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1. Preliminaries

1.1. Inference Rules

Inference rules are a key tool for defining syntax (e.g., which programs respect the syntax, which programs
are well-typed) and semantics (e.g. to derive operational semantics by induction on the structure of the
programs).

Definition 1.1 (Inference rule)
Let x1, x2, . . . , xn, y be (well-formed) formulas. An inference rule is written as

r = { x1, x2, . . . , xn
|          {z          }

premises

}/ y
|{z}

conclusion

using on-line notation. Letting X = { x1, x2, . . . , xn }, equivalent notations are

r =
X
y

r =
x1 ... xn

y

The idea is that if we can prove all the formulas x1, x2, . . . , xn in our logic system, then by exploiting the
inference rule r we can also derive the validity of the formula y.

Definition 1.2 (Axiom)
An axiom is an inference rule with empty premise:

r = ?/y.

Equivalent notations are:
r =
?

y
r =

y

In other words, there are no preconditions for applying axiom r, hence there is nothing to prove in order to
apply the rule: in this case we can assume y to hold.

Definition 1.3 (Logic system)
A logic system is a set of inference rules R = { ri | i 2 I }.

In other words, having a set of rules available, we can start by deriving obvious facts using axioms and then
derive new valid formulas applying the inference rules to the formulas that we know to hold (as premises). In
turn, the new derived formulas can be used to prove other formulas.
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Example 1.4 (Some inference rules)
The inference rule

a 2 I b 2 I a � b = c

c 2 I
means that, if a and b are two elements that belongs to the set I and the result of applying the operator � to
a and b gives c as a result, then c must also belong to the set I.

The rule

5 2 I
is an axiom, so we know that 5 belongs to the set I.

By composing inference rules, we build derivations, a fundamental concept for this course.

Definition 1.5 (Derivation)
Given a logic R, a derivation is written

d �R y

where

• either d = ?/y is an axiom of R, i.e., (?/y) 2 R;

• or d = ({d1, . . . , dn} /y) with d1 �R x1, . . . , dn �R xn and ({x1, . . . , xn} /y) 2 R

The notion of derivation is obtained putting together di↵erent steps of reasoning according to the rules in
R. We can see d �R y as the proof that in the formal system R we can derive y.

Let us look more closely at the two cases in Definition 1.5. The first case tells us that if we know that:
⇣?

y

⌘

2 R

i.e., we have an axiom for deriving y in our inference system R, then
⇣?

y

⌘

�R y

is a derivation of y in R.
The second case tells us that if we have already proved x1 with derivation d1, x2 with derivation d2 and so

on, i.e.
d1 �R x1, d2 �R x2, ..., dn �R xn

and we have a rule for deriving y from x1, ..., xn in our inference system, i.e.
⇣ x1, ..., xn

y

⌘

2 R

then we can build a derivation for y:
⇣ {d1, ..., dn}

y

⌘

�R y

Summarizing all the above:

• (?/y) �R y if (?/y) 2 R (axiom)

• ({d1, . . . , dn} /y) �R y if ({x1, . . . , xn} /y) 2 R and d1 �R x1, . . . , dn �R xn (inference)
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A derivation can roughly be seen as a tree whose root is the formula y we derive and whose leaves are the
axioms we need.

Definition 1.6 (Theorem)
A theorem (in R) is a well-formed formula y for which there exists a proof, and we write �R y.

In other words, y is a theorem if 9d.d �R y.

Definition 1.7 (Set of theorems in R)
We let IR = { y | �R y } be the set of all theorems that can be proved in R.

We mention two main approaches to prove theorems:

• top-down or direct

• bottom-up or goal-oriented

The top-down is the approach we used before in which we start from the axioms and we prove the theorems.
However, quite often, we would work using bottom-up because we have already a goal and we want to prove
that this is a theorem.

Example 1.8 (Grammars as sets of inference rules)
Every grammar can be presented equivalently as a set of inference rules. Let us consider the well-known
grammar for strings of balanced parentheses. Recalling that � denotes the empty string, we write:

S ::= SS | (S) | �

We let LS denote the set of strings generated by the grammar for the symbol S . The translation from
production to inference rules is straightforward. The first production S ::= SS says that given any two
strings s1 and s2 of balanced parentheses, their juxtaposition is also a string of balanced parentheses. In
other words:

s1 2 LS s2 2 LS
(1)

s1s2 2 LS

Similarly, the second production S ::= (S) says that we can surround with brackets any string s of
balanced parentheses and get again a string of balanced parentheses. In other words:

s 2 LS
(2)

(s) 2 LS

Finally, the last rule says that the empty string � is just a particular string of balanced parentheses. In
other words we have an axiom:

(3)
� 2 LS

Note the di↵erence between the placeholders s, s1, s2 and the symbol � appearing in the rules above:
the former can be replaced by any string to obtain a specific instance of rules (1) and (2), while the latter
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denotes a given string (i.e. rules (1) and (2) define rule schemes with many instances, while there is a unique
instance of rule (3)).

For example, the rule

)( 2 LS (( 2 LS
(1)

)((( 2 LS

is an instance of rule (1): it is obtained by replacing s1 with )( and s2 with ((. Of course the string )(((
appearing in the conclusion does not belong to LS , but the instance is perfectly valid, because it says that

“)((( 2 LS if )( 2 LS and (( 2 LS ” and since the premises are false we cannot draw any conclusion.
Let us see an example of valid derivation that uses some valid instances of rules (1) and (2).

(3)
� 2 LS

(2)
(�) = () 2 LS

(2)
(()) 2 LS

(3)
� 2 LS

(2)
(�) = () 2 LS

(1)
(())() 2 LS

Reading the proof (from the leaves to the root): Since � 2 LS by axiom (3), then we know that () 2 LS by
(2); if we apply again rule (2) we derive also (()) 2 LS and hence (())() 2 LS by (1). In other words
(())() 2 LS is a theorem.

Let us introduce a second formalization of the same language (balanced parentheses) without using
inference rules. In the following we let ai denote the ith symbol of the string a. Let

f (ai) =
(

1 if ai =(
�1 if ai =)

A string of n parentheses a = a1a2...an is balanced i↵ both the following properties hold:

Property 1

Pm
i=1 f (ai) � 0 m = 0, 1...n

Property 2

Pn
i=1 f (ai) = 0

Intuitively,
Pm

i=1 f (ai) counts the di↵erence between the number of open parentheses and closed parenthe-
ses. Therefore, the first property requires that in any prefix of the string a the number of open parentheses
exceeds the number of closed ones; the second property requires that the string a has as many open
parentheses than closed ones.

An example is shown below for a = (())():

m = 1 2 3 4 5 6
am = ( ( ) ) ( )

f (am) = 1 1 �1 �1 1 �1
Pm

i=1 f (ai) = 1 2 1 0 1 0

The two properties are easy to inspect for any string and therefore define an useful procedure to check if
a string belongs to our language or not.

Next, we show that the two di↵erent characterizations of the language (by inference rules and by
inspection) of balanced parentheses are equivalent.

Theorem 1.9

a 2 LS ()
(

Pm
i=1 f (ai) � 0 m = 0, 1...n

Pn
i=1 f (ai) = 0
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The proof is composed of two implication that we show separately:

=) all the strings produced by the grammar satisfy the two properties;

(= any string that satisfy the two properties can be generated by the grammar.

Proof of =)) To show the first implication, we proceed by induction over the rules: we assume that the
implication is valid for the premises and we show that it holds for the conclusion:

The two properties can be represented graphically over the cartesian plane by taking m over the
x-axis and

Pm
i=1 f (ai) over the y-axis. Intuitively, the graph should start in the origin; it should never

cross below the x-axis and it should end in (n, 0).

Let us check that by applying any inference rule the properties 1 and 2 still hold. The first inference
rule corresponds to the juxtaposition of the two graphs and therefore the result still satisfies both
properties (when the original graphs do).

The second rule corresponds to translate the graph upward (by 1 unit) and therefore the result still
satisfies both properties (when the original graph does).

The third rule is just concerned with the empty string that trivially satisfies the two properties.

Since we have inspected all the inference rules, the proof of the first implication is concluded. ⇤

Proof of(=) We need to find a derivation for any string that satisfies the two properties. Let a be such a
generic string. (We only sketch this direction of the proof, that goes by induction over the length of
the string a.) We proceed by case analysis, considering three cases:

1. If n = 0, a = �. Then, by rule (3) we conclude that a 2 LS .

2. The second case is when the graph associated with a never touches the x-axis (except for its
start and end points). An example is shown below:

In this case we can apply rule (2), because we know that the parentheses opened at the beginning
of a is only matched by the parenthesis at the very end of a.

3. The third and last case is when the graph touches the x-axis (at least) once in a point (k, 0)
di↵erent from its start and its end. An example is shown below:



6 Preliminaries

In this case the substrings a1...ak and ak+1...an are also balanced and we can apply the rule (1)
to their derivations to prove that a 2 LS . ⇤

The last part of the proof outlines a goal-oriented strategy to build a derivation for a given string: We
start by looking for a rule whose conclusion can match the goal we are after. If there are no alternatives,
then we fail. If we have only one alternative we need to build a derivation for its premises. If there are more
than one alternatives we can either explore all of them in parallel (breadth-first approach) or try one of
them and back-track in case we fail (depth-first).

Suppose we want to find a proof for (())() 2 LS . We use the notation (())() 2 LS - to mean that we
look for a goal-oriented derivation.

• Rule (1) can be applied in many di↵erent ways, by splitting the string (())() in all possible ways.
We use the notation (())() 2 LS - � 2 LS , (())() 2 LS to mean that we reduce the proof of
(())() 2 LS to that of � 2 LS and (())() 2 LS . Then we have all the following alternatives to
inspect:

1. (())() 2 LS - � 2 LS , (())() 2 LS

2. (())() 2 LS - ( 2 LS , ())() 2 LS

3. (())() 2 LS - (( 2 LS , ))() 2 LS

4. (())() 2 LS - (() 2 LS , )() 2 LS

5. (())() 2 LS - (()) 2 LS , () 2 LS

6. (())() 2 LS - (())( 2 LS , ) 2 LS

7. (())() 2 LS - (())() 2 LS , � 2 LS

Note that some alternatives are identical except for the order in which they list subgoals (1 and 7)
and may require to prove the same goal from which we started (1 and 7). For example, if option 1 is
selected applying depth-first strategy without any additional check, the derivation procedure might
diverge. Moreover, some alternatives lead to goals we won’t be able to prove (2, 3, 4, 6).

• Rule (2) can be applied in only one way:

(())() 2 LS - ())( 2 LS

• Rule (3) cannot be applied.

We show below a successful goal-oriented derivation.

(())() 2 LS - (()) 2 LS , () 2 LS by applying (1)
- (()) 2 LS , � 2 LS by applying (2) to the second goal
- (()) 2 LS by applying (3) to the second goal
- () 2 LS by applying (2)
- � 2 LS by applying (2)
- ⇤ by applying (3)

We remark that in general the problem to check if a certain formula is a theorem is only semidecidable (not
necessarily decidable). In this case the breadth-first strategy for goal-oriented derivation o↵ers a semidecision
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procedure.

1.2. Logic Programming

We end this chapter by mentioning a particularly relevant paradigm based on goal-oriented derivation:
logic programming and its Prolog incarnation. Prolog exploits depth-first goal-oriented derivations with
backtracking.

Let X = { x, y, ... } be a set of variables, ⌃ = { f (., .), g(.), ... } a signature of function symbols (with
given arities), ⇧ = { p(.), q(., .), ... } a signature of predicate symbols (with given arities). We denote by ⌃n
(respectively ⇧n) the subset of function symbols (respectively predicate symbols) with arity n.

Definition 1.10 (Atomic formula)
An atomic formula consists of a predicate symbol p of arity n applied to n terms with variables.

For example, p( f (g(x), x) , g(y) ) is an atomic formula (p has arity 2, f has arity 2, g has arity 1).

Definition 1.11 (Formula)
A formula is the conjunction of atomic formulas.

Definition 1.12 (Horn clause)
A Horn clause is written l: �r where l is an atomic formula, called the head of the clause, and r is a formula
called the body of the clause.

A logic program is a set of Horn clauses. The variables appearing in each clause can be instantiated with
any term. The goal itself may have variables.

Unification is used to “match” the head of a clause to the goal we want to prove in the most general way
(i.e. by instantiating the variables as little as possible). Before performing unification, the variables of the
clause are renamed with fresh identifiers to avoid any clash with the variables already present in the goal.
Unification itself may introduce new variables to represent placeholders that can be substituted by any term
with no consequences for the matching.

Example 1.13 (Sum in Prolog)
Let us consider the logic program consisting of the clauses:

sum( 0 , y , y ) : �
sum( s(x) , y , s(z) ) : � sum( x , y , z )

where sum(., ., .) 2 ⇧3, s(.) 2 ⌃1, 0 2 ⌃0 and x, y, z 2 X.
Let us consider the goal sum( s(s(0)) , s(s(0)) , v ) with v 2 X.
There is no match against the head of the first clause, because 0 is di↵erent from s(s(0)).
We rename x, y, z in the second clause to x0, y0, z0 and compute the unification of sum( s(s(0)) , s(s(0)) , v )

and sum( s(x0) , y0 , s(z0) ). The result is the substitution (called most general unifier)

[ x0 = s(0) y0 = s(s(0)) v = s(z0) ]
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We then apply the substitution to the body of the clause, which will form the new goal to prove

sum( x0 , y0 , z0 )[ x0 = s(0) y0 = s(s(0)) v = s(z0) ] = sum( s(0) , s(s(0)) , z0 )

We write the derivation described above using the notation

sum( s(s(0)) , s(s(0)) , v ) -v=s(z0) sum( s(0) , s(s(0)) , z0 )

where we have recorded the substitution applied to the variables originally present in the goal (just v in the
example), to record the least condition under which the derivation is possible.

The derivation can then be completed as follows:

sum( s(s(0)) , s(s(0)) , v ) -v=s(z0) sum( s(0) , s(s(0)) , z0 )
-z0=s(z00) sum( 0 , s(s(0)) , z00 )
-z00=s(s(0)) ⇤

By composing the computed substitutions we get

z0 = s(z00) = s(s(s(0)))
v = s(z0) = s(s(s(s(0))))

This gives us a proof of the theorem

sum( s(s(0)) , s(s(0)) , s(s(s(s(0)))) )



Part I.

IMP language





2. Operational Semantics of IMP

2.1. Syntax of IMP

The IMP programming language is a simple imperative language (a bare bone version of the C language)
with three data types:

int: the set of integer numbers, ranged over by metavariables m, n,m0, n0,m0, n0,m1, n1, ...

N = {0,±1,±2, ...}

bool: the set of boolean values, ranged over by metavariables v, v0, v0, v1, ...

T = { true, false }

locations: the (denumerable) set of memory locations (we always assume there are enough locations avail-
able, i.e. our programs won’t run out of memory), ranged over by metavariables x, y, x0, y0, x0, y0, x1, y1, ...

Loc locations

Definition 2.1 (IMP: syntax)
The grammar for IMP comprises:

Aexp: Arithmetic expressions, ranged over by a, a0, a0, a1, ...

Bexp: Boolean expressions, ranged over by b, b0, b0, b1, ...

Com: Commands, ranged over by c, c0, c0, c1, ...

The following productions define the syntax of IMP:

a ::= n | x | a0 + a1 | a0 � a1 | a0 ⇥ a1

b ::= v | a0 = a1 | a0  a1 | ¬b | b0 _ b1 | b0 ^ b1

c ::= skip | x := a | c0; c1 | if b then c0 else c1 | while b do c

where we recall that n is an integer number, v a boolean value and x a location,

IMP is a very simple imperative language and there are several constructs we deliberately omit. For
example we omit other common conditional statements, like switch, and other cyclic constructs like repeat.
Moreover IMP commands imposes a structured flow of control, i.e., IMP has no labels, no goto statements,
no break statements, no continue statements. Other things which are missing and are di�cult to model are
those concerned with modular programming. In particular, we have no procedures, no modules, no classes,
no types. Since IMP does not include variable declarations, procedures and blocks, memory allocation is
essentially static. Of course, we have no concurrent programming construct.

2.1.1. Arithmetic Expressions

An arithmetic expression can be an integer number, or a location, a sum, a di↵erence or a product. We notice
that we do not have division because it can be undefined or give di↵erent values and other things we are not
interested in.
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2.1.2. Boolean Expressions

A boolean expression can be a logical value v; the equality of an arithmetic expression with another; an
arithmetic expression less or equal than another one; the negation; the logical product or the logical sum.

2.1.3. Commands

A command can be skip, i.e. a command which is not doing anything, or an assignment where we have that
an arithmetic expression is evaluated and the value is assigned to a location; we can also have the sequential
execution of two commands (one after the other); an if-then-else with the obvious meaning: we evaluate
a boolean b, if it is true we execute c0 and if it is false we execute c1. Finally we have a while which is a
command that keeps executing c until b becomes false.

2.1.4. Abstract Syntax

The notation above gives the so-called abstract syntax in that it simply says how to build up new expressions
and commands but it is ambiguous for parsing a string. It is the job of the concrete syntax to provide enough
information through parentheses or orders of precedence between operation symbols for a string to parse
uniquely. It is helpful to think of a term in the abstract syntax as a specific parse tree of the language.

Example 2.2 (Valid expressions)

(while b do c1) ; c2 is a valid command
while b do (c1 ; c2) is a valid command
while b do c1 ; c2 is not a valid command, because it is ambiguous

In the following we will assume that enough parentheses have been added to resolve any ambiguity in the
syntax. Then, given any formula of the form a 2 Aexp, b 2 Bexp, or c 2 Com, the process to check if such
formula is a “theorem” is deterministic (no backtracking is needed).

Example 2.3 (Validity check)
Let us consider the formula if(x = 0) then(skip) else(x := x � 1)) 2 Com. We can prove its validity by the
following (deterministic) derivation

(if (x = 0) then (skip) else (x := x � 1)) 2 Com - x = 0 2 Bexp, skip 2 Com, x := (x � 1) 2 Com
- x 2 Aexp, 0 2 Aexp, skip 2 Com, x := (x � 1) 2 Com
- x � 1 2 Aexp
- x 2 Aexp, 1 2 Aexp
- ⇤

2.2. Operational Semantics of IMP

2.2.1. Memory State

In order to define the evaluation of an expression or the execution of a command, we need to handle the
state of the machine which is going to execute the IMP statements. Beside expressions to be evaluated and
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commands to be executed, we also need to record in the state some additional elements like values and
memories. To this aim, we introduce the notion of memory:

� : ⌃ = (Loc! N)

The memory � is an element of the set ⌃ which contains all the functions from locations to integer numbers.
A particular � is a particular function from locations to integer numbers so a memory is a function which
associates to each location x the value �(x) that x stores.

Since Loc is an infinite set, things can be complicated: handling functions from an infinite set is not a good
idea for a model of computation. Although Loc is large enough to store all the values that are manipulated by
expressions and commands, the functions we are interested in are functions which are almost everywhere 0,
except for a finite subset of memory locations.

If, for instance, we want to represent a memory we could write:

� = (5�x, 10�y)

meaning that the location x contains the value 5 and the location y the value 10 and elsewhere 0. In this way
we can represent any memory by a finite set of pairs.

Definition 2.4 (Zero memory)
We let �0 denote the memory such that 8x.�0(x) = 0.

Definition 2.5 (Assignment)
Given a memory �, we denote by �[n/x] the memory where the value of x is updated to n, i.e. such that

�[n/x](y) =
(

n if y = x
�(y) if y , x

Note that �[n/x][m/x](y) = �[m/x](y). In fact:

�[n/x][m/x](y) =
(

m if y = x
�[n/x](y) = �(y) if y , x

2.2.2. Inference Rules

Now we are going to give the operational semantics to IMP using an inference system like the one we saw
before. It is called “big-step” semantics because it leads in one proof to the result.

We are interested in three kinds of well formed formulas:

Arithmetic expressions: The evaluation of an element of Aexp in a given � results in an integer number.

ha,�i ! n

Boolean expressions: The evaluation of an element of Bexp in a given � results in either true or false.

hb,�i ! v

Commands: The evaluation of an element of Com in a given � leads to an updated final state �0.

hc,�i ! �0
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Next we show each inference rule and comment on it. We start with the rules about arithmetic expressions.

(num)
hn,�i ! n

(2.1)

The axiom 2.1 is trivial: the evaluation of any numerical constant n (seen as syntax) results in the
corresponding integer value n (read as an element of the semantic domain).

(ide)
hx,�i ! �(x)

(2.2)

The axiom 2.2 is also quite intuitive: the evaluation of an identifier x in the memory � results in the value
stored in x.

ha0,�i ! n0 ha1,�i ! n1
(sum)

ha0 + a1,�i ! n0 + n1
(2.3)

The rule 2.2 for the sum has several premises: the evaluation of the syntactic expression a0 + a1 in �
returns a value n that corresponds to the arithmetic sum of the values n0 and n1 obtained after evaluating,
respectively, a0 and a1 in �. We remark the di↵erence between the two occurrences of the symbol + in the
rule: in the source of the conclusion it denotes a piece of syntax, in the target of the conclusion it denotes a
semantic operation. To avoid any ambiguity we could have introduced di↵erent symbols in the two cases, but
we have preferred to overload the symbol and keep the notation simpler. We hope the reader is expert enough
to assign the right meaning to each occurrence of overloaded symbols by looking at the context in which they
appear.

The way we read this rule is very interesting because, in general, if we want to evaluate the lower part we
have to go up, evaluate the uppermost part and then compute the sum and finally go down again:

In this case we suppose we want to evaluate in memory � the arithmetic expression a0 + a1. We have to
evaluate a0 in the same memory � and get n0, then we have to evaluate a1 within the same memory � and
then the final result will be n0 + n1.

This kind of mechanism is very powerful because we deal with more proofs at once. First, we evaluate a0.
Second, we evaluate a1. Then, we put all together. If we need to evaluate several expressions on a sequential
machine we have to deal with the issue of fixing the order in which to proceed. On the other hand, in this
case, using a logical language we just model the fact that we want to evaluate a tree (an expression) which is
a tree of proofs in a very simple way and make explicit that the order is not important.

The rules for the remaining arithmetic expressions are similar to the one for the sum. We report them for
completeness, but do not comment on them.

ha0,�i ! n0 ha1,�i ! n1
(dif)

ha0 � a1,�i ! n0 � n1
(2.4)

ha0,�i ! n0 ha1,�i ! n1
(prod)

ha0 ⇥ a1,�i ! n0 ⇥ n1
(2.5)
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The rules for boolean expressions are also similar to the previous ones and need no comment.

(bool)
hv,�i ! v

(2.6)

ha0,�i ! n0 ha1,�i ! n1
(equ)

ha0 = a1,�i ! (n0 = n1)
(2.7)

ha0,�i ! n0 ha1,�i ! n1
(leq)

ha0  a1,�i ! (n0  n1)
(2.8)

hb,�i ! v
(not)

h¬b,�i ! ¬v
(2.9)

hb0,�i ! v0 hb1,�i ! v1
(or)

hb0 _ b1,�i ! (v0 _ v1)
(2.10)

hb0,�i ! v0 hb1,�i ! v1
(and)

hb0 ^ b1,�i ! (v0 ^ v1)
(2.11)

Next, we move to the inference rules for commands.

(skip)
hskip,�i ! � (2.12)

The rule 2.12 is very simple: it leaves the memory � unchanged.

ha,�i ! m
(assign)

hx := a,�i ! �[m/x]
(2.13)

The rule 2.13 exploits the assignment operation to update �: we remind that �[m/x] is the same memory
as � except for the value assigned to x (m instead of �(x)).

hc0,�i ! �00 hc1,�
00i ! �0

(seq)
hc0; c1,�i ! �0

(2.14)

The rule 2.14 for the sequential composition (concatenation) of commands is quite interesting. We start by
evaluating the first command c0 in the memory �. As a result we get an updated memory �00 which we use
for evaluating the second command c1. In fact the order of evaluation of the two command is important and it
would not make sense to evaluate c1 in the original memory �, because the e↵ects of executing c0 would be
lost. Finally, the memory �0 obtained by evaluating c1 in �00 is returned as the result of evaluating c0; c1 in �.

