
Information Processing Letters 99 (2006) 54–58

www.elsevier.com/locate/ipl

Approximate maximum weight branchings

Amitabha Bagchi a,∗, Ankur Bhargava b, Torsten Suel c

a Department of Computer Science and Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
b Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

c Department of Computer and Information Science, Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201, USA

Received 22 September 2005; received in revised form 13 February 2006; accepted 20 February 2006

Available online 20 March 2006

Communicated by K. Iwama

Abstract

We consider a special subgraph of a weighted directed graph: one comprising only the k heaviest edges incoming to each vertex.
We show that the maximum weight branching in this subgraph closely approximates the maximum weight branching in the original
graph. Specifically, it is within a factor of k/(k + 1). Our interest in finding branchings in this subgraph is motivated by a data
compression application in which calculating edge weights is expensive but estimating which are the heaviest k incoming edges
is easy. An additional benefit is that since algorithms for finding branchings run in time linear in the number of edges our results
imply faster algorithms although we sacrifice optimality by a small factor. We also extend our results to the case of edge-disjoint
branchings of maximum weight and to maximum weight spanning forests.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Analysis of algorithms; Graph algorithms
1. Introduction

Given a graph G = (V ,E), (V ,B) is a branching if
B is a subset of E such that each vertex in (V ,B) has in-
degree at most one and there are no cycles. Branchings
are basic graph structures which have found applica-
tions in various fields of computer science. Motivated
by a data compression problem [12] we prove the fol-
lowing general theorem about weighted branchings:

Define Gk to be a subgraph of a directed graph G

where each node only retains its k heaviest incoming
edges. If w(Gk) is the weight of a maximum weight

* Corresponding author.
E-mail addresses: bagchi@cse.iitd.ernet.in (A. Bagchi),

ankur@cs.jhu.edu (A. Bhargava), suel@poly.edu (T. Suel).
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.02.011
branching on Gk and w(G) is the weight of a maximum
weight branching on the entire graph G, then

w(Gk)

w(G)
� 1 − 1

k + 1
.

Thus, we can compute a branching with weight al-
most as large as the maximum possible weight on a
dense graph by only considering a few incoming edges
for each vertex. Since algorithms for computing maxi-
mum weight branchings [15,3] depend at least linearly
on the number of edges in the graph, this implies faster
algorithms for approximate maximum weight branch-
ing after appropriate preprocessing of the dense graph.
More importantly, in many scenarios that can be mod-
eled as graph problems, the main cost is in computing
appropriate edge weights for the input graph rather than
in the actual graph computation; our result implies that

A. Bagchi et al. / Information Processing Letters 99 (2006) 54–58 55
for branching problems it suffices to exactly compute
only the weights of the heaviest edges in the reduction.

1.1. A simple application of maximum weight
branching

Consider the following simple application in the con-
text of data compression [12], which provided the initial
motivation for our work. We are interested in compress-
ing a collection of files where there is a significant
degree of similarity (or redundancy) between many of
the files. For example, web pages from the same site
frequently share certain elements in their page layout
and menu structure, and may also contain some similar
and repeated content. This inter-file redundancy can be
exploited to achieve better overall compression of the
collection.

The process of compressing one file (the target file)
with respect to another file (the reference file) is called
delta compression or differential compression [7,9,17,
10]. But given a collection of n files, in what order
should we apply delta compression between pairs of
files to minimize the overall size? There is an expo-
nential number of possible orderings of the pairwise
compression steps. Obviously, it is beneficial to com-
press each file with respect to another very similar file.
However, we have to avoid cycles, such as A being com-
pressed with respect to B and B being compressed with
respect to A, since it would be impossible to uncom-
press the resulting data.

This scenario [12], as well as related problems in
the compression of web graphs [1] and multispectral
images [16], can be modeled as a maximum weight
branching problem on a directed graph. Finding an op-
timal set of delta compression steps is equivalent to
finding a maximum weight branching on a complete di-
rected graph with one node vA for each file A in the
collection, where edge (vA, vB) has a weight equal to
the savings in bits obtained by delta compressing B with
respect to A instead of compressing B by itself [12].

