
Ensemble Methods



Ensemble Methods

• Improves the accuracy by 
aggregating the predictions of 
multiple classifiers.

• Construct a set of base classifiers
from the training data.

• Predict class label of test records 
by combining the predictions 
made by multiple classifiers.
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Back to Machine Learning

It will exploit Wisdom of crowd ideas for specific tasks

• By combining classifier predictions and

• aims to combine independent and diverse classifiers.

But it will use labelled training data

• to identify the expert classifiers in the pool;

• to identify complementary classifiers;

• to indicate how to the best combine them.



Why Ensemble Methods work?

Suppose there are 25 base classifiers

• Each classifier has error rate, 𝜀 = 0.35

• Assume errors made 
by classifiers are uncorrelated

• Probability that the ensemble 
classifier makes a wrong prediction:


=

− =−







=

25

13

25 06.0)1(
25

)13(
i

ii

i
XP 



Types of Ensemble Methods

• Manipulate data distribution

• Example: bagging, boosting

• Manipulate input features

• Example: random forests

• Manipulate class labels

• Example: error-correcting output coding



Bagging



Bagging (a.k.a. Bootstrap AGGregatING)

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of being selected

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7



Bagging Example

• Consider 1-dimensional data set:

• Classifier is a decision stump
• Decision rule:  x <= k versus x > k

• Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False



Bagging Example
Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.7  y = 1

x > 0.7  y = 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.3  y = 1

x > 0.3  y = -1

x <= 0.35  y = 1

x > 0.35  y = -1



Bagging Example
Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.7  y = 1

x > 0.7  y = 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.3  y = 1

x > 0.3  y = -1

x <= 0.35  y = 1

x > 0.35  y = -1



Bagging Example

Bagging Round 6:

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:

x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1

y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:

x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:

x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:

x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9

y 1 1 1 1 1 1 1 1 1 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.05  y = 1

x > 0.05  y = 1



Bagging Example

• Summary of Training sets:

Round Split Point Left Class Right Class

1 0.35 1 -1

2 0.7 1 1

3 0.35 1 -1

4 0.3 1 -1

5 0.35 1 -1

6 0.75 -1 1

7 0.75 -1 1

8 0.75 -1 1

9 0.75 -1 1

10 0.05 1 1



Bagging Example

• Assume test set is the same as the original data

• Use majority vote to determine class of ensemble classifier

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 1 1 1 -1 -1 -1 -1 -1 -1 -1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

4 1 1 1 -1 -1 -1 -1 -1 -1 -1

5 1 1 1 -1 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1 -1 1 1 1

7 -1 -1 -1 -1 -1 -1 -1 1 1 1

8 -1 -1 -1 -1 -1 -1 -1 1 1 1

9 -1 -1 -1 -1 -1 -1 -1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class



Boosting



Boosting

• An iterative procedure to adaptively change distribution of training 
data by focusing more on previously misclassified records.

• Initially, all the records are assigned equal weights.

• Unlike bagging, weights may change at the end of each boosting 
round.



Boosting

• Records that are wrongly classified will have their weights increased.

• Records that are classified correctly will have their weights decreased.

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased; therefore it is more 

likely to be chosen again in subsequent rounds



AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate:

• Importance of a classifier depends on its 
error rate: 
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AdaBoost Algorithm

• Weight update:

• If any intermediate rounds produce error rate higher than 50%, the 
weights are reverted back to 1/n and the resampling procedure is 
repeated

• Classification:
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AdaBoost Algorithm



AdaBoost Example

• Consider 1-dimensional data set:

• Classifier is a decision stump
• Decision rule:  x  k versus x > k

• Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False



AdaBoost Example

• Training sets for the first 3 boosting rounds:

• Weights:

Boosting Round 1:

x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:

x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009



AdaBoost Example

• Summary:

• Classification

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 -1 -1 -1 -1 -1 -1 -1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Round Split Point Left Class Right Class alpha

1 0.75 -1 1 1.738

2 0.05 1 1 2.7784

3 0.3 1 -1 4.1195



Random Forests



Random Forests

• Is a class of ensemble 
methods specifically designed 
for decision trees. 

• It combines the predictions 
made by multiple decision 
trees and outputs the class 
that is the mode of the class's 
output by individual trees.



Random Forest

• Each decision tree is built on a bootstrap sample based on the values 
of an independent set of random vectors.
• Unlike AdaBost, the random vector are generated from a fixed probability 

distribution.

• Bagging using decision trees is a special case of random forests where 
randomness is injected into the model-building process.

• Each decision tree is evaluated among m randomly chosen attributes 
from the M available attributes 
• m ~ 𝑀 or m ~ log𝑀+1



Random Forest - Advantages

• It is one of the most accurate learning algorithms available. For many 
data sets, it produces a high accurate classifier.

• It runs efficiently on large databases. 

• It can handle thousands of input variables without variable deletion.

• It gives estimates of what variables are important in the classification.

• It generates an internal unbiased estimate of the generalization error 
as the forest building progresses.
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