The conditional statement requires two di↵erent rules, that depend on the evaluation of the condition b
(they are mutually exclusive).

hb,�i ! true hc0,�i ! �0
(iftt)

hif b then c0 else c1,�i ! �0
(2.15)
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hb,�i ! false hc1,�i ! �0
(i↵f)

hif b then c0 else c1,�i ! �0
(2.16)

The rule 2.15 checks that b evaluated to true and then returns as result the memory �0 obtained by
evaluating the command c0 in �. On the contrary, the rule 2.16 checks that b evaluated to false and then
returns as result the memory �0 obtained by evaluating the command c1 in �.

Also the while statement requires two di↵erent rules, that depends on the evaluation of the guard b (they
are mutually exclusive).

hb,�i ! true hc,�i ! �00 hwhile b do c,�00i ! �0
(whtt)

hwhile b do c,�i ! �0
(2.17)

hb,�i ! false
(wh↵)

hwhile b do c,�i ! �
(2.18)

The rule 2.17 applies to the case where the guard evaluates to true: we need to compute the memory �00

obtained by the evaluation of the body c in � and then to iterate the evaluation of the cycle over �00.
The rule 2.18 applies to the case where the guard evaluates to false: then we “exit” the cycle and return the

memory � unchanged.

Remark 2.6
There is one important di↵erence between the rule 2.17 and all the other inference rules we have encountered
so far. All the other rules takes as premises formulas that are “smaller in size” than their conclusions. This
fact allows to decrease the complexity of the atomic goals to be proved as the derivation proceeds further,
until having basic formulas to which axioms can be applied. The rule 2.17 is di↵erent because it recursively
uses as a premise a formula as complex as its conclusion. This justifies the fact that a while command can
cycle indefinitely, without terminating.

The set of all inference rules above defines the operational semantics of IMP. Formally, they induce a
relation that contains all the pairs input-result, where the input is the expression / command together with the
initial memory and the result is the corresponding evaluation:

!✓ (Aexp ⇥ ⌃ ⇥ N) [ (Bexp ⇥ ⌃ ⇥ T) [ (Com ⇥ ⌃ ⇥ ⌃)

2.2.3. Examples

Example 2.7 (Semantic evaluation of a command)
Let us consider the (extra-bracketed) command

c = (x := 0) ; ( while (0  y) do ( (x := ((x + (2 ⇥ y)) + 1)) ; (y := (y � 1)) ) )

To improve readability and without introducing too much ambiguity, we can write it as follows:

c = x := 0 ; while 0  y do ( x := x + (2 ⇥ y) + 1 ; y := y � 1 )

Without too much di�culties, the experienced reader can guess the relation between the value of y at the
beginning of the execution and that of x at the end of the execution: The program computes the square of
(the value initially stored in) y plus 1 (when y � 0) and stores it in x. In fact, by exploiting the well-known
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equalities 02 = 0 and (n + 1)2 = n2 + 2n + 1, the value of y2 is computed as the sum of the first y odd
numbers

Py
i=0(2i + 1).

We report below the proof of well-formedness of the command, as a witness that c respects the syntax of
IMP. (Of course the inference rules used in the derivation are those associated to the productions of the
grammar of IMP.)

x 0

x := 0

0 y

0  y

x

x

2 y

(2 ⇥ y)

a1 = ((x + 2 ⇥ y)) 1

a = ((x + (2 ⇥ y)) + 1)

c3 = (x = ((x + (2 ⇥ y)) + 1))

y

y 1

(y � 1)

c4 = (y := (y � 1))

c2 = ((x! = ((x + (2 ⇥ y)) + 1)); (y := y � 1))

c1 = (while(0  y) do((x := ((x + 2 ⇥ y)) + 1)); (y := (y � 1)))

c = ((x := 0); (while(0  y) do((x := ((x + (2 ⇥ y)) + 1)); (y := (y + 1)))))

We can summarize the above proof as follows, introducing several shorthands for referring to some
subterms of c that will be useful later.

c = x := 0; while 0  y do (x :=

a
a1

x + (2 ⇥ y)+1
c3

; y := y � 1
c4

)

c2

c1

c

To find the semantics of c in a given memory we proceed in the goal-oriented fashion. For instance,
we take the well-formed formula

D

c,
⇣

27/x,2 /y
⌘E

! �, and check if there exists a memory � such that the
formula becomes a theorem. This is equivalent to find an answer to the following question: “given the
initial memory (27/x,2 /y) and the command c, can we find a derivation that leads to some memory �?” By
answering in the a�rmative, we would have a proof of termination for c and would establish the content of
the memory � at the end of the computation.

We show the proof in the tree-like notation: the goal to prove is the root (situated at the bottom) and the
“pieces” of derivation are added on top. As the tree grows immediately larger, we split the derivation in
smaller pieces that are proved separately.

num
h0,

⇣

27/x,
2 /y

⌘

i ! 0
assign

hx := 0,
⇣

27/x,
2 /y

⌘

i !
⇣

27/x,
2 /y

⌘ h

0/x
i

= �0 hc1,�
0i ! �

seq
hc,

⇣

27/x,
2 /y

⌘

i ! �

Note that c1 is a cycle, therefore we have two possible rules that can be applied, depending on the
evaluation of the guard. We only show the successful derivation, recalling that �0 =

⇣

0/x,2 /y
⌘

.

num
h0,�0i ! 0

ide
hy,�0i ! �0(y) = 2

leq
h0  y,�0i ! (0  2) = true hc2,�

0i ! �00 hc1,�
00i ! �

whtt
hc1,�

0i ! �
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Next we need to prove the goals hc2,
⇣

0/x,2 /y
⌘

i ! �00 and hc1,�00i ! �. Let us focus on hc2,�0i ! �00
first:

ha1,
⇣

0/x,
2 /y

⌘

i ! m0
num

h1,
⇣

0/x,
2 /y

⌘

i ! 1
sum

ha,
⇣

0/x,
2 /y

⌘

i ! m = m0 + 1
assign

hc3,
⇣

0/x,
2 /y

⌘

i !
⇣

0/x,
2 /y

⌘

⇥m/x
⇤

= �000
hy � 1,�000i ! m00

assign
hc4,�

000i ! �000
h

m00/y
i

= �00
seq

hc2,
⇣

0/x,
2 /y

⌘

i ! �00

We show separately the derivations for ha1,
⇣

0/x,2 /y
⌘

i ! m0 and hy � 1,�000i ! m00 in full details:

ide
hx,

⇣

0/x,
2 /y

⌘

i ! 0

num
h2,

⇣

0/x,
2 /y

⌘

i ! 2
ide

hy,
⇣

0/x,
2 /y

⌘

i ! 2
prod

h2 ⇥ y,
⇣

0/x,
2 /y

⌘

i ! m000 = 2 ⇥ 2 = 4
sum

ha1,
⇣

0/x,
2 /y

⌘

i ! m0 = 0 + 4 = 4

Since m0 = 4, then it means that m = m0 + 1 = 5 and hence �000 =
⇣

0/x,2 /y
⌘ h

5/x
i

=
⇣

5/x,2 /y
⌘

.

ide
hy,

⇣

5/x,
2 /y

⌘

i ! 2
num

h1,
⇣

5/x,
2 /y

⌘

i ! 1
dif

hy � 1,
⇣

5/x,
2 /y

⌘

i ! m00 = 2 � 1 = 1

Since m00 = 1 we know that �00 =
⇣

5/x,2 /y
⌘ h

m00/y
i

=
⇣

5/x,2 /y
⌘ h

1/y
i

=
⇣

5/x,1 /y
⌘

.
Next we prove hc1,

⇣

5/x,1 /y
⌘

i ! �, this time omitting some details (the derivation is analogous to the
one just seen).

...
leq

h0  y,
⇣

5/x,
1 /y

⌘

i ! true

...
seq

hc2,
⇣

5/x,
1 /y

⌘

i !
⇣

5/x,
1 /y

⌘ h

8/x
i h

0/y
i

= �0000 hc1,�
0000i ! �

whtt
hc1,

⇣

5/x,
1 /y

⌘

i ! �

Hence �0000 =
⇣

8/x,0 /y
⌘

and next we prove hc1,
⇣

8/x,0 /y
⌘

i ! �.

...
leq

h0  y,
⇣

8/x,
0 /y

⌘

i ! true

...
seq

hc2,
⇣

8/x,
0 /y

⌘

i !
⇣

8/x,
0 /y

⌘ h

9/x
i h�1/y

i

= �00000 hc1,�
00000i ! �

whtt
hc1,

⇣

8/x,
0 /y

⌘

i ! �

Hence �00000 =
⇣

9/x,�1 /y
⌘

. Finally:

...
leq

h0  y,
⇣

9/x,
�1 /y

⌘

i ! false
wh↵

hc1,
⇣

9/x,
�1 /y

⌘

i !
⇣

9/x,
�1 /y

⌘

= �

Summing up all the above, we have proved the theorem hc,
⇣

27/x,2 /y
⌘

i !
⇣

9/x,�1 /y
⌘

.
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It is evident that as the proof tree grows larger it gets harder to paste the di↵erent pieces of the proof
together. We now show the same proof as a goal-oriented derivation, which should be easier to follow. To
this aim, we group several derivation steps into a single one omitting trivial steps.

hc,
⇣

27/x,
2 /y

⌘

i ! � - hx := 0,
⇣

27/x,
2 /y

⌘

i ! �0 hc1,�
0i ! �

-�0=(27/x,2/y)[n/x] h0,
⇣

27/x,
2 /y

⌘

i ! n hc1,
⇣

27/x,
2 /y

⌘

⇥n/x
⇤i ! �

-n=0 �0=(0/x,2/y) hc1,
⇣

0/x,
2 /y

⌘

i ! �
- h0  y,

⇣

0/x,
2 /y

⌘

i ! true hc2,
⇣

0/x,
2 /y

⌘

i ! �00 hc1,�
00i ! �

- h0,
⇣

0/x,
2 /y

⌘

i ! n1 hy,
⇣

0/x,
2 /y

⌘

i ! n2 n1  n2

hc2,
⇣

0/x,
2 /y

⌘

i ! �00 hc1,�
00i ! �

-n1=0 n2=2 hc3,
⇣

0/x,
2 /y

⌘

i ! �000 hc4,�
000i ! �00 hc1,�

00i ! �
-�000=(0/x,2/y)[m/x] hx + (2 ⇥ y) + 1,

⇣

0/x,
2 /y

⌘

i ! m hc4,
⇣

0/x,
2 /y

⌘

⇥m/x
⇤i ! �00

hc1,�
00i ! �

-⇤m=0+(2⇥2)+1=5 �000=(5/x,2/y) hc4,
⇣

5/x,
2 /y

⌘

i ! �00 hc1,�
00i ! �

-⇤
�00=(5/x,2/y)[2�1/y]=(5/x,1/y) hc1,

⇣

5/x,
1 /y

⌘

i ! �

-⇤
�0000=(5/x,1/y)[5+2⇥1+1/x][0/y]=(8/x,0/y) hc1,

⇣

8/x,
0 /y

⌘

i ! �

-⇤
�00000=(8/x,0/y)[8+2⇥0+1/x][0�1/y]=(9/x,�1/y) hc1,

⇣

9/x,
�1 /y

⌘

i ! �

-�=(9/x,�1/y) h0  y,
⇣

9/x,
�1 /y

⌘

i ! false
-⇤ ⇤

There are commands c and memories � such that there is no �0 for which we can find a proof of hc,�i ! �0.
We use the notation below to denote such cases:

hc,�i9 i↵ ¬9�0.hc,�i ! �0

The condition ¬9�0.hc,�i ! �0 can be written equivalently as 8�0.hc,�i9 �0.

Example 2.8 (Non termination)
Let us consider the command

c = while true do skip

Given �, the only possible derivation goes as follows:

hc,�i ! �0 - htrue,�i ! true, hskip,�i ! �00, hc,�00i ! �0

- hskip,�i ! �00, hc,�00i ! �0

-�00=� hc,�i ! �0

After a few steps of derivation we reach the same goal from which we started! There is no alternative to
try!

We can prove that hc,�i9. We proceed by contradiction, assuming there exists �0 for which we can find
a (finite) derivation d for hc,�i ! �0. Let d be the derivation sketched below:
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hc,�i ! �0 - htrue,�i ! true, hskip,�i ! �00, hc,�00i ! �0
...

(⇤) - hc,�i ! �0
...

- ⇤

We have marked by (⇤) the last occurrence of the goal hc,�i ! �0. But this leads to a contradiction,
because the next step of the derivation can only be obtained by applying rule (whtt) and therefore it should
lead to another instance of the original goal.

2.3. Abstract Semantics: Equivalence of IMP Expressions and
Commands

The same way as we can write di↵erent expressions denoting the same value, we can write di↵erent programs
for solving the same problem. For example we are used not to distinguish between say 2+2 and 2⇥2 because
both evaluate to 4. Similarly, would you distinguish between say x := 1; y := 0 and y := 0; x := y + 1? So a
natural question arise: when are two programs “equivalent”? Informally, two programs are equivalent if they
behave in the same way. But can we make this idea more precise?

The equivalence between two commands is an important issue because we know that two commands
are equivalent, then we can replace one for the other in any larger program without changing the overall
behaviour. Since the evaluation of a command depends on the memory, two equivalent programs must behave
the same w.r.t. any initial memory. For example the two commands x := 1 and x := y + 1 assign the same
value to x only when evaluated in a memory � such that �(y) = 0, so that it wouldn’t be safe to replace
one for the other in any program. Moreover, we must take into account that commands may diverge when
evaluated with certain memory state. We will call abstract semantics the notion of behaviour w.r.t. we will
compare programs for equivalence.

The operational semantics o↵ers a straightforward abstract semantics: two programs are equivalent if they
result in the same memory when evaluated over the same initial memory.

Definition 2.9 (Equivalence of expressions and commands)
We say that the arithmetic expressions a1 and a2 are equivalent, written a1 ⇠ a2 if and only if for any
memory � they evaluate in the same way. Formally:

a1 ⇠ a2 i↵ 8�, n.( ha1,�i ! n , ha2,�i ! n )

We say that the boolean expressions b1 and b2 are equivalent, written b1 ⇠ b2 if and only if for any
memory � they evaluate in the same way. Formally:

b1 ⇠ b2 i↵ 8�, v.( hb1,�i ! v , hb2,�i ! v )

We say that the commands c1 and c2 are equivalent, written c1 ⇠ c2 if and only if for any memory � they
evaluate in the same way. Formally:

c1 ⇠ c2 i↵ 8�,�0.( hc1,�i ! �0 , hc2,�i ! �0 )

Notice that if the evaluation of hc1,�i diverges we have no �0 such that hc1,�i ! �0. Then, when c1 ⇠ c2,
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the double implication prevents hc2,�i to converge. As an easy consequence, any two programs that diverge
for any � are equivalent.

2.3.1. Examples: Simple Equivalence Proofs

The first example we show is concerned with a fully specified program that operates on an unspecified
memory.

Example 2.10 (Equivalent commands)
Let us try to prove that the following two commands are equivalent:

c1 = while x , 0 do x := 0
c2 = x := 0

It is immediate to prove that
8�.hc2,�i ! �0 = �[0/x]

Hence � and �0 can di↵er only for the value stored in x. In particular, if �(x) = 0 then �0 = �.
The evaluation of c1 in � depends on �(x): if �(x) = 0 we must apply the rule 2.18 (wh↵), otherwise

the rule 2.17 (whtt) must be applied. Since we do not know the value of �(x), we consider the two cases
separately.

(�(x) , 0)

hc1,�i ! �0 - hx , 0,�i ! true hx := 0,�i ! �00 hc1,�
00i ! �0

-�00=�[0/x] hc1,�
h

0/x
i

i ! �0

-�0=�[0/x] hx , 0,�
h

0/x
i

i ! false

- �
h

0/x
i

(x) = 0
- ⇤

(�(x) = 0)

hc1,�i ! �0 -�0=� hx , 0,�i ! false
- �(x) = 0
- ⇤

Finally, we observe the following:

• If �(x) = 0, then
(

hc1,�i ! �
hc2,�i ! �[0/x] = �

• Otherwise, if �(x) , 0, then
(

hc1,�i ! �[0/x]
hc2,�i ! �[0/x]

Therefore c1 ⇠ c2 because for any � they result in the same memory.

The general methodology should be clear by now: in case the computation terminates we need just to
develop the derivation and check the results.

2.3.2. Examples: Parametric Equivalence Proofs

The programs considered so far were entirely spelled out: all the commands and expressions were given and
the only unknown parameter was the initial memory �. In this section we address equivalence proofs for
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programs that contain symbolic expressions a and b and symbolic commands c: we will need to prove that
the equality holds for any such a, b and c.

This is not necessarily more complicated than what we have done already: the idea is that we can just carry
the derivation with symbolic parameters.

Example 2.11 (Parametric proofs (1))
Let us consider the commands:

c1 = while b do c
c2 = if b then(c; while b do c) else skip = if b then(c; c1) else skip

Is it true that 8b, c. (c1 ⇠ c2)?
We start by considering the derivation for c1 in a generic initial memory �. The command c1 is a cycle

and there are two rules we can apply: either the rule 2.18 (wh↵), or the rule 2.17 (whtt). Which rule to use
depends on the evaluation of b. Since we do not know what b is, we must take into account both possibilities
and consider the two cases separately.

(hb,�i ! false)

hwhile b do c,�i ! �0 - hb,�i ! false
-�=�0 ⇤

hif b then(c; c1) else skip,�i ! �0 - hb,�i ! false hskip,�i ! �0

-�0=� ⇤

It is evident that if hb,�i ! false then the two derivations for c1 and c2 lead to the same result.

(hb,�i ! true)

hwhile b do c,�i ! �0 - hb,�i ! true hc,�i ! �00 hc1,�
00i ! �0

- hc,�i ! �00 hc1,�
00i ! �0

We find it convenient to stop here the derivation, because otherwise we should add further hypotheses
on the evaluation of c and of the guard b after the execution of c. Instead, let us look at the derivation
of c2:

hif b then(c; while b do c) else skip,�i ! �0 - hb,�i ! true hc; while b do c,�i ! �0

- hc; while b do c,�i ! �0

- hc,�i ! �00 hc1,�
00i ! �0

Now we can stop again, because we have reached exactly the same subgoals that we have obtained
evaluating c1! It is then obvious that if hb,�i ! true then the two derivations for c1 and c2 will
necessarily lead to the same result whenever they terminate, and if one diverge the other diverges too.

Summing up the two cases, and since there is no more alternative, we can conclude that c1 ⇠ c2.

Note that the equivalence proof technique that exploits reduction to the same subgoals is one of the most
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convenient methods for proving the equivalence of while commands, whose evaluation may diverge.

Example 2.12 (Parametric proofs (2))
Let us consider the commands:

c1 = while b do c
c2 = if b then c1 else skip

Is it true that 8b, c. c1 ⇠ c2?
We have already examined the di↵erent derivations for c1 in the previous example. Moreover, the

evaluation of c2 when hb,�i ! false is also analogous to that of the command c2 in Example 2.11.
Therefore we focus on the analysis of c2 for the case hb,�i ! true. Trivially:

hif b then while b do c else skip,�i ! �0 - hb,�i ! true hwhile b do c,�i ! �0

- hwhile b do c,�i ! �0

So we reduce to the subgoal identical to the evaluation of c1, and we can conclude that c1 ⇠ c2.

2.3.3. Inequality Proofs

The next example deals with programs that can behave the same or exhibit di↵erent behaviours depending on
the initial memory.

Example 2.13 (Inequality proof)
Let us consider the commands:

c1 = (while x > 0 do x := 1); x := 0
c2 = x := 0

Let us prove that c1 / c2.
We focus on the first part of c1. Assuming �(x)  0 it is easy to check that

hwhile x > 0 do x := 1,�i ! �

The derivation is sketched below:

n = �(x)

hx,�i ! n h0,�i ! 0
(n > 0) = false

hx > 0,�i ! false

hwhile x > 0 do x := 1,�i ! �

Instead, if we assume �(x) > 0, then:

· · ·
hx > 0,�i ! true

�00 = �[1/x]

hx := 1,�i ! �00
· · · hwhile x > 0 do x := 1,�[1/x]i ! �0

hwhile x > 0 do x := 1,�00i ! �0

hwhile x > 0 do x := 1,�i ! �0

Let us expand the derivation for hwhile x > 0 do x := 1,�[1/x]i ! �0:
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· · ·
hx > 0,�[1/x]i ! true

· · ·
hx := 1,�[1/x]i ! �[1/x] hwhile x > 0 do x := 1,�[1/x]i ! �0

hwhile x > 0 do x := 1,�[1/x]i ! �0

Now, note that we got the same subgoal hwhile x > 0 do x := 1,�[1/x]i ! �0 already inspected: hence
it is not possible to conclude the derivation which will loop.

Summing up all the above we conclude that:

8�,�0.hwhile x > 0 do x := 1,�i ! �0 ) �(x)  0 ^ �0 = �

We can now complete the reduction for the whole c1 when �(x)  0 (the case �(x) > 0 is discharged,
because we know that there is no derivation).

�(x)  0···

h(while x > 0 do x := 1),�i ! �

�0 = �[0/x]···

hx := 0,�i ! �0

h(while x > 0 do x := 1); x := 0,�i ! �0

Therefore the evaluation ends with �0 = �[0/x].
By comparing c1 and c2 we have that:

• there are memories for which the two commands behave the same (i.e., when �(x)  0)

9�,�0.
(

h(while x > 0 do x := 1); x := 0,�i ! �0
hx := 0,�i ! �0

• there are also cases for which the two commands exhibit di↵erent behaviours:

9�,�0.
(

h(while x > 0 do x := 1); x := 0,�i9
hx := 0,�i ! �0

As an example, take any � with �(x) = 1 and �0 = �[0/x].

Since we can find pairs (�,�0) such that c1 loops and c2 terminates we have that c1 / c2.
Note that in disproving the equivalence we have exploited a standard technique in logic: to show that a

universally quantified formula is not valid we can exhibit one counterexample. Formally:

¬8x.(P(x), Q(x)) = 9x.(P(x) ^ ¬Q(x)) _ (¬P(x) ^ Q(x))

2.3.4. Diverging Computations

What does it happen if the program has infinite looping situations when � meets certain conditions? How
should we handle the � for which this happens?

Let us rephrase the definition of equivalence between commands:

8�,�0
(

hc1,�i ! �0 , hc2,�i ! �0
hc1,�i9 , hc2,�i9

Next we see an example where this situation emerges.
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Example 2.14 (Proofs of non-termination)
Let us consider the commands:

c1 = while x > 0 do x := 1
c2 = while x > 0 do x := x + 1

Is it true that c1 ⇠ c2? On the one hand, note that c1 can only store 1 in x, whereas c2 can keep
incrementing the value stored in x, so one may lead to suspect that the two commands are not equivalent.
On the other hand, we know that when the commands diverge, the values stored in the memory locations are
inessential.

As already done in previous examples, let us focus on the possible derivation of c1 by considering two
separate cases that depends of the evaluation of the guard x > 0:

(�(x)  0)

hc1,�i ! �0 -�0=� hx > 0,�i ! false
- ⇤

In this case, the body of the while is not executed and the resulting memory is left unchanged. We
leave to the reader to fill the details for the analogous derivation of c2, which behaves the same.

(�(x) > 0)

hc1,�i ! �0 - hx > 0,�i ! true hx := 1,�i ! �00 hc1,�
00i ! �0

- hx := 1,�i ! �00 hc1,�
00i ! �0

-�00=�[1/x] hc1,�
h

1/x
i

i ! �0

- hx > 0,�
h

1/x
i

i ! true hx := 1,�
h

1/x
i

i ! �000 hc1,�
000i ! �0

- hx := 1,�
h

1/x
i

i ! �000 hc1,�
000i ! �0

-�000=�[1/x][1/x]=�[1/x] hc1,�
h

1/x
i

i ! �0

- · · ·

Note that we reach the same subgoal hc1,�
h

1/x
i

i ! �0 already inspected, i.e., the derivation will
loop.