One problem with this reduction is that the result-
ing graph has n2 edges, slowing down the maximum
weight branching computation. However, in practice a
much more significant challenge is the computation of
the edge weights: The only way to determine the precise
weight of an edge is to actually run the delta compressor
on the two files involved. Of course, the final branch-
ing usually contains mostly fairly heavy edges, and thus
it would be highly desirable to compute for each node
only the weights of these most promising edges, in-
stead of materializing the entire graph. Fortunately, in
our scenario efficient techniques are known for estimat-
ing the similarities among pairs of files and for finding
for each file the k most similar other files (or k-nearest
neighbors) under various definitions of file similarity
[11,2,6,8].

Thus, a promising approach would be to compute
only the weights of the incoming edges from the k most
similar files for each node, and then compute the max-
imum weight branching on this subgraph. But can we
show that this results in a compression scheme that
is almost as good as using the complete graph? There
are two issues here. First, the techniques for finding k-
nearest neighbors in [11,2,6,8] assume certain formal
similarity measures between files that do not precisely
model the benefit obtained by an actual delta compres-
sor that uses a combination of various state-of-the-art
compression techniques to minimize size. However, this
issue is unlikely to be completely resolved, and in prac-
tice the known techniques seem to be able to iden-
tify promising references files for each file. The second
question is, assuming that we have correctly identified
for each file the k best references files, if we run a
branching computation on this subgraph are we guaran-
teed to get a compression scheme whose benefit approx-
imates that of a scheme based on the complete graph?

This question lead us to the following very sim-
ple and natural conjecture about maximum weight
branchings: If w(Gk) is the weight of a maximum
weight branching on a subgraph of G where each
node only retains its k heaviest incoming edges, and
w(G) the weight of a maximum weight branching on
the entire graph, we conjecture that w(Gk)/w(G) �
1 − 1/(k + 1).

In this paper we settle the above conjecture in the af-
firmative. We also show that this result can be extended
in a natural way to c edge disjoint branchings [4] of
maximum total weight, and to maximum weight span-
ning forests in undirected graphs.

2. Maximum weight branchings

We consider a directed graph G = (V ,E) with an
edge weight function w :E → R

+. A branching (V ,B)

is a subgraph of G with an edge set B ⊆ E such that
(V ,B) is acyclic and the in-degree of any vertex of
(V ,B) is at most 1. Note that in general, a branching
forms a forest of rooted directed trees. The weight of a
branching B is w(B) = ∑

e∈B w(e). A maximum weight
branching is a branching with weight at least that of any
other branching.

We define the k-heavy subgraph of G, denoted Gk ,
as the subgraph that contains only the k heaviest edges
incoming to each vertex. If the in-degree of a vertex is

56 A. Bagchi et al. / Information Processing Letters 99 (2006) 54–58
Fig. 1. Tightness. Let the graph be G. All other edges in this graph
have 0 weight. The weight of the maximum weight branching in G is
k + 1 while the maximum weight branching in Gk is k + ε. As ε → 0
we get a k/(k + 1) factor.

less than k then we assume edges of weight zero. Ties
are broken arbitrarily.

We prove the following theorem relating the weights
of the maximum weight branchings in G and Gk . The
theorem follows as a corollary of the more general The-
orem 2.2 below, and thus we defer the proof.

Theorem 2.1. Let G be a weighted directed graph and
an integer 0 < k < n − 1. The weight of the maximum
weight branching in Gk is at least 1 − 1/(k + 1) times
the weight of the maximum weight branching in G.

2.1. Tightness of approximation

We first prove that the above bound of 1 − 1/(k + 1)

is in fact tight. Fig. 1 gives an example of a simple graph
that shows that the bound is the best possible in the
worst case.

2.2. Maximum weight c-edge disjoint branchings

We define a c-EDB (a set of c edge disjoint branch-
ings) in G = (V ,E) as a tuple (V ,B1,B2, . . . ,Bc) such
that for all 1 � i � c, (V ,Bi) is a branching in G and
the edge sets B1, . . . ,Bc are disjoint. The weight of a
c-EDB is the sum of the weights of all the c branchings.
A maximum weight c-EDB is a c-EDB on a weighted
directed graph such that its weight is at least the weight
of any other c-EDB. Efficient algorithms are known
for computing edge-disjoint branchings in graphs. Ed-
monds inaugurated the area by giving conditions for
existence of edge-disjoint branchings [4]. Tarjan [13,14]
gave efficient algorithms for computing edge-disjoint
branchings which were improved and used in the con-
text of determining connectivity by Gabow [5].

