect hash tables presented in
[CLRS] and discussed in class. As already discussed, for a given set of n keys from
the universe U , a random universal hash function h : U → [m] is employed where
m = n, thus creating n buckets of size nj ≥ 0, where

∑n−1
j=0 nj = n. Each bucket j uses

a random universal hash function hj : U → [m] with m = n2
j . Key x is thus stored in

position hj(x) of the table for bucket j, where j = h(x).

This problem asks to replace each such table by a bitvector of length n2
j , initialized

to all 0s, where key x is discarded and, in its place, a bit 1 is set in position hj(x) (a
similar thing was proposed in Problem 4 and thus we can have a one-side error). Design
a space-efficient implementation of this variation of perfect hash, using a couple of tips.
First, it can be convenient to represent the value of the table size in unary (i.e., x zeroes
followed by one for size x, so 000001 represents x = 5 and 1 represents x = 0). Second,
it can be useful to employ a rank-select data structure that, given any bit vector B of
b bits, uses additional o(b) bits to support in O(1) time the following operations on B:

• rank1(i): return the number of 1s appearing in the first i bits of B.

• select1(j): return the position i of the jth 1, if any, appearing in B (i.e. B[i] = 1

and rank1(i) = j).

Operations rank0(i) and select0(j) can be defined in the same way as above. Also,
note that o(b) stands for any asymptotic cost that is smaller than Θ(b) for b→∞.

11. [Bloom filters vs. space-efficient perfect hash] Recall that classic Bloom filters use
roughly 1.44 log2(1/f) bits per key, as seen in class (where f = (1 − p)k is the failure

probability minimized for p ≈ e−
kn
m = 1/2). The problem asks to extend the imple-

mentation required in Problem 10 by employing an additional random universal hash
function s : U → [m] with m = d1/fe, called signature, so that s(x) is also stored (in
place of x, which is discarded). The resulting space-efficient perfect hash table T has
now a one-side error with failure probability of roughly f , as in Bloom filters: say why.
Design a space-efficient efficient implementation of T , and compare the number of bits
per key required by T with that required by Bloom filters.

12. [MinHash sketches] As discussed in class, for a min-wise independent family H, we can
associate a sketch s(X) = 〈minh1(X),minh2(X), . . . ,minhk(X)〉 with each set X in
the given data collection, where h1, h2, . . . , hk are indepently chosen at random from

4

H. Consider now any two sets A and B, with their sketches s(A) and s(B). Can you
compute a sketch for A ∪ B using just s(A) and s(B) in O(k) time? Can you prove
that it is equivalent to compute s(A ∪B) from stratch directly from A ∪B?

13. [Randomized min-cut algorithm] Consider the randomized min-cut algorithm discussed

in class. We have seen that its probability of success is at least 1/
(
n
2

)
, where n is the

number of its vertices.

• Describe how to implement the algorithm when the graph is represented by ad-
jacency lists, and analyze its running time. In particular, a contraction step can
be done in O(n) time.

• A weighted graph has a weight w(e) on each edge e, which is a positive real
number. The min-cut in this case is meant to be min-weighted cut, where the
sum of the weights in the cut edges is minimum. Describe how to extend the
algorithm to weighted graphs, and show that the probability of success is still
≥ 1/

(
n
2

)
. [hint: define the weighted degree of a node]

• Show that running the algorithm multiple times independently at random, and
taking the minimum among the min-cuts thus produced, the probability of success
can be made at least 1− 1/nc for a constant c > 0 (hence, with high probability).

5