Now we must check if c2 diverges too when �(x) > 0:

hc2,�i ! �0 - hx > 0,�i ! true hx := x + 1,�i ! �00 hc2,�
00i ! �0

- hx := x + 1,�i ! �00 hc2,�
00i ! �0

-�00=�[�(x)+1/x] hc2,�
h

�(x)+1/x
i

i ! �0

- hx > 0,�
h

�(x)+1/x
i

i ! true hx := x + 1,�
h

�(x)+1/x
i

i ! �000

hc2,�
000i ! �0

- hx := x + 1,�
h

�(x)+1/x
i

i ! �000 hc2,�
000i ! �0

-�000=�00[�00(x)+1/x]=�[�(x)+2/x] · · ·

Now the situation is more subtle: we keep looping, but without crossing the same subgoal twice,
because the memory is updated with di↵erent values for x at each iteration. However, using induction,
that will be the subject of Section 3.1.3, we can prove that the derivation will not terminate. Roughly,
the idea is the following:

• at step 0, i.e. at the first iteration, the cycle does not terminate;
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• if at the ith step the cycle has not terminated yet, then it will not terminate at the (i + 1)th step,
because x > 0) x + 1 > 0.

The formal proof would require to show that at the kth iteration the values stored in the memory at
location x will be �(x) + k, from which we can conclude that the expression x > 0 will hold true
(since by assumption �(x) > 0 and thus �(x) + k > 0). Once the proof is completed, we can conclude
that c2 diverges and therefore c1 ⇠ c2.

Let us consider the command w = while b do c. As we have seen in the last example, to prove the
non-termination of w we can exploit the induction hypotheses over memory states to define the following
inference rule:

� 2 S 8�0 2 S .(hc,�0i ! �00 =) �00 2 S ) 8�0 2 S .(hb,�0i ! true)

hw,�i9
(2.19)

If we can find a set S of memories such that, for any � 2 S , the guard b is evaluated to true and the
execution of c leads to a memory which is also in S , then we can conclude that w diverges when evaluated in
any of the memories in S . Note that the condition

(hc,�0i ! �00 =) �00 2 S )

is satisfied even when hc,�0i9, as the left-hand side of the implication is false and therefore the implication
is true.



3. Induction and Recursion

In this chapter we presents some induction techniques that will turn out useful for proving formal properties
of the languages and models presented in the course.

In the literature several di↵erent kinds of induction are defined, but they all rely on the so-called Noether
principle of well-founded induction. We start by defining this important principle and will derive several
induction methods.

3.1. Noether Principle of Well-founded Induction

3.1.1. Well-founded Relations

We recall some key mathematical notions and definitions.

Definition 3.1 (Binary relation)
A (binary) relation � over a set A is a subset of the cartesian product A ⇥ A.

� ✓ A ⇥ A

For (a, b) 2 � we use the infix notation a � b and also write equivalently b � a. A relation � ✓ A ⇥ A
can be conveniently represented as an oriented graph whose nodes are the elements of A and whose arcs
n! m represent the pairs (n,m) 2 � in the relation. For instance, the graph in Fig 3.1 represents the relation
({a, b, c, d, e, f },�) with a � b, b � c, c � d, c � e, e � f , e � b.

Definition 3.2 (Infinite descending chain)
Given a relation � over the set A, an infinite descending chain is an infinite sequence {ai}i2! of elements in
A such that

8i 2 !. ai+1 � ai

An infinite descending chain can be represented as a function a from ! to A such that a(i) decreases
(according to �) as i grows:

a(0) � a(1) � a(2) � · · ·

Definition 3.3 (Well-founded relation)
A relation is well-founded if it admits no infinite descending chains.

Definition 3.4 (Transitive closure)
Let � be a relation over A. The transitive closure of �, written �+, is defined by the following inference rules

a � b
a �+ b

a �+ b b �+ c
a �+ c
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Definition 3.5 (Transitive and reflexive closure)
Let � be a relation over A. The transitive and reflexive closure of �, written �⇤, is defined by the following
inference rules

a �⇤ a
a �⇤ b b � c

a �⇤ c

Theorem 3.6
Let � be a relation over A. For any x, y 2 A, x �+ y if and only if there exist a finite number of elements
z0, z1, ..., zk 2 A such that

x = z0 � z1 � · · · � zk = y.

Theorem 3.7 (Well-foundedness of �+)
A relation � is well-founded if and only if its transitive closure �+ is well-founded.

Proof. One implication is trivial: if �+ is well-founded then � is obviously well-founded, because any descending
chain for � is also a descending chain for �+ (and all such chains are finite by hypothesis).

For the other direction, let us assume �+ is non well-founded and take any infinite descending chain

a0 �+ a1 �+ a2 · · ·

But whenever ai �+ ai+1 there must be a finite descending �-chain of elements between ai and ai+1 and therefore we
can build an infinite descending chain

a0 � · · · � a1 � · · · � a2 � · · ·

leading to a contradiction. ⇤

Definition 3.8 (Acyclic relation)
We say that � has a cycle if 9a 2 A. a �+ a. We say that � is acyclic if it has no cycle.

Theorem 3.9 (Well-founded relations are acyclic)
If the relation � is well-founded, then it is acyclic.

Proof. We need to prove that:

8x 2 A. x ⌃+ x

By contradiction, we assume there is x 2 A such that x �+ x. This means that there exist finitely many elements
x1, x2, · · · , xn 2 A such that

x � x1 � . . . � xn � x

Then, we can build an infinite sequence by cycling on such elements:
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Figure 3.1.: Graph of a relation

x � xn � . . . � x1 � x � xn � . . . � x1 � x � . . .

The infinite sequence above is clearly an infinite descending chain, leading to a contradiction, because � is well-
founded by hypothesis. ⇤

Theorem 3.10 (Well-founded relations over finite sets)
Let A be a finite set and let � be acyclic, then � is well-founded.

Proof. Since A is finite, any descending chain strictly longer than kAk must contain (at least) two occurrences of a
same element (by the so-called “pigeon hole principle”) that form a cycle, but this is not possible because � is acyclic
by hypothesis. ⇤

Lemma 3.11 (Well-founded relation)
Let � be a relation over the set A. The relation � is well-founded if and only if every nonempty subset Q ✓ A
contains a minimal element m.

Proof. The Lemma can be rephrased by saying that the relation � has an infinite descending chain if and only if
there exists a nonempty subset Q ✓ A with no minimal element.

As common when a double implication is involved in the statement, we prove each implication separately.

(() We assume that every nonempty subset of A has a minimal element and we need to show that � has no infinite
descending chain. By contradiction, we assume that � has an infinite descending chain a1 � a2 � a3 � · · ·
and we let Q = {a1, a2, a3, . . .} be the set of all the elements in the infinite descending chain. The set Q has no
minimal element, because for any candidate ai 2 Q we know there is one element ai+1 2 Q with ai � ai+1. This
contradicts the hypothesis, concluding the proof.

()) We assume the relation � is well-founded and we need to show that every nonempty subset Q of A has a minimal
element. By contradiction, let Q be a nonempty subset of A with no minimal element. Since Q is nonempty,
it must contain at least an element. We randomly pick an element a0 2 Q. Since a0 is not minimal there must
exists an element a1 2 Q such that a0 � a1, and we can iterate the reasoning (i.e. a1 is not minimal and there is
a2 2 Q with a0 � a1 � a2, etc.). But since � is well-founded, we cannot build such an infinite descending chain.

⇤
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Example 3.12 (Natural numbers)
Both n � n + 1 and n � n + 1 + k, with n and k in the set ! of natural numbers, are simple examples of
well-founded relations. In fact, from every element n 2 ! we can start a descending chain of at most length
n.

Definition 3.13 (Terms over sorted signatures)
Let

• S be a set of sorts (i.e. the set of the di↵erent data types we want to consider);

• ⌃ = {⌃s1...sn,s}s1...sn,s2S a signature over S , i.e. a set of typed operators ( f 2 ⌃s1...sn,s is an operator
that takes n arguments, the ith argument being of type si, and then returns a result of type s).

We define the set of ⌃-terms as the set
T⌃ = {T⌃,s}s2S

where, for s 2 S , the set T⌃,s is the set of terms of sort s over the signature ⌃, defined inductively by the
following inference rule:

ti 2 T⌃,si i = 1, . . . , n f 2 ⌃s1,...,sn,s

f (t1, . . . , tn) 2 T⌃,s

(When S is a singleton, we write just ⌃n instead of ⌃w,s with w = s ... s
|{z}

n

.)

Since the operators of the signature are known, we can specialize the above rule for each operator, i.e. we
can consider the set of inference rules:

( ti 2 T⌃,si i = 1, . . . , n

f (t1, . . . , tn) 2 T⌃,s

)

f2⌃s1 ,...,sn ,s

Note that, as special case of the above inference rule, for constants a 2 ⌃✏,s we have:

a 2 T⌃,s

Example 3.14 (IMP Signature)
In the case of IMP, we have S = {Aexp, Bexp,Com} and then we have an operation for each production in
the grammar.

For example, the sequential composition of commands “;” corresponds to the binary infix operator
(�;�) 2 ⌃ComCom,Com.

Similarly the equality expression is built using the operator (� = �) 2 ⌃AexpAexp,Bexp.
By abusing the notation, we often write Com for T⌃,Com (respectively, Aexp for T⌃,Aexp and Bexp for

T⌃,Bexp).
Then, we have inference rules such as:

skip 2 Com

skip 2 Com x := a 2 Com

skip ; x := a 2 Com
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...
...

...

h2, 0i // h2, 1i // h2, 2i · · ·

h1, 0i //

OO ;; 55

h1, 1i //

OO ;;cc

h1, 2i

OOccii

· · ·

h0, 0i //

OO ;; 55

h0, 1i //

OO ;;cc

h0, 2i

OOccii

· · ·

Figure 3.2.: Graph of the lexicographic order relation over pairs of natural numbers.

We shall often exploit well-founded relations over terms of a signature.

Example 3.15 (Terms and subterms)
The programs we consider are (well-formed) terms over a suitable signature ⌃ (possibly many-sorted, with
S the set of sorts). It is useful to define a well-founded containment relation between a term and its subterms.
(We will exploit this relation when dealing with structural induction in Section 3.1.5). For any n-ary function
symbol f 2 ⌃n and terms t1, . . . , tn, we let:

ti � f (t1, . . . , tn) i = 1, . . . , n

The idea is that a term ti precedes (according to �, i.e. it is less than) any term that contains it as a
subterm (e.g. as an argument).

As a concrete example, let us consider the signature ⌃ with ⌃0 = {c} and ⌃2 = { f }. Then, we have, e.g.:

c � f (c, c) � f ( f (c, c), c) � f ( f ( f (c, c), c), f (c, c))

If we look at terms as trees (function symbols as nodes with one children for each argument and constants
as leaves), then we can observe that whenever s � t the depth of s is strictly less than the depth of t.
Therefore any descending chain is finite (the length is at most the depth of the first term of the chain).
Moreover, in the particular case above, c is the only constant and therefore the only minimal element.

Example 3.16 (Lexicographic order)
A quite common (well-founded) relation is the so-called lexicographic order. The idea is to have elements
that are strings over a given ordered alphabet and to compare them symbol-by-symbol, from the leftmost to
the rightmost: as soon as we find a symbol in one string that precedes the symbol in the same position of the
other string, then we assume that the former string precedes the latter (independently from the remaining
symbols of the two strings).

As a concrete example, let us consider the set of all pairs hn,mi of natural numbers. The lexicographic
order relation is defined as (see Figure 3.2):

• 8n,m,m0. (hn,mi � hn + 1,m0i)

• 8n,m. (hn,mi � hn,m + 1i)

Note that the relation has no cycle and any descending chain is bound by the only minimal element h0, 0i.
For example, we have:
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h5, 1i � h3, 100i � h3, 14i � h0, 1000i � h0, 0i
It is worth to note that any element hn,mi with n � 1 is preceded by infinitely many elements (e.g.,
8k. h0, ki � h1, 0i) and it can be the first element of infinitely many (finite) descending chains (of unbounded
length).

Still, given any nonempty set Q ✓ ! ⇥ !, it is easy to find a minimal element m 2 Q, namely such
that 8b � m. b < Q. In fact, we can just take m = hm1,m2i, where m1 is the minimum (w.r.t. the usual
less-than relation over natural numbers) of the set Q1 = {n1|hn1, n2i 2 Q} and m2 is the minimum of the set
Q2 = {n2|hm1, n2i 2 Q}. Note that Q1 is nonempty because Q is such by hypothesis, and Q2 is nonempty
because m1 2 Q1 and therefore there must exists at least one pair hm1, n2i 2 Q for some n2. Thus

hm1 = min{n1|hn1, n2i 2 Q},min{n2|hm1, n2i 2 Q}i

is a (the only) minimal element of Q. By Lemma 3.11 the relation is well-founded.

Example 3.17 (A counterample: Integer numbers)
The usual “strictly less than” relation < over the set of integer numbers N is not well-founded. In fact it is
immediate to define infinite descending chains, such as:

0 > �1 > �2 > �3 > . . .

3.1.2. Noether Induction

Theorem 3.18
Let � be a well-founded relation over the set A and let P be a unary predicate over A. Then:

8a 2 A. (8b � a. P(b))! P(a)
8a 2 A.P(a)

Proof. We show the two implications separately.

((): if 8a.P(a) then (8b � a. P(b))! P(a) is true for any a because the premise (8b � a. P(b)) is not relevant (the
conclusion of the implication is true).

()): We proceed by contradiction by assuming ¬(8a 2 A.P(a)), i.e., that 9a 2 A. ¬P(a). Let us consider the nonempty
set Q = { a 2 A | ¬P(a) } of all those elements a in A for which P(a) is false. Since � is well-founded, we
know by Lemma 3.11 that there is a minimal element m 2 Q. Obviously ¬P(m) (otherwise m cannot be in Q).
Since m is minimal in Q, then 8b � m.b < Q, i.e., 8b � m.P(b). But this leads to a contradiction, because by
hypothesis we have 8a 2 A.(8b � a.P(b)) ! P(a) and instead the predicate (8b � m.P(b)) ! P(m) is false.
Therefore Q must be empty and 8a 2 A.P(a) must hold.

⇤

3.1.3. Weak Mathematical Induction

The principle of weak mathematical induction is a special case of Noether induction that is frequently used to
prove formulas over the set on natural numbers: we take

A = ! n � m$ m = n + 1
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Theorem 3.19 (Weak mathematical induction)

P(0) 8n 2 !.(P(n)! P(n + 1))
8n 2 !.P(n)

In other words, to prove that P(n) holds for any n 2 ! we can just prove that:

• P(0) holds (base case), and

• that, given a generic n 2 !, P(n + 1) holds whenever P(n) holds (inductive case).

The principle is helpful, because it allows us to exploit the hypothesis P(n) when proving P(n + 1).

3.1.4. Strong Mathematical Induction

The principle of strong mathematical induction extends the weak one by strengthening the hypotheses under
which P(n + 1) is proved to hold. We take:

n � m$ m = n + k + 1

Theorem 3.20 (Strong mathematical induction)

P(0) 8n 2 !.(8i  n.P(i))! P(n + 1)
8n 2 !.P(n)

In other words, to prove that P(n) holds for any n 2 ! we can just prove that:

• P(0) holds, and

• that, given a generic n 2 !, P(n + 1) holds whenever P(i) holds for all i = 0, ..., n.

The principle is helpful, because it allows us to exploit the hypothesis P(0)^P(1)^ ...^P(n) when proving
P(n + 1).

3.1.5. Structural Induction

The principle of structural induction is a special instance of Noether induction for proving properties over the
set of terms generated by a given signature. Here, the order relation binds a term to its subterms.

Structural induction takes T⌃ as set of elements and subterm-term relation as well-founded relation:

ti < f (ti, . . . , tn) i = 1, . . . , n

Definition 3.21 (Structural induction)

8t 2 T⌃. (8t0 < t. P(t0))) P(t)

8t 2 T⌃. P(t)
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By exploiting the definition of the well-founded subterm relation, we can expand the above principle as the
rule

8 f 2 ⌃s1...sn,s.8ti 2 T⌃,si i = 1, . . . , n. (P(t1) ^ . . . ^ P(tn))) P( f (t1, . . . , tn))

8t 2 T⌃. P(t)

An easy link can be established w.r.t. mathematical induction by taking a unique sort, a constant 0 and a
unary operation succ (i.e., ⌃ = ⌃0 [ ⌃1 with ⌃0 = {0} and ⌃1 = {succ}). Then, the structural induction rule
would become:

P(0) 8t. ( P(t)) P(succ(t)) )

8t. P(t)

Example 3.22
Let us consider the grammar of IMP arithmetic expressions:

a ::= n | x | a0 + a1 | a0 � a1 | a0 ⇥ a1

How do we exploit structural induction to prove that a property P(·) holds for all arithmetic expressions
a? (Namely, we want to prove that 8a 2 Aexp. P(a).) We just need to show that the property holds for any
production, i.e. we need to prove that all of the following hold:

• P(n) holds for any integer n

• P(x) holds for any identifier x

• P(a0 + a1) holds whenever both P(a0) and P(a1) hold

• P(a0 � a1) holds whenever both P(a0) and P(a1) hold

• P(a0 ⇥ a1) holds whenever both P(a0) and P(a1) hold

Example 3.23 (Structural induction over arithmetic expressions)
Let us consider the case of arithmetic expressions seen above and prove that the evaluation of expressions is
deterministic:

8a 2 Aexpr,� 2 ⌃,m 2 !,m0 2 !.ha,�i ! m ^ ha,�i ! m0 ) m = m0

In other words, we want to show that given any arithmetic expression a and any memory � the evaluation
of a in � will always return one and only one value. We proceed by structural induction.

(a ⌘ n): there is only one rule that can be used to evaluate an integer number, and it always return the
same value. Therefore m = m0.

(a ⌘ x): again, there is only one rule that can be applied, whose outcome depends on �. Since � is the
same in both cases, m = �(x) = m0.

(a ⌘ a0 + a1): we have m = m0 + m1 and m0 = m00 + m01 for suitable m0,m1,m00,m
0
1 obtained from the

evaluation of a0 and a1. By hypothesis for structural induction we can assume that m0 = m00 and
m1 = m01. Thus, m = m0.

The cases for a ⌘ a0 � a1 and a ⌘ a0 ⇥ a1 follow exactly the same pattern as a ⌘ a0 + a1.
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3.1.6. Induction on Derivations

See Definitions 1.1 and 1.5 for the notion of inference rule and of derivation.
We can define an induction principle over the set of derivations.

Definition 3.24 (Immediate (sub-)derivation)
We say that d0 is an immediate sub-derivation of d, or simply a sub derivation of d, written d0 � d, if and
only if d has the form ({d1, ..., dn} / y) with d1 �R x1, ..., dn �R xn and ({x1, ..., xn} / y) 2 R (i.e. d �R y) and
d0 = di for some 1  i  n.

Example 3.25 (Immediate (sub-)derivation)
Let us consider the derivation

num
h1,�i ! 1

num
h2,�i ! 2

sum
h1 + 2,�i ! 1 + 2 = 3

the two derivations employing axiom (num) are immediate sub-derivations of the derivation that exploits
rule (sum).

We can derive the notion of closed sub-derivations out of immediate ones.

Definition 3.26 (Proper sub-derivation)
We say that d0 is a closed sub-derivation of d if and only if d0 �+ d.

Note that both � and �+ are well-founded and they can be used in proofs by induction.

3.1.7. Rule Induction

The last kind of induction principle we shall consider applies to sets of elements that are defined by means
of inference rules: we have a set of inference rules that establish which elements belong to the set (i.e are
theorems) and we need to prove that the application of any such rule will not compromise the validity of the
predicate we want to prove.

Formally, a rule has the form (?/y) if it is an axiom, or ({x1, . . . , xn}/y) otherwise. Given a set R of such
rules, the set of theorems of R is defined as

IR = {x | �R x}

The rule induction principle aims to show that the property P holds for all elements of IR, which amounts
to show that:

• for any axiom (?/y), we have that P(y) holds;

• for any other rule ({x1, . . . , xn}/y) we have that (81  i  n.xi 2 IR ^ P(xi))) P(y).

8(X/y) 2 R X ✓ IR (8x 2 X · P(x)) =) P(y)

8x 2 IR.P(x)
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Note that most of the time we will use a simpler but less powerful rule

8(X/y) 2 R (8x 2 X · P(x)) =) P(y)

8x 2 IR.P(x)

In fact, if the latter applies, also the former does, since the implication in the premise must be proved in
fewer cases: only for rules X/y such that all the formulas in X are theorems. However, usually it is di�cult to
take advantage of there restriction.

Example 3.27 (Proof by rule induction)
We have seen in Example 3.23 that structural induction can be conveniently used to prove that the evaluation
of arithmetic expressions is deterministic. Formally, we were proving the predicate P(·) over arithmetic
expressions defined as

P(a) def
= 8�.8m,m0. ha,�i ! m ^ ha,�i ! m0 =) m = m0

While the case of boolean expressions is completely analogous, for commands we cannot use the same
proof strategy, because structural induction cannot deal with the rule (whtt). In this example, we show that
rule induction provides a convenient strategy to solve the problem.

Let us consider the following predicate over “theorems”:

P(hc,�i ! �0) def
= 8�1. hc,�i ! �1 =) �0 = �1

(rule skip): we want to show that

P(hskip,�i ! �) def
= 8�1. hskip,�i ! �1 =) �1 = �

which is obvious because there is only one rule applicable to skip:

hskip,�i ! �1 -�1=� ⇤

(rule assign): assuming
ha,�i ! m

we want to show that

P(hx := a,�i ! �[m/x]) def
= 8�1. hx := a,�i ! �1 =) �1 = �[m/x]

Let us assume the premise of the implication we want to prove, and let us proceed goal oriented. We
have:

hx := a,�i ! �1 -�1=�[m0/x] ha,�i ! m0

But we know that the evaluation of arithmetic expressions is deterministic and therefore m0 = m and
�1 = �[m/x].

(rule seq): assuming P(hc0,�i ! �00) and P(hc1,�00i ! �0) we want to show that

P(hc0; c1,�i ! �0) def
= 8�1. hc0; c1,�i ! �1 =) �1 = �

0

We have:

hc0; c1,�i ! �1 - hc0,�i ! �001 hc1,�
00
1 i ! �1
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But now we can apply the first inductive hypotheses:

P(hc0,�i ! �00) def
= 8�001 . hc0,�i ! �001 =) �001 = �00

to conclude that �001 = �
00, which together with the second inductive hypothesis

P(hc1,�
00i ! �0) def

= 8�1. hc1,�
00i ! �1 =) �1 = �

0

allow us to conclude that �1 = �0.

(rule iftt): assuming hb,�i ! true and P(hc0,�i ! �0) we want to show that

P(hif b then c0 else c1,�i ! �0) def
= 8�1. hif b then c0 else c1,�i ! �1 =) �1 = �

0

Since hb,�i ! true and the evaluation of boolean expressions is deterministic, we have:

hif b then c0 else c1,�i ! �1 - hc0,�i ! �1

But then, exploiting the inductive hypothesis

P(hc0,�i ! �0) def
= 8�1. hc0,�i ! �1 =) �1 = �

0

we can conclude that �1 = �0.

(rule ifff): omitted (it is analogous to the previous case).