We present a generalization of Theorem 2.1. For c =
1 we get the statement of Theorem 2.1.
Theorem 2.2. Let G be a weighted directed graph, k

be a natural number for which Gk is well defined and
c be a natural number such that c � k. The weight
of the maximum weight c-EDB in Gk is at least 1 −
1/(k − c + 2) times the weight of the maximum weight
c-EDB in G.

Proof. We prove the theorem by constructing a c-EDB
in Gk from a maximum weight c-EDB in G such that
its weight is at least a 1 − 1/(k − c + 2) fraction of
the weight of the maximum weight c-EDB in G. The
maximum weight c-EDB in G is a set of c branch-
ings: B1,B2, . . . ,Bc , such that no two branchings share
a common edge. The edges that these branchings are
composed of are not necessarily amongst the k heav-
iest incoming edges at each node. We transform each
of these branchings into branchings that use only the k

heaviest incoming edges at each node. There is some
loss in weight in the course of this transformation.

We start with branching B1. There is no specific or-
der required of the branchings, so B1 could be chosen
arbitrarily. In addition the same transformation proce-
dure is applied to each of the branchings, therefore we
restrict the discussion to B1. Let Ek be the edge set of
Gk , i.e., the set of the k-heavy incoming edges for each
node in G. Consider that there is an edge e = (u, v) in
B1 such that, e /∈ Ek and every descendent edge in B1

is in Ek . Let e1, e2, . . . , ek be the k-heavy edges inci-
dent on v. None of these k edges are part of B1. For all
1 � i � k,

• ei is in exactly any one of the branchings B2,B3,

. . . ,Bc; or
• ei results in a cycle in B1.

The case that ei is incident on v from a non-
descendant of v in B1 cannot arise because there is
already an edge incident on v in B1, namely e, and this
edge is not in Ek .

Note that since there are c − 1 other edge disjoint
branchings there can be at most c − 1 edges of the k-
heavy edges that may already be in use in other branch-
ings. This leaves k − c + 1 edges that cannot be part of
any branching. We denote this set of k − c + 1 edges by
the set X. We perform one of the following two trans-
formations:

Transformation 1. If any edge x ∈ X is incident on v

from a non-descendent of v in B1 then simply add x and
remove e from B1. Next we continue the search for an
edge in B1 that is not in Ek .

A. Bagchi et al. / Information Processing Letters 99 (2006) 54–58 57
Transformation 2. If all the edges in X are incident
on v from descendents of v then each edge must result
in a cycle in B1. There are k − c + 1 cycles possible.
Each cycle has at least one distinct vertex (the distinct
vertices are the sources of the edges in X). This means
that each cycle must have at least two distinct edges.
At least one of these must already be in the branching.
Therefore, there are at least k − c + 1 distinct edges that
are descendents of v in B1. We denote this set of edges
by Y . Let y be the least weight edge in Y . Let x ∈ X

be the edge that creates a cycle with y in it. We perform
one of the two following edits the choice of which is
decided by the weight of y:

(2.1) if the weight of y is less than that of x then remove
edges y and e from B1 and add x to B1; else

(2.2) remove e from B1.

Next we continue the search for an edge in B1 that is
not in Ek .

It is clear that with these two primitive transforma-
tions we can convert a c-EDB into a k-heavy c-EDB as
long as k � c. Next we show the accounting to prove
that the loss in weight due to the transformations is
bounded. Transformation 1 does not require any ac-
counting because the weight of the branching increases
after applying it. In the case of Transformation 2, there
is a net loss of at most (w(Y) + w(e))/(k − c + 2). To
show this we present the argument in the two different
possible outcomes of Transformation 2.

In Case 2.1 of Transformation 2 we remove edges e

and y and insert edge x. Since x is heavier than y and
e, we have effectively removed the smallest edge either
e or y from amongst k − c + 2 edges (Y ∪ {e}). The
net loss is (w(Y) + w(e))/(k − c + 2) and is charged to
Y ∪ {e}.