(rule whileff): assuming hb,�i ! false we want to show that

P(hwhile b do c,�i ! �) def
= 8�1. hwhile b do c,�i ! �1 =) �1 = �

Since hb,�i ! false and the evaluation of boolean expressions is deterministic, we have:

hwhile b do c,�i ! �1 -�1=� ⇤

(rule whilett): assuming hb,�i ! true, P(hc,�i ! �00) and P(hwhile b do c,�00i ! �0) we want to show
that

P(hwhile b do c,�i ! �0) def
= 8�1. hwhile b do c,�i ! �1 =) �1 = �

0

Since hb,�i ! true and the evaluation of boolean expressions is deterministic, we have:

hwhile b do c,�i ! �1 - hc,�i ! �001 hwhile b do c,�001 i ! �1

But now we can apply the first inductive hypotheses:

P(hc,�i ! �00) def
= 8�001 . hc,�i ! �001 =) �001 = �00

to conclude that �001 = �
00, which together with the second inductive hypothesis

P(hwhile b do c,�00i ! �0) def
= 8�1. hwhile b do c,�00i ! �1 =) �1 = �

0

allow us to conclude that �1 = �0.
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3.2. Well-founded Recursion

We conclude this chapter by presenting the concept of well-founded recursion. A recursive definition of a
function f is well-founded when the recursive calls to f take as arguments values that are smaller w.r.t. the
ones taken by the defined function (according to a suitable well-founded relation). The functions defined on
natural numbers according to the principle of well-founded recursion are called primitive recursive functions.

Example 3.28 (Well-founded recursion)
Let us consider the Peano formula that defines the product of natural numbers

p(0, y) = 0
p(x + 1, y) = y + p(x, y)

Let us write the definition in a slightly di↵erent way

py(0) = 0
py(x + 1) = y + py(x)

It is immediate to see that py(·) is primitive recursive for every y.

Let us make the intuition more precise.

Definition 3.29 (Set of predecessors)
Given a well founded relation � ✓ B ⇥ B, the set of predecessors of a set I ✓ B is the set

��1 I =
�

b 2 B |9b0 2 I. b � b0
 

We recall that for B0 ✓ B and f : B ! C, we denote by f � B0 the restriction of f to values in B0, i.e.,
f � B0 : B0 ! C and ( f � B0)(b) = f (b) for any b 2 B0.

Theorem 3.30 (Well-founded recursion)
Let (B,�) a well-founded relation over B. Let us consider a function F with F(b, h) 2 C, where

• b 2 B

• h :<�1 {b}! C

Then, there exists one and only one function f : B! C which satisfies the equation

8b 2 B. f (b) = F(b, f ���1 {b})

In other words, if we (recursively) define f over any b only in terms of the predecessors of b, then f is
uniquely determined on all b. Notice that F has a dependent type, since the type of its second argument
depends on the value of its first argument.

In the following chapters we will exploit partial orders fix-point theory to define the semantics of recursively
defined functions. Well-founded recursion gives a simpler method, which however works only in the well-
founded case.
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Example 3.31 (Primitive recursion)
Let us recast the Peano formula seen above (Example 3.28) to the formal scheme of primitive recursion.

• py(0) = Fy(0, py � ?) = 0

• py(x + 1) = Fy(x + 1, py ���1 {x + 1}) = y + py(x)

Example 3.32 (Structural recursion)
Let us consider the signature ⌃ for binary trees B = T⌃, where ⌃0 = {0, 1, ...} and ⌃2 = cons. Take the
well-founded relation xi � cons(x1, x2), i = 1, 2. Let C = !.

We want to compute the sum of the elements in the leaves of a binary tree. In Lisp-like notation:

sum(x) = if atom(x) then x else sum(car(x)) + sum(cdr(x))

where atom(x) returns true if x is a leaf; car(x) denotes the left subtree of x; cdr(x) the right subtree of
x and cons(x, y) is the constructor for building a tree out of its left and right subtree. The same function
defined in the structural recursion style is

(

sum(n) = n
sum(cons(x, y)) = sum(x) + sum(y)

or more formally
(

F(n, sum � ?) = n
F(cons(x, y), sum � {x, y}) = sum(x) + sum(y)

Example 3.33 (Ackermann function)
The Ackermann function ack(z, x, y) = acky(z, x) is defined by well-founded recursion (exploiting the
lexicographic order over pair of natural numbers) by letting
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:

ack( 0 , 0 , y ) = y
ack( 0 , x + 1 , y ) = ack(0, x, y) + 1
ack( 1 , 0 , y ) = 0
ack( z + 2 , 0 , y ) = 1
ack( z + 1 , x + 1 , y ) = ack(z, ack(z + 1, x, y), y)

We have
(

ack(0, 0, y) = y
ack(0, x + 1, y) = ack(0, x, y) + 1 =) ack(0, x, y) = y + x

(

ack(1, 0, y) = 0
ack(1, x + 1, y) = ack(0, ack(1, x, y), y) = ack(1, x, y) + y =) ack(1, x, y) = yx

(

ack(2, 0, y) = 1
ack(2, x + 1, y) = ack(1, ack(2, x, y), y) = ack(2, x, y)y =) ack(2, x, y) = yx

and so on.





4. Partial Orders and Fixpoints

4.1. Orderings and Continuous Functions

This chapter is devoted to the introduction of the mathematical foundations of the denotational semantics of
computer languages.

As we have seen, the operational semantics gives us a very concrete semantics, since the inference rules
describe step by step the bare essential operations on the state required to reach the final state of computation.
Unlike the operational semantics, the denotational one provides a more abstract view. Indeed, the denotational
semantics gives us directly the meaning of the constructs of the language as particular functions over domains.
Domains are sets whose structure will ensure the correctness of the constructions of the semantics.

As we will see, one of the most attractive features of the denotational semantics is that it is compositional,
namely the meaning of a construct is given by combining the meanings of its components. The compositional
property of denotational semantics is obtained by defining the semantics by structural recursion. Obviously
there are particular issues in defining the “while” construct of the language, since the semantics of this
construct, as we saw in the previous chapters, seems to be recursive. General recursion is not allowed in
structural recursion, which allows only the use of sub-terms. The solution to this problem is given by solving
equations of the type f (x) = x, namely by finding the fixpoint(s) of f . So on the one hand we would like to
ensure that each recursive function that we will consider has at least a fixpoint. Therefore we will restrict our
study to a particular class of functions: continuous functions. On the other hand, the aim of the theory we
will develop, called domain theory, will be to identify one solution among the existing ones, and to provide
an approximation method for it.

4.1.1. Orderings

We introduce the general theory of partial orders which will bring us to the concept of domain.

Definition 4.1 (Partial order)
A partial order is a pair (P,v) where P is a set and v✓ P ⇥ P is a relation on P (i.e. it is a set of pairs of
elements of P) which is:

• reflexive: 8p 2 P. p v p

• antisymmetric: 8p, q 2 P. p v q ^ q v p =) p = q

• transitive: 8p, q, r 2 P. p v q ^ q v r =) p v r

We call P a poset (partially ordered set).

Example 4.2 (Powerset)
Let (2S ,✓) be a relation on the powerset of a set S . It is easy to see that (2S ,✓) is a partial order.

• reflexivity: 8s ✓ S . s ✓ s

• antisymmetry:8s1, s2 ✓ S . s1 ✓ s2 ^ s2 ✓ s1 =) s1 = s2

• transitivity: 8s1, s2, s3 ✓ S . s1 ✓ s2 ✓ s3 =) s1 ✓ s3
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Actually, partial orders are a generalization of the concept of powerset ordered by inclusion. Thus we
should not be surprised by this result.

Definition 4.3 (Total order)
Let (P,v) be a partial order such that:

8x, y 2 P. x v y _ y v x

we call (P,v) total order.

Theorem 4.4 (Subsets of an order)
Let (A,v) be a partial order and let B ✓ A. Then (B,v0) is a partial order, with v0=v \(B ⇥ B). Similarly,
if (A,v) is a total order then (B,v0) is a total order.

Let us see some examples that will be very useful to understand the concepts of partial and total orders.

Example 4.5 (Natural Numbers)
Let (!,) be the usual ordering on the set of natural numbers, (!,) is a total order.

• reflexivity: 8n 2 !.n  n

• antisymmetric:8n,m 2 !.n  m ^ m  n =) m = n

• transitivity: 8n,m, z 2 !.n  m ^ m  z =) n  z

• total:8n,m 2 !.n  m _ m  n

Example 4.6 (Discrete order)
Let (P,v) be a partial order defined as follows:

8p 2 P.p v p

We call (P,v) a discrete order. Obviously (P,v) is a partial order.

Example 4.7 (Flat order)
Let (P,v) be a partial order defined as follows:

• 9? 2 P.8p 2 P.? v p

• 8p 2 P.p v p

We call (P,v) a flat order.
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4.1.2. Hasse Diagrams

The aim of this section is to provide a tool that allows us to represent orders in a comfortable way.
First of all we could think to use graphs to represent an order. In this framework each element of the

ordering is represented by a node of the graph and the order relation by the arrows (i.e. we would have an
arrow from a to b if and only if a v b).

This notation is not very comfortable, indeed we repeat many times the same information. For example in
the usual natural numbers order we would have for each node n + 1 incoming arrows and infinite outgoing
arrows, where n is the natural number which labels the node.

We need a more compact notation, which takes into account the redundant information. This notation is
represented by the Hasse diagrams.

Definition 4.8 (Hasse Diagram)
Given a poset (A,v), let R be a binary relation such that:

x v y y v z x , y , z

xRz
,
?

xRx

We call Hasse diagram the relation H defined as:

H = v �R

The Hasse diagram omits the information deducible by transitivity and reflexivity. A simple example of
Hasse diagram is in Fig. 4.1.

Figure 4.1.: Hasse diagram for the powerset over {x, y, z} ordered by inclusion

To ensure that all the needed information is contained in the Hasse diagram we will use the following
theorem.

Theorem 4.9 (Order relation, Hasse diagram Equivalence)
Let (P,v) a partial order with P finite set. Then the transitive and reflexive closure of its Hasse diagram is
equal to v :

?

xH⇤x

xH⇤y ^ yHz

xH⇤z
We have:

H⇤ = v

Note that the rule
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yHz

yH⇤z

is subsumed by the the fact that in the second rule one can use yH⇤y (guaranteed by the first rule) and yHz as
premises.

?

yH⇤y ^ yHz

yH⇤z

The above theorem only allows to represent finite orders.

Example 4.10 (Infinite order)
Let us see that the Hasse diagrams does not work with infinite orders. Let (! [ {1},) be the usual order
on natural numbers extended by placing n  1 and 1  1. The Hasse diagram eliminates all the arcs
between each natural number and1. Now using the transitive and reflexive closure we would like to get
back the order. Using the inference rules we obtain the usual order on natural numbers without any relation
between1 and the natural numbers (recall that we only allow finite proofs).

In order to study the topology of the partial orders we introduce the following notions:

Definition 4.11 (Least element)
An element m 2 S is a least element of (S ,v) if: 8s 2 S . m v s

Let us consider the following order:

A B C

D E

this order has no least element. As we will see the elements A, B and C are minimal since they have no
smaller elements in the order.

Theorem 4.12 (Uniqueness of the least element)
Let (A,v) be a partial order, A has at most one least element.

Proof. Let a, b 2 A be both least elements of A, then a v b and b v a. Now by using the antisymmetric property of
A we obtain a = b. ⇤

The counterpart of the least element is the concept of greatest element, we can obtain the greatest element
as the least element of the reverse order (i.e. x v�1 y , y v x).
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Definition 4.13 (Minimal element)
m 2 S is a minimal element of (S ,v) if: 8s 2 S . s v m) s = m

As for the least element we have the dual of minimal elements, maximal elements. Note that the definition
of minimal and least element (maximal and greatest) are quite di↵erent. The least element must be smaller
than all the elements of the order. A minimal element, instead, should not have elements smaller than it, no
one guarantees that all the elements are in the order relation with a minimal element.

Remark 4.14
There is a di↵erence between a least and a minimal element of a set:

• the least element x is the smallest element of a set, i.e. x is such that 8a 2 A. x v a.

• a minimal element y is just such that no smaller element can be found in the set, i.e. 8a 2 A. a a y.

So the least element of an order is obviously minimal, but a minimal element is not necessarily the least.

Definition 4.15 (Upper bound)
Let (P,v) be a partial order and X ✓ P be a subset of P, then p 2 P is an upper bound of X i↵

8q 2 X. q v p

Note that unlike the maximal element and the greatest element the upper bound does not necessarily belong
to the subset.

Definition 4.16 (Least upper bound)
Let (P,v) be a partial order and X ✓ P be a subset of P then p 2 P is the least upper bound of X if and only
if p is the least element of the upper bounds of P. Formally:

• p is an upper bound of X

• 8q upper bound of X then p v q

and we write lub(X) = p.

Now we will clarify the concept of LUB with two examples. Let us consider the order represented in figure
4.2 (a). The set of upper bounds of the subset {b, c} is the set {h, i,>}. This set has no least element (i.e. h
and i are not in the order relation) so the set {b, c} has no LUB. In figure 4.2 (b) we see that the set of upper
bounds of the set {a, b} is the set { f , h, i,>}. The least element of the latter set is f , which thus is the LUB of
{a, b}.

4.1.3. Chains

One of the main concept in the study of order theory is that of chain.
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a

⊥

b c

e f g

h i

⊤
Upper bounds

(a)

a

⊥

b c

e f g

h i

⊤
Upper bounds

(b)

Figure 4.2.: Two subsets of a poset, the right one with LUB and the left one without LUB

Definition 4.17 (Chain)
Let (P,v) be a partial order, we call chain a function C : ! �! P, (we will write C = {di}i2!) such that:

d0 v d1 v d2 . . .

i.e. where 8i 2 !. di = C(i), we have:

8n 2 !. C(n) v C(n + 1)

Definition 4.18 (Finite chain)
Let C : ! �! P be a chain such that the codomain (range) of C is a finite set, then we say that C is a finite
chain.

Definition 4.19 (Limit of a chain)
Let C be a chain. The LUB of the codomain of C, if it exists, is called the limit of C. If d is the limit of the
chain C = {di}i2!, we will write d =

F

i2! {di};

Note that each finite chain has a limit, indeed each finite chain has a finite totally ordered codomain,
obviously this set has a LUB (the greatest element of the set).

Definition 4.20 (Depth of a poset)
Let (P,v) be a poset, we say that (P,v) has finite depth if and only if each chain of the poset is finite.
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Lemma 4.21 (Prefix independence of the limit)
Let n 2 ! and let C and C0 be two chains such that C = {di}i2! and C0 = {dn+i}i2!. Then C and C0 have the
same limit, if any. This means that we can eliminate a proper prefix from a chain preserving the limit.

Proof. Let us show that the chains have the same set of upper bounds. Obviously if c is an upper bound of C, then c
is an upper bound of C0, since each element of C0 is contained in C. On the other hand if c is an upper bound of C0, we
have 8 j 2 !. j  n) d j v dn ^ dn v c) d j v c by transitivity of v then c is an upper bound of C. Now since C and
C0 have the same set of upper bound elements, they have the same LUB, if it exists at all. ⇤

4.1.4. Complete Partial Orders

As we said the aim of partial orders and continuous functions is to provide a framework that allows to ensure
the correctness of the denotational semantics. Complete partial orders extend the concept of partial orders
to support the limit operation on chains, which is a generalization of the countable union operation on a
powerset. Limits will have a key role in finding fixpoints.

Definition 4.22 (Complete partial orders)
Let (P,v) be a partial order, we say that (P,v) is complete (CPO) if each chain has a limit (i.e. each chain
has a LUB).

Definition 4.23 (CPO with bottom)
Let (D,v) be a CPO, we say that (D,v) is a CPO with bottom (CPO?) if it has a least element ? (called
bottom).

Let us see some examples, that will clarify the concept of CPO.

Example 4.24 (Powerset completeness)
Let us consider again the previous example of powerset (ex.4.2), we can now show that the partial order
(2S ,✓) is complete.

lub(s0 ✓ s1 ✓ s2 . . .) = {d | 9k. d 2 sk} =
[

i2!
si 2 2S

Example 4.25 (Partial order without completeness)
Now let us take the usual order on natural numbers

(!,)

Obviously all the finite chains have a limit (i.e. the greatest element of the chain). On the other hand infinite
chains have no limits (i.e. there is no natural number greater than infinitely many natural numbers). To
make the order a CPO all we have to do is to add an element1 greater than all the natural numbers. Now
each infinite chain has a limit (1), and the order is a CPO.
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Example 4.26 (Partial order without completeness conclusion)
Let us define the partial order (! [ {11,12},v) as follows:

v� ! = , 8n 2 !. n v 11 ^ n v 12 , 11 v 11 , 12 v 12

Where v� ! is the restriction of v to natural numbers. This partial order is not complete, indeed each
infinite chain has two upper bounds (i.e. 11 and12) which have no least element.

Example 4.27 (Partial functions)
Let us consider a set that we will meet again during the course: the set of partial functions on natural
numbers:

P = ! * !

Recall that a partial function is a relation f on ! ⇥ ! with the functional property:

n f m ^ n f m0 =) m = m0

So the set P can be viewed as:

P = { f ✓ ! ⇥ ! | n f m ^ n f m0 =) m = m0}

Now it is easy to define a partial order on P:

f v g() 8x. f (x) #) f (x) = g(x)

That is g is greater than f where both are seen as relations. This order has as bottom the empty relation,
and each infinite chain has as limit the countable union of the relations of the chain. Now we will show that
the limits of the infinite chains are not only relations, but are functions of our domain.

Proof. Let R0 ✓ R1 ✓ R2 ✓ . . . with 8i. nRim ^ nRim0 =) m = m0 be a chain of P, we will show that the union
relation is still a function, that is [Ri has the functional property:

n([Ri)m ^ n([Ri)m0 =) m = m0

Let us assume n([Ri)m ^ n([Ri)m0 so we have 9k, k0.nRkm ^ nRk0m0, we take k00 = max{k, k0} then it holds nRk00m ^
nRk00m0 then by hypothesis m = m0. ⇤

Let us show a second way to define a CPO on the partial functions on natural numbers. We add a bottom
element to the co-domain and we consider the following set of total functions:

P0 = { f ✓ ! ⇥ !?| n f m ^ n f m0 =) m = m0 ^ 8n 2 !. 9m. n f m}

where we see !? as the flat order obtained by adding ? to the discrete order of the natural numbers. We
define the following order on P0

f v g, 8x. f (x) v!? g(x)

That is, if f (x) = ? then g(x) can assume any value otherwise f (x) = g(x). The bottom element of the order
is the function �x. ?, which returns ? for every value of x. Note that the above ordering is complete, In fact,
the limit of a chain obviously exists as a relation, and it is easy to show, analogously to the partial function
case, that it is in addition a total function.
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Example 4.28 (Limit of a chain of partial functions)
Let { fi}i2! be a chain on P0 such that:

fk(n) =
(

3 if 9 m 2 !. n = 2m ^ n  k
? otherwise

Let us consider some application of the functions:

f0(0) = 3
f1(0) = 3
f2(0) = 3 f2(2) = 3
f3(0) = 3 f3(2) = 3
f4(0) = 3 f4(2) = 3 f4(4) = 3

This chain has as limit the function that returns 3 on the even numbers.

f (n) =
(

3 if 9 m 2 !. n = 2m
? otherwise

So the limit of an infinite chain is still a partial function.

4.2. Continuity and Fixpoints

4.2.1. Monotone and Continuous Functions

In order to define a class of functions over domains which ensures the existence of their fixpoints we will
introduce two general properties of functions: monotonicity and continuity.

Definition 4.29 (monotonicity)
Let f be a function over a CPO (D,v), we say that f : D �! D is monotone if and only if

8d, e 2 D. d v e) f (d) v f (e)

We will say that the function preserves the order. So if {di}i2! is a chain on (D,v) and f is a monotone
function then { f (di)}i2! is a chain on (D,v).

Example 4.30 (Not monotone function)
Let us define a CPO ({a, b, c},v) where v is defined as b v a, b v c and x v x for any x 2 {a, b, c}. Now
define a function f on ({a, b, c},v) as follows:

f (a) = a f (b) = a f (c) = c

This function is not monotone, indeed b v c; f (b) v f (c) (i.e. a and c are not related), so the function
does not preserve the order.



50 Partial Orders and Fixpoints

Definition 4.31 (Continuity)
Let f be a monotone function on a CPO (D,v), we say that f is a continuous function if and only if for
each chain in (D,v) we have:

f (
G

i2!
di) =

G

i2!
f (di)

Note that, as it is the case for most definitions of function continuity, the operations of applying function
and taking the limit can be exchanged.

We will say that a continuous function f preserves the limits.

Example 4.32 (A monotone function which is not continuous)
Let (! [ {1},) be a CPO, define a function f :

8n 2 !. f (n) = 0 , f (1) = 1

Let us consider the chain:
0  2  4  6  . . .

so we have
f (

G

di) = f (1) = 1 ,
G

f (di) = 0

then the function does not preserve the limits.

4.2.2. Fixpoints

Now we are ready to study fixpoints of continuous functions.

Definition 4.33 (Fixpoint)
Let f a continuous function over a CPO? (D,v). An element d of D is a fixpoint of f if and only if:

f (d) = d

The set of fixpoints of a function f is denoted as Fix( f ).

Definition 4.34 (Pre-fixpoint)
Let f a continuous function on a CPO? (D,v). We say that an element d is a pre-fixpoint if and only if:

f (d) v d

Of course any fixpoint of f is also a pre-fixpoint of f .
We will denote gfp( f ) the greatest fixpoint of f and with lfp( f ) the least fixpoint of f .

4.2.3. Fixpoint Theorem

Next theorem ensures that the least fixpoint exists and that it can be found.
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Theorem 4.35 (Fixpoint theorem)
Let f : D! D be a continuous function on the complete partial order with bottom CPO?. Then

f ix( f ) =
G

n2!
f n(?)

has the following properties:

1. f ix( f ) is a fixpoint
f ( f ix( f )) = f ix( f )

2. f ix( f ) is the least pre-fixpoint of f

f (d) v d ) f ix( f ) v d

so f ix( f ) is the least fixpoint of f .

Proof. 1. By continuity we will show that f ix( f ) is a fixpoint of f :

f ( f ix( f )) = f (
G

n2!
f n(?))

=
G

n2!
f ( f n(?))

=
G

n2!
f n+1(?)

(4.2)

Now we have a new chain :
f (?) v f ( f (?)) v . . .

Now we have:
G

n2!
f n+1(?) =

0

B

B

B

B

B

@

G

n2!
f n+1(?)

1

C

C

C

C

C

A

t {?}

=
G

n2!
f n(?)

= f ix( f ).

(4.4)

2. We will prove that f ix( f ) is the least fixpoint. Let us assume that d is a pre-fixpoint of f , that is f (d) v d. By
induction 8n 2 !. f n(?) v d (i.e., d is an upper bound for the chain { f n(?)}n2!):

• base case: obviously ?v d

• inductive step: let us assume f n(?) v d

f n+1(?) = f ( f n(?)) by definition
v f (d) by monotonicity of f and inductive hypothesis
v d because d is a pre-fixpoint

So f ix( f ) v d is the least pre-fixpoint of f , and in particular the least fixpoint of f . ⇤

Now let us make two examples which show that bottom and continuity are required to compute f ix( f ).

Example 4.36 (Bottom is necessary)
Let ({True, False},v) be the partial order of boolean values (i.e. a discrete order with two elements)
obviously it is complete. The identity function Id is monotone. In fact there is no least fixpoint. To ensure
the existence of the lfp(Id) we need a bottom element in the CPO.
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Example 4.37 (Continuity is necessary)
Let us consider the CPO (! [ {11,12},v) where v� ! =, 8d 2 ! [ {11}. d v 11 and 8d 2 ! [
{11,12}. d v 12. We define a monotone function f as follows:

f (n) = n + 1 f (11) = 12 f (12) = 12

note that f is not continue. Let us consider C = {di}i2! be the even numbers chain we have:
G

i2!
di = 11 f (

G

i2!
di) = 12

G

i2!
f (di) = 11

Note that f has at least one fixpoint, indeed:

f (12) = 12

But nothing ensures that the fixpoint is reachable.

4.3. Immediate Consequence Operator

4.3.1. The R̂ Operator

In this section we compare for the first time two di↵erent approaches for defining semantics: inference rules
and fixpoint theory. We will see that the set of theorems of a generic logical system can be defined as a
fixpoint of a suitable operator.

Let us consider an inference rule system, and the set F of the well-formed formulas of the language
handled by the rules. We define an operator on the CPO

⇣

2F ,✓
⌘

.

Definition 4.38 (Immediate consequence operator R̂)
Let R be a set of inference rules and let B ✓ F be a set of well-formed formulas, we define:

R̂(B) =
n

y|9(X/y) 2 R.X ✓ B
o

R̂ : 2F ! 2F is called immediate consequence operator.

The operator R̂ when applied to a set of formulas B calculates a new set of formulas by using the inference
rules as shown in Chapter 1. Now we will show that the set of theorems proved by the rule system R is equal
to the least fixpoint of the immediate consequence operator R̂.

To apply the fixpoint theorem, we need monotonicity and continuity of R̂.

Theorem 4.39 (Monotonicity of R̂)
R̂ is a monotone function.

Proof. We want to show that R̂(B1) ✓ R̂(B2).
Let B1 ✓ B2. Let us assume y 2 R̂(B1), then there exists a rule (X/y) in R, and X ✓ B1. So we have X ✓ B2 and

y 2 R̂(B2). ⇤
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Theorem 4.40 (Continuity of R̂ )
Let R be a set of rules of the form (X/Y ), with X a finite set, then R̂ is continuous.

Proof. We will prove that
S

n2! R̂(Bn) = R̂(
S

n2! Bn).
So as usual we prove:

1.
S

n2! R̂(Bn) ✓ R̂(
S

n2! Bn)

2.
S

n2! R̂(Bn) ◆ R̂(
S

n2! Bn)

1. Let y be an element of
S

n2! R̂(Bn) so there exists a natural number m such that y 2 R̂(Bm). Since Bm ✓
S

n2! Bn
by monotonicity R̂(Bm) ✓ R̂(

S

n2! Bn) so y 2 R̂(
S

n2! Bn).

2. Let y be an element of R̂(
S

n2! Bn) so there exists a rule X/y with X ✓ S

n2! Bn.
Since X is finite there exists a natural number k such that X ✓ Bk, otherwise X *

S

n2! Bn. In fact if X = {xi}i=1,...,N ,
then ki = min{ j | xi 2 Bj} and k = max{ki}i=1,...N . So y 2 R̂(Bk) then y 2 S

n2! R̂(Bn) as required.

⇤

4.3.2. Fixpoint of R̂

Now we are ready to present the fixpoint of R̂. For this purpose let us define IR the set of theorems provable
from the set of rules R:

IR =
[

i2!
Ii
R

where

I0
R

def
= ?

In+1
R

def
= R̂(In

R) [ In
R

Note that the generic In
R contains all theorems provable with derivations of depth at most n, and IR contains

all theorems provable by using the rule system R.

Theorem 4.41
Let R a rule system, it holds:

In
R = R̂n(?)

Proof. By induction on n

Basis) I0
R = R̂0(?) = ?.

Ind.) We assume In
R = R̂n(?). Then:

In+1
R = R̂(In

R) [ In
R

= R̂(R̂n(?)) [ In
R

= R̂n+1(?) [ In
R

= R̂n+1(?) [ R̂n(?)

= R̂n+1(?)



54 Partial Orders and Fixpoints

In the last step of the proof we have exploited the property R̂n+1(?) ◆ R̂n(?), which can be readily proved by
mathematical induction (the base case amounts to R̂(?) ◆ ? that trivially holds and the inductive case follows by
monotonicity of R̂, as R̂n+1(?) ◆ R̂n(?) implies R̂n+2(?) = R̂(R̂n+1(?)) ◆ R̂(R̂n(?)) = R̂n+1(?)). ⇤

Theorem 4.42 (Fixpoint of R̂)
Let R a rule system, it holds:

f ix(R̂) = IR

Proof. By using the fixpoint theorem we have that there exists lfp(R̂) and that it is equal to
S

n2! R̂n(?) def
= f ix(R̂),

then:
IR

def
=

[

n2!
In
R =

[

n2!
R̂n(?) def

= f ix(R̂)

as required.
⇤

Example 4.43 (Rule system with discontinuous R̂)

P(1)
P(x)

P(x + 1)

8x odd. P(x)

P(0)

To ensure the continuity of R̂ the theorem 4.40 requires that the system has only rules with finitely many
premises. The third rule of our system instead has infinitely many premises.
The continuity of R̂, namely 8{Bn}n2!. [n2! R̂(Bn) = R̂([n2!Bn), does not hold in this case. Indeed if we
take the chain

{P(1)} ✓ {P(1), P(3)} ✓ {P(1), P(3), P(5)} . . .
We have :

Bi {P(1)} ✓ {P(1), P(3)} ✓ {P(1), P(3), P(5)}
R̂(Bi) {P(1), P(2)} ✓ {P(1), P(2), P(4)} ✓ {P(1), P(2), P(4), P(6)}

Then we have:
[

i2!
Bi = {P(1), P(3), P(5), . . .}

[

i2!
R̂(Bi) = {P(1), P(2), P(4), . . .}

R̂(
[

i2!
Bi) = {P(1), P(2), P(4) . . . P(0)

|{z}

3rd rule

}

since the third rule apply only when the predicate is proved for all the odd numbers.

f ix(R̂) =
[

n2!
Rn(?) = {P(1), P(2), P(3), P(4), . . .}

R̂( f ix(R̂)) = {P(0), P(1), P(2), P(3), P(4), . . .}

Then we can not use the fixpoint theorem, and f ix(R̂) is not a fixpoint of R̂ since f ix(R̂) , R̂( f ix(R̂)).
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Example 4.44 (String)
Let us consider the grammar

S ::= �|(S )|S S

Obviously using the inference rule formalism we can write:

?

� 2 S

s 2 S

(s) 2 S

s1 2 S s2 2 S

s1s2 2 S

So we can use the R̂ operator and the fixpoint theorem to find all the strings generated by the grammar:

S 0 = R̂0(?) = ?

S 1 = R̂(S 0) = � + (?) + ?? = {�}
S 2 = R̂(S 1) = � + (�) + �� = {�, ( )}
S 3 = R̂(S 2) = � + (�) + (( )) + ( )( ) = {�, ( ), (( )), ( )( )}
. . .

So L = f ix(R̂).





5. Denotational Semantics of IMP

The same language can be assigned di↵erent kinds of semantics, depending on the properties under study
or the aspects we are interested in representing. The operational semantics is closer to the memory-based,
executable machine-like view: given a program and a state, we derive the state obtained after the execution of
that program. We now give a more abstract, purely mathematical semantics, called denotational semantics,
that takes a program and returns the transformation function over memories associated with that program: it
takes an initial state as argument and returns the final state as result. Since functions will be written in some
fixed mathematical notation, i.e. they can also be regarded as “programs” of a suitable formalism, we can say
that, to some extent, the operational semantics defines an “interpreter” of the language (given a program and
the initial state it returns the final state obtained by executing the program), while the denotational semantics
defines a “compiler” for the language (from programs to functions, i.e. programs written in a more abstract
language).

The (meta-)language we shall rely on for writing functions is called �-notation.

5.1. �-notation

The lambda calculus was introduced by Alonzo Church in 1930 in order to answer one of the questions in the
Hilbert’s program. As we said we will use lambda notation as meta-language, this means that we will express
the semantics of IMP by lambda terms.

Definition 5.1
We define lambda terms as:

t ::= x | �x.t | tt | t ! t, t

Where x is a variable.

As we can see the lambda notation is very simple, it has four constructs:

• x: is a simple variable.

• �x.t: is the lambda abstraction which allows to define anonymous functions.

• tt0: is the application of a function t to its argument t0.

• t ! t0, t00 is the conditional operator, i.e. the “If-Then-Else” construct in lambda notation.

All the notions used in this definition, like “True” and “False” can be formalized in lambda notation only
by using lambda abstraction, but this development is beyond the scope of the course.

Definition 5.2
Let t, t0 and t00 be three lambda terms, we define:

t ! t0, t00 =
(

t0 if t = True
t00 if t = False
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Lambda abstraction �x.t is the main feature. It allows to define functions, where x represents the parameter
of the function and t is the lambda term which represents the body of the function. For example the term �x.x
is the identity function. Usually we equip the lambda notation with some equations. Before introducing these
equations we will present the notions of substitution and free variable. Substitution allows to systematically
substitute a lambda term for a variable.

Definition 5.3
Let t and t0 be two lambda terms, we define:

f v(x) = {x}
f v(�x.t) = f v(t) \ {x}

f v(tt0) = f v(t) [ f v(t0)
f v(t ! t0, t00) = f v(t) [ f v(t0) [ f v(t00)

The second equation highlights that the lambda abstraction is a binding operator.

Definition 5.4
Let t, t0, t00 and t000 be four lambda terms, we define:

y[t/x] =
(

t if y = x
y if y , x

(�x.t0)[t/y] = �z.t0[z/x][t/y] if z < f v(�x.t0) [ f v(t) [ { y }
(t0t00)[t/x] = t0[t/x]t00[t/x]

(t0 ! t00, t000)[t/x] = t0[t/x]! t00[t/x], t000[t/x]

Note that the matter of names is not so trivial. In the second equation we first rename y with a fresh name
z, than go ahead with the substitution. This solution is motivated by the fact that y might not be free in t, but
it introduces some non-determinism in the equations due to the arbitrary nature of the new name z. This
non-determinism immediately disappear if we regard the terms up to the name equivalence defined as follows:

Definition 5.5
Let t be a lambda term we define:

�x.t = �y.t[y/x] if y < f v(t)

this property is called ↵-conversion.

Obviously ↵-conversion and substitution should be defined at the same time to avoid circularity. By using
the ↵-conversion we can prove statements like �x.x = �y.y.

Definition 5.6
Let t, t0 be two lambda terms we define:

(�x.t)t0 = t[t0/x]

this property is called �-conversion.
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This second equation allows to understand how to interpret function applications.
Finally we introduce some syntactic sugar and conventions.

• A! B ⇥C = A! (B ⇥C)

• A ⇥ B! C = (A ⇥ B)! C

• A ⇥ B ⇥C = (A ⇥ B) ⇥C

• A! B! C = A! (B! C)

• tt0t00 = (tt0)t00

• �x.tt0 = �x.(tt0)

In the following, we will often omit parentheses.

5.2. Denotational Semantics of IMP

The denotational semantics of IMP consists of three separate interpretation functions, one for each syntax
category (Aexp, Bexp, Com):

• each arithmetic expression is mapped to a function from states to integers: A : Aexp! (⌃! N);

• each boolean expression is mapped to a function from states to booleans: B : Bexp! (⌃! B);

• each command is mapped to a (partial) function from states to states: C : Com! (⌃* ⌃).

5.2.1. Function A

The denotational semantics of arithmetic expression is defined as the function:

A : Aexp! ⌃! N
We shall define A by exploiting structural recursion over the syntax of arithmetic expressions. Let us fix

some notation:
Notation
We will rely on definitions of the form

A ~n� = ��.n

with the following meaning:

• A is the interpretation function, typed in the functional space Aexp! ⌃! N

• n is an arithmetic expression (i.e. a term in Aexp). The surrounding brackets ~ and � emphasize that it
is a piece of syntax rather then part of the metalanguage.

• the expression A ~n� is a function ⌃! N. Notice that also the right part of the equation must be of
the same type ⌃! N.

We shall often define the interpretation function A by writing equalities such as:

A ~n�� = n

instead of

A ~n� = ��.n

In this way, we simplify the notation in the right-hand side. Notice that now both the sides of the equation
have the type N.
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Definition 5.7
The denotational semantics of arithmetic expressions is defined by structural recursion as follows:

A ~n�� = n
A ~x�� = �x

A ~a0 + a1�� = (A ~a0��) + (A ~a1��)
A ~a0 � a1�� = (A ~a0��) � (A ~a1��)
A ~a0 ⇥ a1�� = (A ~a0��) ⇥ (A ~a1��)

Let us briefly comment the above definitions.

Constants The denotational semantics of any constant n is just the constant function that returns n for any
�.

Variables The denotational semantics of any variable x is the function that takes a memory � and returns
the value of x in �.

Binary expressions The denotational semantics of any binary expression evaluates the arguments (with
the same given �) and combines the results by exploiting the corresponding arithmetic operation.

Note that the symbols “+”,“-” and “⇥” are overloaded: in the left hand side they represent elements of the
syntax, while in the right hand side they represent operators of the metalanguage. Similarly for “n” in the
first definition.

5.2.2. Function B

Function B is defined in a very similar way. The only di↵erence is that the values to be returned are elements
of B and not of N.

Definition 5.8
The denotational semantics of boolean expressions is defined by structural recursion as follows:

B ~v�� = v
B ~a0 = a1�� = (A ~a0��) = (A ~a1��)
B ~a0  a1�� = (A ~a0��)  (A ~a1��)

B ~¬b0�� = ¬ (B ~b��)
B ~b0 _ b1�� = (B ~b0��) _ (B ~b1��)
B ~b0 ^ b1�� = (B ~b0��) ^ (B ~b1��)

5.2.3. Function C

We are now ready to present the denotational semantics of commands. As we might expect the interpretation
function of commands is the most complex. It has the following type:

C : Com! (⌃* ⌃)

As we saw we can define an equivalent total function. So we will employ a function of the type:

C : Com! (⌃! ⌃?)
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This will simplify our work. We start from the simplest commands:

C
✓

skip
◆

� = �

C ~x := a�� = �
h

A ~a��/x
i

We see that “skip” does not modify the memory, while “x := a” evaluates the arithmetic expression "a" with
its function A and then modifies the memory assigning the corresponding value to “x” .

Let us now consider the concatenation of two commands. In interpreting “c0; c1” we will interpret “c0”
from the starting state and then “c1” from the state obtained from “c0”. Then from the first application of
C ~c0� we obtain a value in ⌃? so we can not apply C ~c1�. To work this problem out we introduce a lifting
operator _⇤.

Definition 5.9
Let f : ⌃! ⌃?, we define a function f ⇤ : ⌃? ! ⌃? as follows:

f ⇤(x) =
(

? if x = ?
f (x) Otherwise

Note that _⇤ is an operator of the type (⌃! ⌃?)! (⌃? ! ⌃?).

So the definition of the interpretation function for “c0; c1” is:

C ~c0; c1�� = C ~c1�⇤ (C ~c0��)

Let us now consider the conditional command “if”, recall that the �-calculus provides a conditional operator,
then we have simply:

C ~if b then c0 else c1�� = B ~b��! C ~c0��,C ~c1��

Now we present the semantics of the “while” command. We could think to define the semantics of “while”
simply as:

C ~while b do c�� = B ~b��! C ~while b do c�⇤ (C ~c��) ,�

Obviously this definition is not a structural recursion definition rule. Indeed structural recursion allows only
for subterms, while here “while b do c” appears on both sides. To solve this issue we will reduce the problem
of defining the semantics of “while” to a fixpoint calculation. Let us define a function �b,c.

�b,c = �'. ��.B ~b��! '⇤(C ~c��),�
⌃?

⌃!⌃?
(⌃!⌃?)!⌃!⌃?

As we can see the function �b,c is of type (⌃ ! ⌃?) ! ⌃ ! ⌃? and contains only subterms of
“while b do c”. We want to define the semantics of the “while” command as the least fixpoint of �b,c. Now we
will show that �b,c is a monotone continuous function, so that we can prove that �b,c has a least fixpoint and
that:

C ~while b do c� = f ix �b,c =
G

n2!
�n

b,c(?⌃!⌃?)

To prove continuity we will consider �b,c as applied to partial functions: �b,c : (⌃ * ⌃) �! (⌃ * ⌃).
Partial functions in ⌃* ⌃ can be represented as sets of (well formed) formulas � �! �0. Then the e↵ect of
�b,c can be represented by the immediate consequence operators for the following (infinite) set of rules.

R�b,c =

(

B ~b�� C ~c�� = �00 �00 ! �0

�! �0
,

¬B ~b��
�! �

)

with R̂�b,c = �b,c
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Notice that here the only well formed formulas are �00 �! �0, � �! �0 and � �! �. An instance of the
first rule schema is obtained by picking up a value of � such that B~b�� is true, and a (the) value of �00 such
that C ~c�� = �00. Then for every �00 such that �00 ! �0 we can imply � ! �0. Similarly for the second
rule schema.

Since all the rules obtained in this way have a finite number of premises (actually one or none), we can
apply th.4.40, which ensures the continuity of R̂�b,c . Now by using th.4.3.2 we have:

f ix R̂�b,c = IR�b,c = f ix �b,c

Let us conclude this section with three examples which explain how to use the results we achieved.

Example 5.10
Let us consider the command:

w = while true do skip

now we will see how to calculate its semantics. We have C ~w� = f ix �true,skip where

�true,skip'� = B ~true��! '⇤ �C ✓

skip
◆

�
�

,� = '⇤
�

C
✓

skip
◆

�
�

= '⇤� = '�

So we have �true,skip' = ', that is �true,skip is the identity function. Then each function ' is a fixpoint of
�true,skip, but we are looking for the least fixpoint. This means that the sought solution is the least function
in the CPO? of functions. Then we have f ix �true,skip = ��.?⌃? .

In the following we will often write just � when the subscripts b and c are obvious from the context.

Example 5.11
Now we will see the equivalence between w = while b do c and if b then c; w else skip . Since C ~w� is a
fixpoint we have:

C ~w� = �(C ~w�) = ��.B ~ b ��! C ~w�⇤ (C ~c��),�

Moreover we have:

C
✓

if b then c; w else skip
◆

= ��.B ~ b ��! C ~c;w��,C
✓

skip
◆

�

= ��.B ~ b ��! C ~w�⇤ (C ~c��),�

Example 5.12
Let us consider the command:

c = while x , 0 do x := x � 1

we have:
C ~c� = f ix �

where �' = � �.�x , 0! ' �[�x � 1/x],�. Let us see some iterations:

'0 = �
0 ?⌃!⌃? = ?⌃!⌃? = � �.?⌃?

'1 = � '0 = � �.�x , 0! ?⌃? ,�
'2 = � '1 = � �.�x , 0! (� �0. �0x , 0! ?⌃? ,�0) �[�x � 1/x],�

Now we have the followings possibilities:

�x < 0

'2� = ?
�x = 0

'2� = �

�x = 1

'2� = �[�x � 1/x]

�x > 1

'2� = ?
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So we have:
'2 = � �.�x < 0! ?, 0 6 �x < 2! �[0/x],?

We can now attempt to formulate a conjecture:

8n 2 !.'n = � �.�x < 0! ?, 0 6 �x < n! �[0/x],?

We are now ready to prove our conjecture by mathematical induction.
The base case is trivial, indeed '0 = �

0 ? = � �.?⌃? .
For the inductive case. let us now assume the predicate for n and prove it for n + 1. So as usual we

assume:
P(n) = ('n = � �.�x < 0! ?, 0 6 �x < n! �[0/x],?)

and prove:
P(n + 1) = ('n+1 = � �.�x < 0! ?, 0 6 �x < n + 1! �[0/x],?)

By definition:

'n+1 = � 'n = � �.� x , 0! (� �0.�0x < 0! ?, 0 6 �0x < n! �0[0/x],?)�[�x � 1/x],�

we have:
�x < 0

'n+1� = ?
�x = 0

'n+1� = � = �[0/x]
1  �x < n + 1

'n+1� = �[�x � 1/x][0/x] = �[0/x]

�x � n + 1

'n+1� = ?
Then:

'n+1 = � �.�x < 0! ?, 0 6 �x < n + 1! �[0/x],?
Finally we have:

C ~c� = f ix � =
G

i2!
'i? = ��.�x < 0! ?,�[0/x]

5.3. Equivalence Between Operational and Denotational Semantics

This section deals with the issue of equivalence between the two semantics of IMP introduced up to now. As
we will show the denotational and operational semantics agree. As usual we will handle first arithmetic and
boolean expressions, then assuming the proved equivalences we will show that operational and denotational
semantics agree also on commands.

5.3.1. Equivalence Proofs for A and B

We start from the arithmetic expressions, the property which we will prove is the following:

P(a) def
= ha,�i ! A ~a�� 8a 2 Aexpr

That is, the results of evaluating an arithmetic expression both by operational and denotational semantics
are the same. If we regard the operational semantics as an interpreter and the denotational semantics as a
compiler we are proving that interpreting an IMP program and executing its compiled version starting from
the same memory leads to the same result. The proof is by structural induction on the arithmetic expressions.

Constants P(n) def
= hn,�i ! A ~n�� Since A ~n�� = n and hn,�i ! n.

Variables P(x) def
= hx,�i ! A ~x�� Since A ~x�� = �(x) and hx,�i ! �(x).
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Binary operators Let us generalize the proof for the binary operations of arithmetic expressions. Consider
two arithmetic expressions a0 and a1 and a binary operator � of IMP, whose corresponding semantic
operator is �. We would like to prove

P(a0) ^ P(a1)) P(a0 � a1)

So as usual we assume P(a0) def
= ha0,�i ! A ~a0�� and P(a1) def

= ha1,�i ! A ~a1�� and we prove
P(a0 � a1) def

= ha0 � a1,�i ! A ~a0 � a1��.
We have:

ha0 � a1,�i ! A ~a0�� �A ~a1�� by operational semantics definition and using the preconditions
ha0 � a1,�i ! A ~a0 � a1�� by denotational semantics definition

So we have P(a0 � a1).

The boolean expressions case is completely similar to that of arithmetic expressions, so we leave the proofs
as an exercise. From now on we will assume the equivalence between denotational and operational semantics
for boolean and arithmetic expressions.

5.3.2. Equivalence of C

Central to the proof of equivalence between denotational and operational semantics is the case of commands.
Operational and denotational semantics are defined in very di↵erent formalism, on the one hand we have an
inference rule system which allows to calculate the execution of each command, on the other hand we have a
function which associates to each command its functional meaning. So to prove the equivalence between the
two semantics we will prove the following:

8c. 8�,�0 2 ⌃. hc,�i ! �0 () C ~c�� = �0

As usual we will divide the proof in two parts:

• P (hc,�i ! �0) def
= C ~c�� = �0 (Completeness)

• P (c) def
= C ~c�� = �0 ) hc,�i ! �0 (Correctness)

Notice that in this way it also guaranteed equivalence for the non defined cases: for instance we have
hc,�i9) C ~c�� = ?⌃? since otherwise C ~c�� = �0 would imply hc,�i ! �0. Similarly in the other
direction.

5.3.2.1. Completeness of the Denotational Semantics

Let us prove the first part of the theorem: P (hc,�i ! �0) def
= C ~c�� = �0.

Since the operational semantic is defined by a rule system we will proceed by rule induction. So for each rule
we will assume the property on the premises and we will prove the property on the consequence.

Skip We would like to prove:

• P (hskip,�i ! �) def
= C

✓

skip
◆

� = �

Obviously the proposition is true by definition of denotational semantic.
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Assignment Let us consider the assignment command:

ha,�i ! m

hx B a,�i ! � ⇥m/x
⇤

We assume:

• P(ha,�i ! m) def
= A ~a�� = m.

We will prove:

• P (hx B a,�i ! � [m/x]) def
= C ~x B a�� = � [m/x]

We have by the definition of denotational semantics:

C ~x B a�� = �
h

A ~a��/x
i

= �
⇥m/x

⇤

Concatenation Let us consider the concatenation rule:

hc0,�i ! �00
⌦

c1,�
00↵! �0

hc0; c1,�i ! �0

We assume:

• P (hc0,�i ! �00) def
= C ~c0�� = �00

• P (hc1,�00i ! �0) def
= C ~c1��00 = �0.

We will prove:

• P (hc0; c1,�i ! �0) def
= C ~c0; c1�� = �0

We have by definition:

C ~c0; c1�� = C ~c1�⇤ (C ~c0��) = C ~c1�⇤ �00 = C ~c1��00 = �0

Note that the lifting operator can be deleted because �00 , ?.