In Case 2.2 of Transformation 2 we only remove
edge e. Since e is the smallest edge amongst k − c + 2
edges (Y ∪{e}) the net loss is (w(Y)+w(e))/(k−c+2)

and is charged to Y ∪ {e}.
The crucial factor in the accounting is that once

Transformation 2 is applied edge e is removed and
therefore the edges that have been charged can never be
charged again because every descendent edge of e in B1

is in Ek . There is a possibility that they may be involved
in a type 1 transformation but never a type 2. There-
fore, the weight of the transformed structure is at least a
1 − 1/(k − c + 2) multiplicative factor of the weight of
the maximum weight c-EDB in G. �
3. Maximum weight spanning forests

A Forest of an undirected graph G = (V ,E) is a sub-
graph H = (V ,F) such that F ⊆ E and H is acyclic.
The maximum weight spanning forest of G is a forest
H such that its weight is no less than the weight of any
forest of G. Note that Prim’s or Kruskal’s MST algo-
rithm yields a maximum weight spanning forest when
run on G. A k-heavy subgraph of an undirected graph,
G is a subgraph Gk = (V ,Ek) such that Ek ⊆ E and for
each (u, v) ∈ Ek , (u, v) is one of the k heaviest edges
incident on u or one of the k heaviest edges incident
on v. Ties are broken arbitrarily. Note that |Ek| � k|V |.
A c-EDF (a set of c edge disjoint forests) is a set of c

forests on an undirected graph such that no edge of the
graph is in more than one forest. A maximum weight
c-EDF is a c-EDF on a weighted undirected graph such
that its weight is at least the weight of any other c-EDF
in that graph.

Let G be an undirected graph, k be a natural number
for which Gk is well defined and c be a natural number
such that c � k. The following corollaries are a conse-
quence of Theorem 2.2.

Corollary 3.1. The weight of the maximum weight forest
in Gk is at least 1 − 1/(k + 1) times the weight of the
maximum weight forest in G.

Corollary 3.2. The weight of the maximum weight c-
EDF in Gk is at least 1−1/(k − c+2) times the weight
of the maximum weight c-EDF in G.

References

[1] M. Adler, M. Mitzenmacher, Towards compressing web graphs,
in: Proc. of the IEEE Data Compression Conference (DCC),
March 2001.

[2] A. Broder, On the resemblance and containment of docu-
ments, in: Compression and Complexity of Sequences (SE-
QUENCES’97), IEEE Computer Society, 1997, pp. 21–29.

[3] P. Camerini, L. Fratta, F. Maffioli, A note on finding optimum
branchings, Networks 9 (1979) 309–312.

[4] J. Edmonds, Edge-disjoint branchings, in: R. Rustin (Ed.), Pro-
ceedings of the 9th Courant Computer Science Symposium,
Combinatorial Algorithms, Algorithmics Press, 1972, pp. 91–96.

[5] H. Gabow, A matroid approach to finding edge connectivity and
packing arborescences, in: Proc. 23rd Annual Symp. on Theory
of Computing, 1991, pp. 112–122.

[6] T.H. Haveliwala, A. Gionis, P. Indyk, Scalable techniques for
clustering the web, in: Proc. of the WebDB Workshop, Dallas,
TX, May 2000.

[7] J. Hunt, K.-P. Vo, W. Tichy, Delta algorithms: An empiri-
cal analysis, ACM Transactions on Software Engineering and
Methodology 7 (1998).

58 A. Bagchi et al. / Information Processing Letters 99 (2006) 54–58
[8] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards
removing the curse of dimensionality, in: Proc. of the 30th ACM
Symp. on Theory of Computing, May 1998, pp. 604–612.

[9] D. Korn, K.-P. Vo, Engineering a differencing and compression
data format, in: Proceedings of the Usenix Annual Technical
Conference, June 2002, pp. 219–228.

[10] J. MacDonald, File system support for delta compression, MS
Thesis, UC Berkeley, May 2000.

[11] U. Manber, S. Wu, GLIMPSE: A tool to search through entire
file systems, in: Proc. of the 1994 Winter USENIX Conference,
January 1994, pp. 23–32.

[12] Z. Ouyang, N. Memon, T. Suel, D. Trendafilov, Cluster-based
delta compression of a collection of files, in: Third Internat.
Conf. on Web Information Systems Engineering, December
2002.

[13] R.E. Tarjan, A good algorithm for edge-disjoint branching, In-
formation Processing Letters 3 (2) (1974) 51–53.

[14] R.E. Tarjan, Edge-disjoint spanning trees and depth-first search,
Acta Informatica 6 (1976) 171–185.

[15] R.E. Tarjan, Finding optimum branchings, Networks 7 (1977)
25–35.

[16] S. Tate, Band ordering in lossless compression of multispectral
images, IEEE Transactions on Computers 46 (45) (1997) 211–
320.

[17] D. Trendafilov, N. Memon, T. Suel, zdelta: a simple delta com-
pression tool, Technical Report TR-CIS-2002-02, Polytechnic
University, CIS Department, June 2002.