Conditional For the conditional command we have two rules:

hb,�i ! true hc0,�i ! �0

hif b then c0 else c1,�i ! �0
hb,�i ! false hc1,�i ! �0

hif b then c0 else c1,�i ! �0

We will prove only the first case, the second proof is completely analogous, so we leave that as an exercise.
We assume:

• P(hb,�i ! true) def
= B ~b�� = true

• P (hc0,�i ! �0) def
= C ~c0�� = �0.

And we will prove:

• P (hif b then c0 else c1,�i ! �0) def
= C ~if b then c0 else c1�� = �0

We have:
C ~if b then c0 else c1�� = B ~b��! C ~c0��,C ~c1�� = C ~c0�� = �0
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While As for the conditional we have two rules for the “while” command:

hb,�i ! false

hwhile b do c,�i ! �
hb,�i ! true hc,�i ! �00 ⌦

while b do c,�00
↵! �0

hwhile b do c,�i ! �0

Let us consider the first rule. We assume:

• P(hb,�i ! false) def
= B ~b�� = false

We will prove:

• P (hwhile b do c,�i ! �) def
= C ~while b do c�� = �

We have by the fixpoint property of the denotational semantics:

C ~while b do c�� = B ~b��! C ~while b do c�⇤ (C ~c��),� = �

For the second rule we assume:

• P(hb,�i ! true) def
= B ~b�� = true

• P(hc,�i ! �00) def
= C ~c�� = �00

• P(hwhile b do c,�00i ! �0) def
= C ~while b do c��00 = �0

We will prove:

• P(hwhile b do c,�i ! �0) def
= C ~while b do c�� = �0

By the definition of the denotational semantics:

B ~b��! C ~while b do c�⇤ (C ~c��) ,� = C ~while b do c�⇤ (C ~c��) = C ~while b do c��00 = �0

Note that the lifting operator can be deleted since �00 , ?.

5.3.2.2. Correctness of the Denotational Semantics

Since the denotational semantics is given by structural recursion we will proceed by induction on the structure
of commands. We will prove:

P(c) def
= 8�,�0 C ~c�� = �0 ) hc,�i ! �0

Skip We will prove:

• P(skip) def
= 8�,�0 C ✓

skip
◆

� = �0 ) hskip,�i ! �0

By definition we have C
✓

skip
◆

� = � and hskip,�i ! �.

Assignment We will prove:

• P(x B a) def
= 8�,�0 C ~x B a�� = �0 ) hx B a,�i ! �0

By definition have �0 = �[n/x] where A ~a�� = n so we have ha,�i ! n and thus we can apply the rule:

ha,�i ! n

hx B a,�i ! �[n/x]
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Concatenation We will prove:

• P(c0; c1) def
= 8�,�0 C ~c0; c1�� = �0 ) hc0; c1,�i ! �0

We assume:

• P(c0) def
= 8�,�00 C ~c0�� = �00 ) hc0,�i ! �00

• P(c1) def
= 8�00,�0 C ~c1��00 = �0 ) hc1,�i ! �0

Assuming the premise of the implication we want to prove, we have C ~c0; c1�� = C ~c1�⇤ (C ~c0��) = �0.
Since we assume the termination of c0 we can omit the lifting operator. We obtain C ~c0�� = �00 and
C ~c1��00 = �0, which allows us to apply modus ponens to the inductive assumptions, obtaining hc0,�i !
�00 and hc1,�00i ! �0. Thus we can apply:

hc0,�i ! �00
⌦

c1,�
00↵! �0

hc0; c1,�i ! �0

Conditional We will prove:

• P(if b then c0 else c1) def
= 8�,�0 C ~if b then c0 else c1�� = �0 ) hif b then c0 else c1,�i ! �0

As usual we must distinguish two cases, let us consider only the case with B ~b�� = false, namely
hb,�i ! false
We assume:

• P(c0) def
= 8�,�0 C ~c0�� = �0 ) hc0,�i ! �0

• P(c1) def
= 8�,�0 C ~c1�� = �0 ) hc1,�i ! �0

• C ~if b then c0 else c1�� = �0

By definition and since B ~b�� = false we have C ~if b then c0 else c1�� = B ~b��! C ~c0��,C ~c1�� =
C ~c1�� = �0 this implies by hypothesis hc1,�i ! �0. Thus we can apply the rule:

hc1,�i ! �0 hb,�i ! false

hif b then c0 else c1,�i ! �0

While We will prove:

P(while b do c) def
= 8�,�0 C ~while b do c�� = �0 ) hwhile b do c,�i ! �0

We assume by structural induction:

• P(c) def
= 8�,�00 C ~c�� = �00 ) hc,�i ! �00

By definition C ~while b do c�� = f ix �b,c � so:

P(while b do c) = C ~while b do c�� = �0 ) hwhile b do c,�i ! �0

= f ix �b,c � = �
0 ) hwhile b do c,�i ! �0

=

0

B

B

B

B

B

@

G

i2!
�n

b,c?
1

C

C

C

C

C

A

� = �0 ) hwhile b do c,�i ! �0

= 8n.(�n
b,c?� = �0 ) hwhile b do c,�i ! �0)

Notice that the last two properties are equivalent. In fact, if there is a pair � ! �0 in the limit, it must
also occur for some n. Vice versa, if it belongs to �n

b,c? then it belongs also to the limit. We prove the last
implication by mathematical induction
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P(0) We have to prove:
�0

b,c?� = �0 ) hwhile b do c,�i ! �0

Obviously:
?� = �0 ) hwhile b do c,�i ! �0

Since ?� = �0 is always false then the implication is true.

P(n)) P(n+1) Let us assume A(n) def
= �n

b,c?� = �0 ) hwhile b do c,�i ! �0. We will show that

A(n + 1) def
= �n+1

b,c ?� = �0 ) hwhile b do c,�i ! �0. We assume the premise of the implication, i.e.
�b,c

⇣

�n
b,c?

⌘

� = �0, that is

B ~b��!
⇣

�n
b,c?

⌘⇤
(C ~c��) ,� = �0

Now we distinguish two cases B ~b�� = false and B ~b�� = true.

• if B ~b�� = false, we have �0 = �. As proved in the previous sections B ~b�� = false ,
hb,�i ! false. Now by using the rule:

hb,�i ! false

hwhile b do c,�i ! �

we have hwhile b do c,�i ! � as required.

• if B ~b�� = true as for the false case hb,�i ! true. The premise of the implication becomes
�0 =

⇣

�n
b,c?

⌘⇤
(C ~c��). We can omit the lifting operator since we are working with terminating

commands. So we have C ~c�� = �00 and by structural induction hc,�i ! �00. Now we have
by mathematical induction hypothesis A(n) = �n

b,c?�00 = �0 ) hwhile b do c,�00i ! �0. Finally
by using the rule:

hb,�i ! true hc,�i ! �00 ⌦

while b do c,�00
↵! �0

hwhile b do c,�i ! �0

we have hwhile b do c,�i ! �0 as required.

5.4. Computational Induction

Up to this time the denotational semantics is less powerful than the operational, since we are not able to prove
properties on fixpoints. To fill this gap we introduce computational induction, which applies to a class of
properties corresponding to inclusive sets.

Definition 5.13 (Inclusive set)
Let (D,v) be a CPO, let P be a set, we say that P is an inclusive set if and only if:

(8n 2 !, dn 2 P))
G

n2!
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Notice that if we consider a subset P of D as equipped with the same partial ordering v of D, then P is
inclusive i↵ it is complete.
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Example 5.14 (Non inclusive property)
Let ({a, b}⇤ [ {a, b}1,v) be a CPO where x v y, 9z. y = xz. So the elements of the CPO are sequences of
a and b and x v y if x is a prefix of y. Let us now define the following property:

• x is fair i↵ @y 2 {a, b}⇤. x = ya1 _ x = yb1

fairness is not inclusive, indeed,
F

n2! an = a1. Fairness is the property of an arbiter which does not favor
one of two competitors all the times from some point on.

Theorem 5.15 (Computational Induction)
Let P be a property, (D,v) a CPO? and F a monotone, continuous function on it. Then the inference rule:

P inclusive ? 2 P 8d 2 D.(d 2 P =) F(d) 2 P)

f ix(F) 2 P

is sound.

Proof. Given the second and the third premises, it is easy to prove by mathematical induction that 8n. Fn(?) 2 P.
Then also

F

n2! Fn(?) = fix(F) 2 P since P is inclusive. ⇤

Example 5.16 (Computational induction)

C ~while x , 0 do x := x � 1�� = �0 ) �x � 0 ^ �0 = �[0/x]

By definition:
C ~w� = f ix(�) �'� = �x , 0! '�[�x�1/x],�

Let us rewrite the property:

P(') def
= 8�.('� = �0 ) �x � 0 ^ �0 = �[0/x])

we will show that the property is inclusive, that is:
⇣

8i8�.
⇣

'i� = �0 ) �x � 0 ^ �0 = �[0/x]
⌘⌘

)
) 8�.

⇣

(
F

i2! 'i)� = �0 ) �x � 0 ^ �0 = �[0/x]
⌘

Let us assume (
F

i2! 'i)� = �0 so we have:

9k.'k� = �
0

then we can conclude the thesis by modus ponens on the premise.
We can now use the computational induction:

P inclusive ? 2 P 8'.P(')) P(� ')

P(C ~while x , 0 do x := x � 1�)

• P(?) obviously since ?� = �0 is always false.
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• P(')
?
==) P(�')

Let us assume
P(') = 8�.('� = �0 ) �x � 0 ^ �0 = �[0/x])

we will show
P(�') = �'� = �0

?
==) �x � 0 ^ �0 = �[0/x]

we assume the premise �'� = �0

�'� = �x , 0! '�[�x�1/x],� = �0

if �x = 0:
� = �0 �x � 0 �0 = �[0/x]

and the consequence holds.

if �x , 0, we use P(') for the argument �00

'�[�x�1/x]
|     {z     }

�00

= �0 ) �00x � 0 ^ �0 = �00[0/x]

we have:
�00x � 0, �[�x�1/x]x � 0, �x � 1 � 0, �x � 1) �x � 0

�0 = �00[0/x] = �[�x�1/x][0/x] = �[0/x]

And the consequence holds also in this case. By computational induction the property holds for the
“while” command.
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6. Operational Semantics of HOFL

In the previous chapters we studied an imperative language called IMP. In this chapter we focus our attention
on functional languages. In particular, we introduce HOFL, a simple higher-order functional language which
allows the explicit construction of types. We adopt a lazy evaluation semantics, which corresponds to a
call-by-name strategy, namely parameters are passed without evaluating them.

6.1. HOFL

As done for IMP we will start by introducing the syntax of HOFL. In IMP we have only three types: Aexp,
Bexp and Com. Since IMP does not allow to construct other types explicitly, we embedded these types in
its syntax. HOFL, instead, provides a method to define a variety of types, so we define the pre-terms first,
then we introduce the concept of typed terms, namely the well-formed terms of our language. Due to the
context-sensitive constraints induced by the types, it is possible to see that well-formed terms could not be
defined by a syntax expressed in a context-free format.

t ::= x | Variable
n | Constant
t1 + t2 | t1 � t2 | t1 ⇥ t2 | Arithmetic Operators
if t then t1 else t2 | Conditional (it reads if t = 0 then t1 else t2)
(t1, t2) | fst(t) | snd(t) | Pairing and Projection Operators
�x.t | (t1 t2) | Function Abstraction and Application
rec x.t Recursion

As usually we have variables, constants, arithmetic operators, conditional operator and function application
and definition. Moreover in HOFL we have the constructs of pair and of recursion. Furthermore we have the
operations which allow to project the pair on a single component: fst, which extracts the first component and
snd which extracts the second component. Recursion allows to define recursive terms, namely rec x.t defines
a term t which can contain variable x, which in turn can be replaced by t.

6.1.1. Typed Terms

Using the definition of pre-term given in the previous section, we can construct ill-formed terms that make
little sense (for example we can construct terms like (�x.0) + 1). To avoid these constructions we introduce
the concepts of type and typed term. A type is a term constructed by using the following grammar:

⌧ ::= int | ⌧ ⇤ ⌧ | ⌧! ⌧

So we allow constant type int, the pair type and the function type. Using these constructors we are allowed
to define infinitely many types, like (int ⇤ int) ! int and int ! (int ⇤ (int ! int)). Now we define the rule
system which allows to say if a pre-term of HOFL is well-formed (i.e. if we can associate a type to the
pre-term).

Variables x : type(x) = x̂ where type is a function which assigns a type to each variable.

Arithmetic operators

n : int
t1 : int t2 : int

t1 op t2 : int
with op = +,�,⇥

t0 : int t1 : ⌧ t2 : ⌧

if t0 then t1 else t2 : ⌧
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Pairings

t1 : ⌧1 t2 : ⌧2
(t1, t2) : ⌧1 ⇤ ⌧2

t : ⌧1 ⇤ ⌧2
fst(t) : ⌧1

t : ⌧1 ⇤ ⌧2
snd(t) : ⌧2

Functions

x : ⌧1 t : ⌧2
�x.t : ⌧1 ! ⌧2

t1 : ⌧1 ! ⌧2 t2 : ⌧1
(t1 t2) : ⌧2

Recursion

x : ⌧ t : ⌧

rec x.t : ⌧

Definition 6.1 (Well-Formed Terms of HOFL)
Let t be a pre-term of HOFL, we say that t is well-formed if there exists a type ⌧ such that t : ⌧.

In Section 5.1 we defined the concepts of free variables and substitution for �-calculus. Now we define the
same concepts for HOFL. So by structural recursion we define the set of free-variables of HOFL terms as
follows:

FV(n) = ?
FV(x) = {x}
FV(t1 op t2) = FV(t1) [ FV(t2)
FV(if t0 then t1 else t2) = FV(t0) [ FV(t1) [ FV(t2)
FV((t1, t2)) = FV(t1) [ FV(t2)
FV(fst(t)) = FV(snd(t)) = FV(t)
FV(�x.t) = FV(t)\{x}
FV((t1 t2)) = FV(t1) [ FV(t2)
FV(rec x.t) = FV(t)\{x}

Finally as done for �-calculus we define the substitution operator on HOFL:

x[t/x] = t
y[t/x] = y if x , y
n[t/x] = n
(t1 + t2)[t/x] = t1[t/x] + t2[t/x] (Analogously for �,⇥, if then else, pairing, fst, snd )
(�y.t0)[t/x] = �z.t0[z/y][t/x] z < FV(�y.t0), FV(t), {x} (Analogously for recursion)

Note that in the last rule we performed an ↵-conversion before the substitution. This ensures that the variables
in t0 are not bound by the substitution operation. As discussed in Section 5.1 the substitution is well-defined
if we consider the terms up to ↵-equivalence (i.e. up to the name equivalence). Obviously we would
like to extend these concepts to typed terms. So we are interested in understanding how substitution and
↵-conversion interact with typing. We have the following results:

Theorem 6.2 (Substitution Respects Types)
Let t : ⌧ a term of type ⌧ and let t0, y : ⌧0 be two terms of type ⌧0 then we have

t[t0/y] : ⌧
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Proof. We leave as an exercise to prove the property for t0 = z : ⌧0. We will prove the statement by structural
induction. So we will prove:

P(t) = 8y, t0, ⌧, ⌧0. t : ⌧ ^ y, t0 : ⌧0 ) t[t0/y] : ⌧
Let us consider only two cases, we leave the others as an exercise.

• Variable: let z be a variable then we prove

P(z) = 8y, t0, ⌧, ⌧0. z : ⌧ ^ y, t0 : ⌧0 ) z[t0/y] : ⌧

Let us assume the premises, now we have two possibilities:
– z = y: then ⌧ = ⌧0 and z[t0/y] = t0 : ⌧
– z , y: obvious since z[t0/y] = z.

• Lambda abstraction:

P(�x.t) = 8y, t0, ⌧1, ⌧2, ⌧
0. �x.t : ⌧1 ! ⌧2 ^ y, t0 : ⌧0 ) (�x.t)[t0/y] : ⌧1 ! ⌧2

By inductive hypothesis we have x : ⌧1, t : ⌧2 and t[z/x][t0/y] : ⌧2, by the above exercise and by the inductive
hypothesis. Then �z.t[z/x][t0/y] = (�x.t)[t0/y] : ⌧1 ! ⌧2

⇤

Note that our type system is very simple. Indeed it does not allow to construct useful types, such as recursive,
parametric, polymorphic or abstract types. These limitations imply that we cannot construct many useful
terms. For instance, lists of integer numbers of variable length are not typable in our system. Here we show
an interesting term with recursion which is not typable.

Example 6.3
Now we define a pre-term t which, when applied to 0, should define the list of all even numbers, where:

t = rec p.�x. (x, (p (x + 2)))

The term t0 should behave like the following infinite list:

(0, (2, (4, . . .)))

Let us show that this term is not typable:

t = rec p.�x. (x, (p (x + 2))) : ⌧ -p̂=⌧

�x. (x, (p (x + 2))) : ⌧ -⌧=⌧1!⌧2
x : ⌧1, (x, (p (x + 2))) : ⌧2 -x̂=⌧1

(x, (p (x + 2))) : ⌧2 -⌧2=⌧3⇤⌧4
x : ⌧3, (p (x + 2)) : ⌧4 -x̂=⌧3

(p (x + 2)) : ⌧4 -p̂=int!⌧4, x̂=int

So we have:
⌧1 = x̂ = int = ⌧3 and ⌧2 = ⌧3 ⇤ ⌧4

That is:
p̂ = ⌧ = ⌧1 ! ⌧2 = ⌧1 ! ⌧3 ⇤ ⌧4 = int ! int ⇤ ⌧4 = int ! ⌧4

Thus:
int ⇤ ⌧4 = ⌧4 which is absurd

The above argument is represented more concisely below:

t = rec p. � x
int
. ( x

int
, ( p

int!⌧
( x
int
+2)

int

)

⌧

)

int⇤⌧
int!int⇤⌧ = int!⌧) ⌧=int⇤⌧
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So we have no solutions, and the term is not an HOFL term, no matter what is the value of p̂ and x̂.

6.1.2. Typability and Typechecking

As we said in the last section we will give semantics only to well-formed terms, namely terms which have a
type in our type system. Therefore we need an algorithm to say if a term is well-formed. In this section we
will present two di↵erent solutions to the typability problem, the first introduced by Church and the second
by Curry.

6.1.2.1. Church Type Theory

In Church type theory we explicitly associate a type to each variable and deduce the type of each term by
structural recursion (i.e. by using the rules in a bottom-up fashion).

Let us show how it works by typing the factorial function:

Example 6.4 (Factorial with Church Types)
Let x : int and f : int ! int. So we can type all the subterms:

fact def
= rec f

int!int

. � x
int
. if x

int
then 1

int
else x

int
⇥( f

int!int

( x
int
� 1

int

int

int

))

int

int
|                                                {z                                                }

int!int

: int ! int

6.1.2.2. Curry Type Theory

In Curry types we do not need to explicitly declare the type of each variable. We will use the inference rules
to calculate type equations (i.e. equations which have types as variables) whose solutions will be all the
possible types of the term. This means that the result will be a set of types associated to the typed term. The
surprising fact is that this set can be represented as all the instantiation of a single term with variables, where
one instantiation is obtained by replacing each variable with any type. We call this term with variables the
principal type of the term. This construction is made by using the rules in a goal oriented fashion.

Example 6.5 (Identity)
Let us consider the identity function:

�x. x

By using the type system we have:

�x. x : ⌧ -⌧=⌧1!⌧2
x : ⌧1 x : ⌧2 -x̂=⌧2=⌧1

⇤

So we have that the principal type is �x. x : ⌧1 ! ⌧1. Now each solution of the type equation will be an
identity function for a specified type. For example if we set ⌧1 = int we have ⌧ = int ! int.
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As we will see in the next example and as we already saw in example 6.3, the typing problem reduces to
that of resolving a system of type equations. We will also introduce a standard way to find a solution of the
system (if it exists).

Example 6.6 (Non-typable term of HOFL)
Let us consider the following function, which computes the factorial without using recursion.

begin
fact( f , x) def

= if x = 0 then 1 else x ⇥ f ( f , x � 1)
fact(fact, n)

end

It can be written in HOFL as follows:

fact def
= � y

⌧⇤int

. if snd( y
⌧⇤int

)

int

then 1
int

else snd( y
⌧⇤int

)

int

⇥ ( fst( y
⌧⇤int

)

⌧=⌧⇤int!int

(fst( y
⌧⇤int

)

⌧

, snd( y
⌧⇤int

)

int

� 1
int

)

⌧⇤int

int

We conclude fst(y) : ⌧ and fst(y) : ⌧ ⇤ int ! int. Thus we have ⌧ = ⌧ ⇤ int ! int which is an equation which
has no solution.

We present an algorithm, called unification, to solve general systems of type equations.
We start from a system of equation of the type:

8

>

>

>

>

>

<

>

>

>

>

>

:

t1 = t01
t2 = t02
. . .

where t’s are type terms, with type variables denoted by ⌧’s, then we apply iteratively in any order the
following steps:

1) We eliminate all the equations like ⌧ = ⌧.

2) For each equation of the form f (t1, . . . , tn) = f 0(t01, . . . , t
0
m): if f , f 0, then the system has no solutions.

if f = f 0 then m = n so we must have:

t1 = t01, t2 = t02, . . . , tn = t0n
Then we replace the original equation with these.

3) For each equation of the type ⌧ = t, t , ⌧: we let ⌧ def
= t and we replace each occurrence of ⌧ with t in

all the other equations. If ⌧ 2 t then the system has no solutions.

Eventually, either the system is recognized as unsolvable, or all the variables in the original equations are
assigned to solution terms. Note that the order of the step executions can a↵ect the complexity of the
algorithm but not the solution. The best execution strategies yield a complexity linear or quasi linear with the
size of the original system of equations.

Example 6.7
Let us now apply the algorithm to the previous example:

⌧ = ⌧ ⇤ int ! int

step 3 fails since type variable ⌧ appears in the right hand side.
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6.2. Operational Semantics of HOFL

We are now ready to present the (lazy) operational semantics of HOFL. Unlike IMP the operational semantics
of HOFL is a simple manipulation of terms. This means that the operational semantics of HOFL defines a
method to calculate the canonical form of a given closed term of HOFL. Canonical forms are closed terms,
which we will consider the results of calculations (i.e. values). For each type we will define a set of terms in
canonical form by taking a subset of terms which reasonably represent the values of that type. As shown
in the previous section, HOFL has three type constructors: integer, pair and arrow. Obviously, terms which
represent the integers are the canonical forms for the integer type. For pair type we will take pairs of terms
(note that this choice is arbitrary, for example we could take pairs of terms in canonical form). Finally, since
HOFL is a higher-order language, functions are values. So is quite natural to take all abstractions as canonical
forms for the arrow type.

Definition 6.8 (Canonical forms)
Let us define a set C⌧ of canonical forms for each type ⌧ as follows:

n 2 Cint

t1 : ⌧1 t2 : ⌧2 t1, t2 closed

(t1, t2) 2 C⌧1⇤⌧2

�x.t : ⌧1 ! ⌧2 �x.t closed

�x.t 2 C⌧1!⌧2

We now define the rules of the operational semantics, these rules define an evaluation relation:

t �! c

where t is a well-formed closed term of HOFL and c is its canonical form. So we define:

c! c

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

t0 ! 0 t1 ! c1

if t0 then t1 else t2 ! c1

t0 ! n n , 0 t2 ! c2

if t0 then t1 else t2 ! c2

The first rule is an axiom which allows to evaluate terms already in canonical form. For the arithmetic
operators the semantics is obviously the simple application of the correspondent meta-operator as well as
in IMP. Only, here we distinguish between operator and meta operator by underlying the latter. For the
“if-then-else”, since we have no boolean values, we use the convention that if t0 then t1 else t2 stand for
if t0 = 0 then t1 else t2, so t0 , 0 means t0 false and t0 = 0 means t0 true.

Let us now consider the pairing. Obviously, since we consider pairs as values, we have no rules for the
simple pair. We have instead two rules for projections:

t ! (t1, t2) t1 ! c1

fst(t)! c1

t ! (t1, t2) t2 ! c2

snd(t)! c2

For function application, we give a lazy operational semantics, this means that we do not evaluate the
parameters before replacing them with the copy rule in the function body. If the argument is actually needed
it may be later evaluated several times.

t1 ! �x.t01 t01[t2/x]! c

(t1 t2)! c
(lazy)
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So we replace each occurrence of x in t01 with a copy of the parameter.
Let us consider the eager counterpart of this rule. Unlike the lazy semantics, the eager semantics evaluates the
parameters only once and during the application. Note that these two types of evaluation are not equivalent.
If the evaluation of the argument does not terminate, and it is not needed, the lazy rule will guarantee
convergence, while the eager rule will diverge.

t1 ! �x.t01 t2 ! c2 t01[c2/x]! c

(t1 t2)! c
(eager)

Finally we have a rule for “Rec”:

t[rec x.t/x]! c

rec x.t ! c

Let us see an example which illustrates how rules are used to evaluate a function application.

Example 6.9 (Factorial)
Let us consider the factorial function in HOFL:

fact = rec f .�x. if x then 1 else x ⇥ ( f (x � 1))

As we said in the previous examples f act is closed and typable. So we can calculate its canonical form by
using the last rule:

fact �! �x. if x then 1 else x ⇥ (fact(x � 1))

Now we can apply this function to a specific value and calculate the result as usual:

(fact 2)! c - fact! �x.t t[2/x]! c
- �x. if x then 1 else x ⇥ (fact(x � 1))! �x.t t[2/x]! c

-t=if x then 1 else x⇥fact(x�1) if 2 then 1 else 2 ⇥ (fact(2 � 1))! c
- 2 ⇥ (fact(2 � 1))! c

-c=c1⇥c2 2! c1 (fact(2 � 1))! c2

-c1=2 fact! �x.t t[2�1/x]! c2
2�1 not evaluated

- if(2 � 1) then 1 else(2 � 1) ⇥ (fact((2 � 1) � 1))! c2

- 2 � 1! n n , 0 (2 � 1) ⇥ fact((2 � 1) � 1)! c2

-n=n1�n2 2! n1 1! n2 2 � 1! n1 � n2 n1 � n2 , 0
(2 � 1) ⇥ fact((2 � 1) � 1)! c2

-n1=2 n2=1 2 � 1! 1 1 , 0 (2 � 1) ⇥ fact((2 � 1) � 1)! c2

-c2=c3⇥c4 2 � 1! c3 fact((2 � 1) � 1)! c4

-c3=1 if(2 � 1) � 1 then 1 else((2 � 1) � 1) ⇥ (fact(((2 � 1) � 1) � 1))! c4

-⇤ (2 � 1) � 1! 0 1! c4

-c4=1 c3=1 c2=c3⇥c4=1 c=c1⇥c2⇥1=2 ⇤

Example 6.10 (Non-equivalence of lazy and eager evaluations)
The aim of this example is to illustrate the di↵erence between lazy and eager semantics.
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• Lazy evaluation

Lazy evaluation evaluates the terms only if needed: if a parameter is never used in a function or in a
specific instance of a function it will never be evaluated. Let us show an example:

((�x : int.3) rec y : int.y) : int ! c - �x : int.3! �x.t t[rec y.y/x]! c
-t=3 3[rec y.y/x]! c
-c=3 ⇤

So although the term rec y.y as no canonical form the application can be evaluated.

• Eager evaluation

On the contrary in the eager semantics this term has no canonical form since the parameter is
evaluated before the application:

((�x : int.3) rec y : int.y) : int ! c - �x : int.3! �x.t rec y.y! c1 t[c1/x]! c
-t=3 rec y.y! c1 3[c1/x]! c

-y=rec y.y rec y.y! c1 3[c1/x]! c
-y=rec y.y . . .

So the evaluation does not terminate. However if the parameter of a function is used n times, the
parameter would be evaluated n times (at most) in the lazy semantics and only once in the eager case.

Theorem 6.11
i) If t ! c and t ! c0 then c = c0 (if a canonical form exists it is unique)

ii) if t ! c and t : ⌧ then c : ⌧ (the evaluation relation respects the types)

Proof. We prove the property i) by rule induction. Let us show only the function rule, the remainder is left as
exercise. We have the rule:

t1 ! �x.t01 t01[t2/x]! c

(t1 t2)! c
We will show:

P((t1 t2) �! c) def
= 8c0 (t1 t2) �! c0 ) c = c0

As usually let us assume the premise:
(t1 t2) �! c0

And the inductive hypothesis:

• P(t1 ! �x.t01) def
= 8c0 t1 �! c0 ) �x.t01 = c0

• P(t01[t2/x]! c) def
= 8c0 t01[t2/x] �! c0 ) c = c0

From (t1 t2)! c0 by goal reduction:

• t1 ! �x.t1
0

• t1
0[t2/x]! c0

then we have by inductive hypothesis:

• �x.t01 = �x.t1
0

• t01[t2/x] = t1
0[t2/x]

So we have c = c0 ⇤
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As done for IMP we would like to introduce the denotational semantics of HOFL, for which we need to
develop a proper domain theory.

In order to define the denotational semantics of IMP we have shown that the semantic domain of commands,
for which we need to apply fixpoint theorem, has the required properties. The situation is more complicated
for HOFL, because HOFL provides constructors for infinitely many term types, so there are infinitely many
domains to be considered. We will handle this problem by showing by structural induction that the type
constructors of HOFL correspond to domains which are equipped with adequate CPO? structures.

7.1. The Domain N?

We define the CPO? N? = (N [ {?N?},v) as follows:

• N is the set of integer numbers

• 8x 2 N [ {?N?}. ?N? v x and x v x

obviously N? is a CPO with bottom, indeed ?N? is the bottom element and each chain has a LUB (note that
chains are all of length 1 or 2).

7.2. Cartesian Product of Two Domains

We start with two CPO?:

D = (D,vD)
E = (E,vE)

Now we construct the Cartesian product D ⇥ E = (D ⇥ E,vD⇥E) which has as elements the pairs of elements
of D and E. Let us define the order as follows:

• 8d1, d2 2 D 8e1, e2 2 E. (d1, e1) vD⇥E (d2, e2), d1 vD d2 ^ e1 vE e2

Let us show that vD⇥E is a partial order:

• reflexivity: since vD and vE are reflexive we have 8e 2 E e vE e and 8d 2 D d vD d so by definition
of vD⇥E we have 8d 2 D 8e 2 E. (d, e) vD⇥E (d, e).

• antisymmetry: let us assume (d, e) vD⇥E (d1, e1) and (d1, e1) vD⇥E (d, e) so by definition of vD⇥E we
have d vD d1 (using the first relation) and d1 vD d (by using the second relation) so it must be d = d1
and similarly e = e1, hence (d, e) = (d1, e1).

• transitivity: let us assume (d, e) vD⇥E (d1, e1) and (d1, e1) vD⇥E (d2, e2). By definition of vD⇥E we
have d vD d1, d1 vD d2, e vE e1 and e1 vE e2. By transitivity of vD and vE we have d vD d2 and
e vD e2. By definition of vD⇥E we obtain (d, e) vD⇥E (d2, e2).

Now we show that the PO has a bottom element ?D⇥E = (?D,?E). In fact 8d 2 D, e 2 E. ?D v d ^ ?E v e,
thus (?D,?E) vD⇥E (d, e). It remains to show the completeness of D ⇥ E .
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Theorem 7.1 (Completeness of D ⇥ E )
The PO D ⇥ E defined above is complete.

Proof. We will prove that for each chain (di, ei)i2! it holds:

G

i2!
(di, ei) =

0

B

B

B

B

B

@

G

i2!
di,

G

i2!
ei

1

C

C

C

C

C

A

Obviously
�F

i2! di,
F

i2! ei
�

is an upper bound, indeed for each j 2 ! we have d j vD
F

i2! di and e j vE
F

i2! ei so by
definition of vD⇥E it holds (d j, e j) vD⇥E

�F

i2! di,
F

i2! ei
�

.
Moreover

�F

i2! di,
F

i2! ei
�

is also the least upper bound. Indeed, let (d̄, ē) be an upper bound of {(di, ei)}i2!, since
F

i2! di is the LUB of {di}i2! we have
F

i2! di vD d̄, furthermore we have that
F

i2! ei is the LUB of {ei}i2! then
F

i2! ei vD ē. So by definition of vD⇥E we have
�F

i2! di,
F

i2! ei
� vD⇥E (d̄, ē). Thus

�F

i2! di,
F

i2! ei
�

is the least upper
bound. ⇤

Let us define the projection operators of D ⇥ E .

Definition 7.2 (Projection operators ⇡1 and ⇡2 )
Let (d, e) 2 D ⇥ E be a pair, we define the left and right projection functions ⇡1 : D ⇥ E ! D and
⇡2 : D ⇥ E ! E as follows.

• ⇡1 ((d, e)) = d

• ⇡2 ((d, e)) = e

Recall that in order to use a function in domain theory we have to show that it is continuous, this ensures
that the function respects the domain structure (i.e. the function does not change the order and preserves
limits) and so we can calculate its fixpoints.
So we have to prove that each function which we use on D ⇥ E is continuous.

Theorem 7.3 (Continuity of ⇡1 and ⇡2)
Let ⇡1 and ⇡2 be the functions of the previous definition then:

⇡1

0

B

B

B

B

B

@

G

i

(di, ei)
1

C

C

C

C

C

A

=
G

i

⇡1 ((di, ei))

and

⇡2

0

B

B

B

B

B

@

G

i

(di, ei)
1

C

C

C

C

C

A

=
G

i

⇡2 ((di, ei))

Proof. Let us prove the first statement:

⇡1

0

B

B

B

B

B

@

G

i

(di, ei)
1

C

C

C

C

C

A

= ⇡1

0

B

B

B

B

B

@

0

B

B

B

B

B

@

G

i

di,
G

i

ei

1

C

C

C

C

C

A

1

C

C

C

C

C

A

=
G

i

di =
G

i

⇡1 ((di, ei)) .

For ⇡2 the proof is analogous. ⇤
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7.3. Functional Domains

As for Cartesian product, we start from two domains and we define the order on the set [D ! E] of the
continuous functions in { f | f : D ! E}. Note that as usual we require the continuity of the functions to
preserve the applicability of fixpoint theory.
Let us consider the CPOs:

D = (D,vD)
E = (E,vE)

Now we define an order on [D! E] .

[D ! E ] =
�

[D! E] ,v[D!E]
�

where:

• [D! E] = { f | f : D! E, f is continuous }

• f v[D!E] g, 8d 2 D. f (d) vE g(d)

We leave as an exercise the proof that [D ! E ] is a PO with bottom, namely the order is reflexive, antisym-
metric, transitive and that ?[D!E](d) = ?E is a continuous function.
Let us show that the PO is complete. In order to simplify the completeness proof we introduce the following
lemmas:

Lemma 7.4 (Switch Lemma)
Let (E,vE) be a CPO whose elements are of the form en,m with n,m 2 !. If vE is such that:

en,m vE en0,m0 if n  n0 and m  m0

then it holds:
G

n,m2!
en,m =

G

n2!
(
G

m2!
en,m) =

G

m2!
(
G

n2!
en,m) =

G

k

ek,k

Proof. Our order can be summarized as follows:

e00 v e01 v e02 v · · · F

i2! e0i = e0

v v v v

e10 v e11 v e12 v · · · F

i2! e1i = e1

v v v v

e20 v e21 v e22 v · · · F

i2! e2i = e2

v v v v

...
...

...
. . .

...

We show that all the following sets have the same upper bounds:

{en,m}n,m2! {
G

m2!
en,m}n2! {

G

n2!
en,m}m2! {ek,k}k2!

Let e be an upper bound of {Fm2! en,m}n2! and take any en0,m0 for some n0,m0. Then

en0,m0 v
G

m2!
en0,m v e

Thus e is an upper bound for {en,m}n,m2!.
Vice versa, let e be an upper bound of {en,m}n,m2! and consider

F

m2! en0,m for some n0. Since {en0,m}m2! ✓ {en,m}n,m2!,
obviously e is an upper bound for {en0,m}m2! and therefore

F

m2! en0,m v e.
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Now each element en,m is smaller than ek,k with k = max{n,m} thus an upper bound of {ek,k}k2! is also an upper bound
of {en,m}n,m2!. Moreover {ek,k}k2! is a subset of {en,m}n,m2! so an upper bounds of {en,m}n,m2! is also an upper bound of
{ek,k}k2!. The set of upper bounds {Fm2! en,m}n2! has a least element. In fact, n1  n2 implies

F

m2! en1,m v
F

m2! en2,m,
since every upper bound of

F

m2! en2,m is an upper bound of
F

m2! en1,m. Therefore {Fm2! en,m}n2! is a chain, and thus it
has a LUB since E is a CPO. ⇤

Lemma 7.5
Let { fn}n2! be a chain of functions (not necessarily continuous) in D ! E the LUB

F

n2! fn exists and is
defined as:

0

B

B

B

B

B

@

G

n2!
fn

1

C

C

C

C

C

A

(d) =
G

n2!
( fn(d))

Proof. Function �d.
F

n2!( fn(d)) is clearly an upper bound for { fn}n2! since for every k and d we have fk(d) vE
F

n2! fn(d). Function �d.
F

n2!( fn(d)) is also the LUB of { fn}n2! since taken g such that fn vD!E g for any n, we have
for any d that fn(d) vE g(d) and therefore

F

n2!( fn(d)) vE g(d). ⇤

Lemma 7.6
Let { fn}n2! be a chain of functions in [D ! E ] and let {dn}n2! be a chain on D then function �d.

F

n2!( fn(d))
is continuous, namely

G

n2!

0

B

B

B

B

B

@

fn(
G

m2!
dm)

1

C

C

C

C

C

A

=
G

m2!

0

B

B

B

B

B

@

G

n2!
fn(dm)

1

C

C

C

C

C

A

Furthermore, �d.
F

n2!( fn(d)) is the LUB of { fn}n2! not only in D ! E as stated by lemma 7.5, but also in
[D ! E ].

Proof.
F

n
�

fn
�F

m dm
��

= by continuity
F

n
�F

m ( fn (dm))
�

= by lemma 7.4 (switch lemma)
F

m
�F

n ( fn (dm))
�

The upper bounds of { fn}n2! in D ! E are a larger set then those in [D ! E ], thus if �d.
F

n2!( fn(d)) is the LUB in
D ! E , it is also the LUB in [D ! E ]. ⇤

Theorem 7.7 (Completeness of the functional space)
The PO [D ! E ] is a CPO?

Proof. The statement follows immediately from the previous Lemmas. ⇤
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7.4. Lifting

In IMP we introduced a lifting operator (Chapter 5.2.3) on memories ⌃ to obtain a CPO ⌃?. In the semantics
of HOFL we need the same operator in a more general fashion: we need to apply the operator to any domain.

Definition 7.8
Let D = (D,vD) be a CPO and let ? be an element not in D, so we define the lifted CPO? D? as follows:

• D? = {(0,?)} [ {1} ⇥ D

• ?D? = (0,?)

• d1 vD d2 ) (1, d1) vD? (1, d2)

• ?D? vD? ?D? and 8d 2 D ?D? vD? (1, d)

Now we define a lifting function b�c : D �! D? as follows:

• bdc = (1, d) 8d 2 D

As it was the case for ⌃ in the IMP semantics, when we add a bottom element to a domain D we would like
to extend the continuous functions in [D! E] to continuous functions in [D? ! E]. The function defining
the extension should itself be continuous.

Definition 7.9
Let D be a CPO and let E be a CPO?. We define a lifting operator _⇤ : [D! E] ! [D? ! E] for
functions in [D! E] as follows:

8 f 2 [D! E] f ⇤(x) =
(

?E if x = ?D?
f (d) if x = bdc

Theorem 7.10
i) If f is continuous in [D! E], then f ⇤ is continuous in [D? ! E].

ii) The operator _⇤ is continuous.

Proof.

i) Let {di}i2! be a chain in D?. We have to prove f ⇤(
F

n2! dn) =
F

n2! f ⇤(dn). If 8n. dn = ?D? , then this is
obvious. Otherwise from some k and for all m � k we have dm = bd0mc and also

F

n2! dn = b
F

n2! d0n+kc. Then
f ⇤(

F

n2! dn) = f ⇤(bFn2! d0n+kc) = f (
F

n2! d0n+k) =
F

n2! f (d0n+k) =
F

n2! f ⇤(dn+k) =
F

n2! f ⇤(dn).

ii) Let { fi}i2! be a chain of functions in [D ! E ]. We will prove:
0

B

B

B

B

B

@

G

i2!
fi

1

C

C

C

C

C

A

⇤

(x) =
0

B

B

B

B

B

@

G

i2!
f ⇤i

1

C

C

C

C

C

A

(x)

if x = ?D? both sides of the equation simplify to ?E . So let us consider x = bdc for some d 2 D we have:

(
F

i2! fi)⇤(bdc) = by definition of lifting
(
F

i2! fi)(d) = by definition of LUB
F

i2!( fi(d)) = by definition of lifting
F

i2!( f ⇤i (bdc)) = by definition of LUB
(
F

i2! f ⇤i )(bdc)
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⇤

7.5. Function’s Continuity Theorems

In this section we show some theorems which allow to prove the continuity of the functions which we will
define over our CPOs. We start proving that the composition of two continuous functions is continuous.

Theorem 7.11
Let f : [D! E] and g : [E ! F] be two continuous functions on CPO?’s. The composition

f ; g = g � f = �d. g( f (d)) : D! F

is a continuous function, namely
g( f (

G

n2!
dn)) =

G

n2!
g( f (dn))

Proof. Immediate:
g( f (

F

n2! dn)) = by the continuity of f
g(

F

n2! f (dn)) = by the continuity of g
F

n2! g( f (dn))

⇤

Now we consider a function whose outcome is a pair of values. So the function has as domain a CPO but the
result is on a product of CPOs.

f : S ! D ⇥ E

For this type of functions we introduce a theorem which allows to prove the continuity of f in a convenient
way. We will consider f as the pairing of two simpler functions g1 : S �! D and g2 : S �! E, then we can
prove the continuity of f from the continuity of g1 and g2.

Theorem 7.12
Let f : S �! D ⇥ E be a function over CPOs and let g1 : S �! D and g2 : S �! E be two functions
defined as follows:

• g1 = f ; ⇡1

• g2 = f ; ⇡2

where f ; ⇡1 = �s.⇡1( f (s)) is the composition of f and ⇡1. Notice that we have

f = �s. (g1(s), g2(s)) def
= (g1, g2)

Then we have:
f is continuous() g1 and g2 are continuous.

Proof.
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() By definition f = (g1, g2). We assume the continuity of g1 and g2. We prove:

(g1, g2)(
G

i2!
si) =

G

i2!
((g1, g2)(si))

So we have:
(g1, g2)(

F

i2! si) = by definition
(g1(

F

i2! si), g2(
F

i2! si)) = by continuity of g1 and g2
(
F

i2! g1(si),
F

i2! g2(si)) = definition of LUB of pairs
F

i2!(g1(si), g2(si)) = definition of pairs of functions
F

i2!((g1, g2)(si))

)) Immediate by Theorem 7.11 (continuity of composition) and Theorem7.3 (continuity of projections), since g1
and g2 are compositions of continuous functions.

⇤

Note that in our construction we defined only ordered pairs of elements, this means that if we want to consider
sequences (i.e. with finitely many elements) we have to use the pairing repeatedly. So for example (a, b, c) is
defined as ((a, b), c).
Now let us consider the case of a function f : D1 ⇥ D2 �! E over CPOs which takes two arguments and
returns an element of E. The following theorem allows us to study the continuity of f by analysing each
parameter separately.

Theorem 7.13
Let f : D1 ⇥ D2 ! E be a function over CPOs. Then f is continuous i↵ all the functions in the following
two classes are continuous.

8d1. fd1 : D2 ! E defined as fd1 = �d. f (d1, d)

8d2. fd2 : D1 ! E defined as fd2 = �d. f (d, d2)

Proof.

)) If f is continuous then 8d1, d2. fd1 and fd2 are continuous, since we are considering only certain chains (i.e. we are
fixing one element of the pair).

() On the other hand we have:

f (
F

i2!(xi, yi)) = by definition of LUB on pairs
f (

F

i2! xi,
F

j2! y j) = by continuity of fF j2! y j
F

i2! f (xi,
F

j2! y j) = by continuity of fxi
F

i2!
F

j2! f (xi, y j) = by Lemma 7.4 (switch lemma)
F

i2! f (xi, yi)

⇤

7.6. Useful Functions

As done for IMP we will use the �-notation as meta-language for the denotational semantics of HOFL. In
previous sections we already defined two new functions for our meta-language: ⇡1 and ⇡2. We also showed
that ⇡1 and ⇡2 are continuous. In this section we introduce some functions which, together with Cond, ⇡1 and
⇡2 will form the kernel of our meta-language.
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Definition 7.14 (Apply)
We define a function apply : [D! E] ⇥ D! E over domains as follows:

apply( f , d) def
= f (d)

The apply function represents the application of a function in our meta-language. In order to use the apply
we prove that it is continuous.

Theorem 7.15 (Continuity of apply)
Let apply : [D! E] ⇥ D ! E be the function defined above and let { fi, di}i2! be a chain on the CPO?
[D ! E ] ⇥D then:

apply(
G

i2!
( fi, di)) =

G

i2!
apply( fi, di)

Proof. By using the Theorem 7.13 we can test the continuity on each parameter separately. Let us fix d 2 D, we
have:

apply
�F

n fn, d
�

= by definition
�F

n fn
�

(d) = by definition of LUB of functions
F

n( fn(d)) = by definition
F

n apply( fn, d)

Now we fix f 2 [D! E]:
apply

�

f ,
F

m dm
�

= by definition
f
�F

m dm
�

= by continuity of f
F

m( f (dm)) = by definition
F

m apply( f , dm)

So apply is a continuous function. ⇤

Definition 7.16 (Curry and un-curry)
We define the function curry : (D ⇥ F ! E)! (D! (F ! E)) as:

curry g d f def
= g(d, f ) where g : D ⇥ F ! E, d : D and f : F

And we define the un-curry : (D! F ! E)! (D ⇥ F ! E) as:

un-curry g (d, f ) def
= g d f where g : D! F ! E, d : D and f : F

Theorem 7.17 (Continuity of the curry of a function)
Let curry : (D ⇥ F ! E)! (D! (F ! E)) be the function defined above let {di}i2! be a chain on D and
let g : D ⇥ F ! E a continuous function then (curry g) is a continuous function, namely

(curry g)(
G

i2!
di) =

G

i2!
(curry g)(di)
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Proof. Let us note that since g is continuous, by Theorem 7.13 g is continuous separately on each parameter. So
(curry g)(

F

i2! di) is also continuous. Then let us take f 2 F we have:

(curry g)(
F

i2! di)( f ) = by definition of curry g
g(

F

i2! di, f ) = by continuity of g
F

i2! g(di, f ) = by definition of curry g
F

i2!((curry g)(di)( f ))
⇤

As shown in Chapter 4 in order to define the denotational semantics of recursive definition we provide a
fixpoint operator. So it seems quite natural to introduce the fixpoint in our meta-theory.

Definition 7.18 (Fix)
Let D be a CPO?. We define the function fix : ([D! D]! D) as:

fix def
=

G

i2!
� f . f i(?D)

Notice that the LUB does exist since {� f . f i(?D)} is a chain of functions and ([D! D]! D) is complete.

Theorem 7.19 (Continuity of fix)
Function fix : ([D! D]! D) is continuous, namely fix : [[D! D]! D].

Proof. We know that [[D! D]! D] is complete, thus if for all i � f . f i(?D) is continuous, then
F

i2! � f . f i(?D) =
fix is also continuous. We prove that 8i. � f . f i(?D) is continuous by mathematical induction.

i=0) � f . f 0(?D) is a constant function and thus it is continuous.

i=n+1) Let us assume that � f . f n(?D) is continuous, namely that
�F

i2! fi
�n (?D) =

F

i2! f n
i (?D), and let us prove that

�F

i2! fi
�n+1 (?D) =

F

i2! f n+1
i (?D). In fact we have:

�F

i2! fi
�n+1 (?D) =

�F

i2! fi
� ��F

i2! fi
�n (?D)

�

= by the inductive hypothesis
�F

i2! fi
�

⇣

F

i2! f n
i (?D)

⌘

= by the definition of LUB of functions
F

i2! fi
⇣

F

j2! f n
j (?D)

⌘

= by continuity of fi
F

i2!
F

j2! fi
⇣

f n
j (?D)

⌘

= by Lemma 7.4 (switch lemma)
F

k2! fk
⇣

f n
k (?D)

⌘

=
F

k2! f n+1
k (?D)

⇤

Finally we introduce the “let” operator, whose role is that of binding a name to a de-lifted expression. Note
that the continuity of the “let” operator directly follows from the continuity of the lifting operator.

Definition 7.20 (Let operator)
Let E be a CPO? and �x.e a function in [D! E]. We define the let operator as follows:

let x( d?. e
def
= (�x. e)

D!E

⇤

D?!E

(d?
D?

)

E

=

8

>

<

>

:

?E if d? = ?D?
e
h

d/x
i

if d? = bdc





8. HOFL Denotational Semantics

In order to define the denotational semantics of a computer language we have to define by structural recursion
an evaluation function from each syntactic domain to a semantic domain.
Since HOFL has only one syntactic domain (i.e. the set of typed terms t) we have only one evaluation function
~t�. However, since the terms are typed, the evaluation function is parametrised by the types. We have

~t : ⌧� : Env �! (V⌧)?

Here ⇢ 2 Env are environments, which contain the values to be assigned to variables, in practice the free
variables of t

⇢ : Env = Var �!
[

⌧

(V⌧)?

with the condition ⇢(x : ⌧) 2 (V⌧)?.
In our denotational semantics of HOFL we distinguish between V⌧, where we find the meanings of the

terms of type ⌧ with canonical forms, and (V⌧)?, where the additional ?(V⌧)? is the meaning of all the terms
of type ⌧ without a canonical form.

The actual semantic domains V⌧ (and (V⌧)?) are defined by structural recursion on the syntax of types:

Vint = N (Vint)? = N?
V⌧1⇤⌧2 = (V⌧1 )? ⇥ (V⌧2 )? (V⌧1⇤⌧2 )? = ((V⌧1 )? ⇥ (V⌧2 )?)?
V⌧1!⌧2 =

⇥

(V⌧1 )? ! (V⌧2 )?
⇤

(V⌧1!⌧2 )? =
⇥

(V⌧1 )? ! (V⌧2 )?
⇤

?

Notice that the recursive definition takes advantage of the domain constructors we defined in Chapter 7. While
the lifiting N? of the integer numbers N is strictly necessary, liftings on cartesian pairs and on continuous
functions are actually optional, since cartesian products and functional domains are already CPO?. We will
discuss the motivation of our choice at the end of the following chapter.

8.1. HOFL Evaluation Function

Now we are ready to define the evaluation function, by structural recursion. As usual we start from the
constant terms, then we define compositionally the more complicated ones.

8.1.1. Constants

We define the meaning of a constant as the obvious value on the lifted domains:

~n� ⇢ = bnc

8.1.2. Variables

The meaning of a variable is defined by its value in the given environment:

~x� ⇢ = ⇢x
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8.1.3. Binary Operators

We give the generic semantics of a binary operator as:

✓

t1 op t2
◆

⇢ = ~t1� ⇢ op? ~t2� ⇢

where
_op?_ : (N? ⇥ N?) �! N?

x1op?x2 =

�

�

�

�

�

�

�

�

�

Case(x1, x2)
(bn1c, bn2c) : bn1 op n2c
?N? otherwise

notice that for every operator op 2 {+,�,⇥, . . .} in the syntax we have the corresponding function op on the
integers N and also the binary function op? on N?. Notice also that op? yields ?N? when at least one of the
two arguments is ?N? .

8.1.4. Conditional

In order to define the semantics of the conditional expression we use the conditional operator of the meta-
language:

~if t0 then t1 else t2� ⇢ = Cond (~t0� ⇢, ~t1� ⇢, ~t2� ⇢)

where
Cond⌧ : N? ⇥ (V⌧)? ⇥ (V⌧)? �! (V⌧)?

Cond⌧(d0, d1, d2) =

8

>

>

>

<

>

>

>

:

d1 if d0 = b0c
d2 if d0 = bnc n , 0
?(V⌧)? if d0 = ?N?

8.1.5. Pairing

For the pairing operator we have:
~(t1, t2)� ⇢ = b(~t1� ⇢, ~t2� ⇢)c

8.1.6. Projections

We define the projections by using the lifted version of ⇡1 and ⇡2 functions of the meta-language:

~fst(t)� ⇢ = let d ( ~t� ⇢. ⇡1d = (�d.⇡1d)⇤ ~t� ⇢
~snd(t)� ⇢ = let d ( ~t� ⇢. ⇡2d = (�d.⇡2d)⇤ ~t� ⇢

as we said in the previous chapter the “let” operator allows to de-lift ~t� ⇢ in order to apply projections ⇡1
and ⇡2.

8.1.7. Lambda Abstraction

Obviously we use the lambda operator of the lambda calculus:

~�x.t� ⇢ =
j

�d. ~t� ⇢[d/x]
k

8.1.8. Function Application

We simply apply the de-lifted version of the function to its argument:

~(t1 t2)� ⇢ = let'( ~t1� ⇢. '(~t2� ⇢) = (�'.' (~t2� ⇢))⇤ ~t1� ⇢
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8.1.9. Recursion

We simply apply the fix operator of the meta-language:

~rec x.t� ⇢ = fix �d. ~t� ⇢[d/x]

8.2. Typing the Clauses

Now we show that the clauses of the structural recursion are typed correctly.

Constants
~n : int�⇢
(Vint)?=N?

= bn
N

c

N?

as required.

Variables
~x : ⌧�⇢

(V⌧)?

= ⇢x
(V⌧)?

Binary operations
~t1 op t2 : int�⇢

(Vint)?

= ~t1� ⇢
(Vint)?

op?
(Vint)?⇥(Vint)?!(Vint)?

~t2�⇢
(Vint)?

(Vint)?

Conditional

~if t0 : int then t1 : ⌧ else t2 : ⌧�⇢
(V⌧)?

= Cond⌧
N?⇥(V⌧)?⇥(V⌧)?�!(V⌧)?

(~t0� ⇢,
(Vint)?

~t1� ⇢,
(V⌧)?

~t2� ⇢
(V⌧)?

)

(V⌧)?

Pairing
~(t1 : ⌧1, t2 : ⌧2)�⇢

(V⌧1⇤⌧2 )?

= b(~t1�⇢
(V⌧1 )?

, ~t2�⇢
(V⌧2 )?

)

(V⌧1 )?⇥(V⌧2 )?

c

((V⌧1 )?⇥(V⌧2 )?)?

Projections
~fst(t : ⌧1 ⇤ ⌧2)�⇢

(V⌧1 )?

= let d
(V⌧1 )?⇥(V⌧2 )?

( ~t�⇢
(V⌧1⇤⌧2 )?

. ⇡1
(V⌧1 )?⇥(V⌧2 )?!(V⌧1 )?

d

(V⌧1 )?

Lambda abstraction
~�x : ⌧1.t : ⌧2�⇢

(V⌧1�!⌧2 )?

= b� d
(V⌧1 )?

. ~t�⇢[d/x]
(V⌧2 )?

[(V⌧1 )?!(V⌧2 )?]

c

[(V⌧1 )?!(V⌧2 )?]?
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Function application

~(t1 : ⌧1 �! ⌧2 t2 : ⌧1)�⇢
(V⌧2 )?

= let '

[(V⌧1 )?!(V⌧2 )?]

( ~t1�⇢
(V⌧1!⌧2 )?

.'(~t2�⇢
(V⌧1 )?

)

(V⌧2 )?

Recursion
~rec x : ⌧.t : ⌧�⇢

(V⌧)?

= f ix
[[(V⌧)?!(V⌧)?]!(V⌧)?]

�d
(V⌧)?

. ~t�⇢[d/x]
(V⌧)?

[(V⌧)?!(V⌧)?]

(V⌧)?

Example 8.1
Let us see some examples of evaluation of the denotational semantics. We consider three similar terms
f , g, h such that f and h have the same denotational semantics while g has a di↵erent semantics because it
requires a parameter x to be evaluated even if it is not used.

1. f def
= �x : int.3

2. g def
= �x : int. if x then 3 else 3

3. h def
= rec y : int ! int.�x : int.3

1. ~ f �⇢ = ~�x : int.3�⇢ = b�d.~3�⇢[d/x]c = b�d.b3cc

2. ~g�⇢ = ~�x : int. if x then 3 else 3�⇢ = b�d.~if x then 3 else 3�⇢[d/x]c = b�d.Cond(d, b3c, b3c)c =
b�d. let x( d.b3cc

3. ~h�⇢ = ~rec y : int ! int.�x : int.3�⇢ = fix �d.~�x.3�⇢[d/x] = fix �d.b�d0.b3cc
• d0 = ?[N?!N?]?

• d1 = (�d.b�d0.b3cc)? = b�d0.b3cc
• d2 = (�d.b�d0.b3cc)b�d0.b3cc = b�d0.b3cc = d1 = ~h�⇢

8.3. Continuity of Meta-language’s Functions

In order to show that the semantics is well defined we have to show that all the functions we employ in the
definition are continuous.

Theorem 8.2
The following functions are continuous:

• op?
• Cond

• (_, _)

• ⇡1, ⇡2

• let
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• apply

• fix

Proof.

• op?: Since op? is monotone over a domain with only finite chains then it is also continuous.

• Cond: By using the Theorem 7.13, we can prove the continuity on each parameter separately. Let us show the
continuity on the first parameter. Since chains are finite, it is enough to prove monotonicity. We fix d1 and d2
and we prove the monotonicity of Cond(x, d1, d2)

– for the case ?N? v n then obviously 8n 2 N? Cond(?N? , d1, d2) v Cond(n, d1, d2), namely ?(V⌧)? v d1 or
?(V⌧)? v d2.

– for the case n v n0, since N? is a flat domain we have n = n0 so obviously Cond(n, d1, d2) v Cond(n0, d1, d2)
Now let us show the continuity on the second parameter, namely we fix v and d and prove that

Cond(v,
G

i2!
di, d) =

G

i2!
Cond(v, di, d)

– v = ?N? Cond is the constant ?N?
– v = 0 it is the identity.
– v = n , ?N? then it is the constant d

In all cases it is continuous.
Continuity on the third parameter is analogous.

• ⇡1 and ⇡2 are continuous as shown by Theorem 7.3.

• (_, _) we can use the Theorem 7.13 which allows to show separately the continuity on each parameter. If we fix
the first element we have (d,

F

i2! di) =
F

i2!(d, di) by Theorem 7.1. The same holds for the second parameter.

• the let function is continuous since (_)⇤ is continuous by Theorem 7.10.

• apply is continuous as shown by Theorem 7.15

• f ix is continuous as shown by Theorem 7.19.

⇤

In the previous theorem we have omitted the proofs for lambda abstraction and recursion, in the next theorem
we fill these gaps.

Theorem 8.3
Let t be a well typed term of HOFL then the following holds:

• (�d : (V⌧1 )?.~t : ⌧2�⇢[d/x]) : (V⌧1 )? �! (V⌧2 )? is a continuous function.

• fix �d.~t�⇢[d/x] is a continuous function.

Proof. Let us show the first proposition by structural induction on t and for any number of arguments ⇢[d/x][d0/y] . . ..

• t = x: �d.~x�⇢[d/x] is equal to �d.d which is obviously continuous.

• t = t1 op t2: �d.~t1 op t2�⇢[d/x] = �d.~t1�⇢[d/x] op? ~t2�⇢[
d/x] it is continuous since op?, ~t1�⇢[d/x] and

~t2�⇢[d/x] are continuous by Theorem 8.2 and by the inductive hypothesis, and since the composition of
continuous functions yields a continuous function by Theorem 7.11.
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• t = �y.t0: �d.~�y.t0�⇢[d/x] is obviously continuous if x = y. Otherwise if x , y we have by induction hypothesis
that �(d, d0).~t0�⇢[d/x,d

0
/y] is continuous, then:

curry(�(d, d0).~t0�⇢[d/x,d
0
/y]) = is continuous since curry is continuous

�d.�d0.~t0�⇢[d/x][d0/y] =
�d.~�y.t0�⇢[d/x]

We leave the remaining cases as an exercise.
To prove the second proposition we note that, fix �d.~t�⇢[d/x] is the application of a continuous function (i.e. fix by Th.
7.19) to its continuous argument (�d.~t�⇢[d/x], by the first part of this theorem) so it is continuous by Th. 7.15. ⇤

8.4. Substitution Lemma

We conclude this chapter by stating some useful theorems. The most important is the Substitution Lemma
which states that the substitution operator commutes with the interpretation function.

Theorem 8.4 (Substitution Lemma)
Let t, t0 be well typed terms: we have



t[t0/x]
�

⇢ = ~t� ⇢[~t
0�⇢/x]

Proof. By structural induction. ⇤

The substitution lemma is an important result, as it implies the compositionality of denotational semantics:

~t1� ⇢ = ~t2� ⇢)


t[t1/x]
�

⇢ =


t[t2/x]
�

⇢

In words, replacing a variable x with a term t0 in a term t returns a term t[t0/x] whose denotational semantics


t[t0/x]
�

⇢ = ~t� ⇢[~t0�⇢/x] depends only on the denotational semantics ~t0� ⇢ of t0 and not on t itself.

Theorem 8.5
Let t be a well-defined term of HOFL. Let ⇢, ⇢0 2 Env such that 8 x 2 FV(t). ⇢(x) = ⇢0(x) then:

~t� ⇢ = ~t� ⇢0

Proof. By structural induction. ⇤

Theorem 8.6
Let c 2 C⌧ be a closed term in canonical form of type ⌧. Then we have:

8 ⇢ 2 Env. ~c� ⇢ , ?(V⌧)?

Proof. Immediate, by inspection of the clauses for terms in canonical forms. ⇤



9. Equivalence between HOFL denotational and
operational semantics

As we have done for IMP, now we address the relation between the denotational and operational semantics of
HOFL. We would like to prove a complete equivalence, as in the case of IMP:

t �! c, ~t� ⇢ = ~c� ⇢

But, as we are going to show, the situation in the case of HOFL is more complex and the(= case does not
hold, i.e.:

t �! c) ~t� ⇢ = ~c� ⇢ but ~t� ⇢ = ~c� ⇢; t �! c

Let us consider an example which shows the di↵erence between the denotational and the operational
semantics.

Example 9.1
Let c = �x. x and t = �x. x + 0 be two HOFL terms, where x : int, then we have:

~t� ⇢ = ~c� ⇢

but
t 9 c

In fact we have:

~t� ⇢ = ~�x. x + 0� ⇢ = b�d. d+?b0cc = b�d.dc = ~�x. x� ⇢ = ~c� ⇢

but for the operational semantics we have that both �x.x and �x. x + 0 are already in canonical form and
t , c.

The counterexample shows that at least for the functional type int ! int, there are di↵erent canonical
forms with the same denotational semantics, namely terms which compute the same function [N? ! N?]?.
One could think that a refined version of our operational semantics (e.g. one which could apply an axiom
like x + 0 = 0 ) would be able to identify exactly all the canonical forms which compute the same function.
However this is not possible on computability grounds: since HOFL is able to compute all computable
functions, the set of canonical terms which compute the same function can be not recursively enumerable,
while the set of theorems of every inference system is recursively enumerable.

Now we define the concept of termination for the denotational and the operational semantics.

Definition 9.2 (Operational convergence)
Let t be a closed term of HOFL with type ⌧, we define the following predicate:

t # () 9c 2 C⌧. t �! c

if the predicate holds for t, then we say that t converges operationally.
We say that t diverges and write t " if t does not converge.
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Obviously, a term t converges operationally if the term can be evaluated to a canonical form c. For the
denotational semantics we have that a term t converges if the evaluation function applied to t takes a value
di↵erent from ? .

Definition 9.3 (Denotational convergence)
Let t be a closed term of HOFL with type ⌧, we define the following predicate:

t + () 9v 2 V⌧. ~t� ⇢ = bvc

if the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
As we will see, we can easily prove the implication:

t #=) t +

For the opposite implication, the property holds but the proof is not straightforward: We cannot simply rely
on structural induction; instead it is necessary to introduce a particular order relation.

9.1. Completeness

We are ready to show the completeness of the denotational semantics of HOFL w.r.t. the operational one.

Theorem 9.4 (Completeness)
Let t be a HOFL closed term with type ⌧ and let c be a canonical form with type ⌧ then we have:

t ! c =) 8⇢ 2 Env ~t� ⇢ = ~c� ⇢

Proof. As usual we proceed by rule induction. So we will prove P(t ! c) ⌘ 8⇢. ~t� ⇢ = ~c� ⇢ on each rule by
assuming the premises.

c! c

We have to prove P(c! c) that is by definition 8⇢. ~c� ⇢ = ~c� ⇢, which is obviously true.

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We have to prove P(t1 op t2 ! n1 op n2) ⌘ 8⇢. ✓

t1 op t2
◆

⇢ =


n1 op n2
�

⇢.
Let us assume the property on the premises:

P(t1 ! n1) ⌘ 8⇢. ~t1� ⇢ = ~n1� ⇢ = bn1c and P(t2 ! n2) ⌘ 8⇢. ~t2� ⇢ = ~n2� ⇢ = bn2c.
We have

✓

t1 op t2
◆

⇢ = ~t1� ⇢ op? ~t2� ⇢ = bn1c op?bn2c = bn1op n2c =


n1 op n2
�

⇢.

t0 ! 0 t1 ! c1

if t0 then t1 else t2 ! c1

We will prove P(if t0 then t1 else t2 ! c1) ⌘ 8⇢. ~if t0 then t1 else t2� ⇢ = ~c1� ⇢.
We assume P(t0 ! 0) ⌘ 8⇢. ~t0� ⇢ = ~0� ⇢ = b0c and P(t1 ! c1) ⌘ 8⇢. ~t1� ⇢ = ~c1� ⇢.
We have ~if t0 then t1 else t2� ⇢ = Cond(~t0� ⇢, ~t1� ⇢, ~t2� ⇢) = Cond(b0c, ~t1� ⇢, ~t2� ⇢) = ~t1� ⇢ = ~c1� ⇢.
The same construction holds for the second rule of the conditional operator.
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t ! (t1, t2) t1 ! c1

fst(t)! c1

We prove P(fst(t)! c1) ⌘ 8⇢. ~fst(t)� ⇢ = ~c1� ⇢.
We assume P(t ! (t1, t2)) ⌘ 8⇢. ~t� ⇢ = ~(t1, t2)� ⇢ and P(t1 ! c1) ⌘ 8⇢. ~t1� ⇢ = ~c1� ⇢.
By definition ~fst(t)� ⇢ = let v( ~t� ⇢. ⇡1v.
By inductive hypothesis let v( ~t� ⇢. ⇡1v = let v( ~(t1, t2)� ⇢. ⇡1v.
By definition let v( ~(t1, t2)� ⇢. ⇡1v = let v( b~t1� ⇢, ~t2� ⇢c. ⇡1v = ~t1� ⇢ = ~c1� ⇢.
The same holds for the snd operator.

t1 ! �x.t01 t01[t2/x]! c

(t1 t2)! c

We prove P((t1 t2)! c) ⌘ 8⇢. ~(t1 t2)� ⇢ = ~c� ⇢.

We assume P(t1 ! �x. t01) ⌘ 8⇢. ~t1� ⇢ =


�x. t01
�

⇢ and P(t01[t2/x]! c) ⌘ 8⇢.


t01[t2/x]
�

⇢ = ~c� ⇢.
By definition ~(t1 t2)� ⇢ = let'( ~t1� ⇢. '(~t2� ⇢).

By inductive hypothesis let'( ~t1� ⇢. '(~t2� ⇢) = let'(


�x.t01
�

⇢. '(~t2� ⇢).
By denotational semantics:

let'( ✓

�x.t01
◆

⇢. '(~t2� ⇢) = let'( b�d. ✓t01
◆

⇢[d/x]c. '(~t2� ⇢)
= (�d.

✓

t01
◆

⇢[d/x])(~t2� ⇢)
=

✓

t01
◆

⇢[~t2�⇢/x].

Finally, by using the substitution lemma and by the second inductive hypothesis we have:

✓

t01
◆

⇢[~t2�⇢/x] =


t01[t2/x]
�

⇢ = ~c� ⇢.

t[rec x.t/x]! c

rec x.t ! c

We prove P(rec x.t ! c) ⌘ 8⇢. ~rec x.t� ⇢ = ~c� ⇢.
We assume P(t[rec x.t/x]! c) ⌘ 8⇢. ✓

t[rec x.t/x]
◆

⇢ = ~c� ⇢.
By definition we have ~rec x.t� ⇢ = fix �d. ~t� ⇢[d/x].
By the fixpoint property fix �d. ~t� ⇢[d/x] = ~t� ⇢[~rec x.t�⇢/x].
By the substitution lemma and by induction hypothesis ~t� ⇢[~rec x.t�⇢/x] =

✓

t[rec x.t/x]
◆

⇢ = ~c� ⇢.

⇤

9.2. Equivalence (on Convergence)

As we have anticipated at the beginning of this chapter, the operational and the denotational semantics agree
on convergence. We are not giving the full details of the proof, but we show that the standard structural
induction does not help in proving the (left implication of) convergence agreement. Those who are interested
in the full proof can refer to Winskel’s book referenced in the introduction.
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Theorem 9.5
Let t be a close typable term of HOFL. Then we have:

t #=) t +

Proof. If t �! c , then ~t� ⇢ = ~c� ⇢ for the previous theorem. But ~c� ⇢ is always a lifted value, and thus it is not ?.
⇤

We give some insight on the reason why the usual structural induction does not work for proving t +=) t #.
Let us consider function application (t1 t2). We assume by structural induction t1 + ) t1 # and t2 + ) t2 #.
Now we assume (t1 t2) +, so by definition of denotational semantics we have t1 +. In fact

~(t1 t2)� ⇢ = let'( ~t1� ⇢. '(~t2� ⇢)

and therefore ~(t1 t2)� ⇢ , ? requires ~t1� ⇢ , ?. By induction we then have t1 # and by definition of
the operational semantics t1 �! �x.t01 for some t01 and we also have ~t1� ⇢ =



�x.t01
�

⇢. By denotational
semantics definition we have:

~(t1 t2)� ⇢ = let'(
j

�d.


t01
�

⇢[d/x]
k

. '(~t2� ⇢)
= (�d.



t01
�

⇢[d/x])(~t2� ⇢)
= (



t01
�

⇢[~t2�⇢/x])
= (



t01[t2/x]
�

⇢)

So if (t1 t2) + then also t01[t2/x] + and we would like to conclude by structural induction that t01[t2/x] # and
then prove the theorem by using the rule:

t1 ! �x.t01 t01[t2/x]! c

(t1 t2)! c

but this is incorrect since t01[t2/x] is not a sub-term of (t1 t2).

9.3. Operational and Denotational Equivalence

In this section we take a closer look at the relationship between the operational and denotational semantics of
HOFL. In the introduction of this chapter we said that the denotational semantics is more abstract than the
operational. In order to study this relationship we now introduce two equivalence relations between terms.
Operationally two terms are equivalent if they both diverge or have the same canonical form.

Definition 9.6 (Operational equivalence)
Let t1 and t2 be two well-typed terms of HOFL then we define a binary relation:

t1 ⌘op t2 () (t1 " ^ t2 ") _ (t1 ! c ^ t2 ! c)

And we say that t1 is operationally equivalent to t2.

Obviously we have the denotational counterpart of the definition.
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Definition 9.7 (Denotational equivalence)
Let t1 and t2 be two well-typed terms of HOFL then we define a binary relation:

t1 ⌘den t2 () 8⇢. ~t1� ⇢ = ~t2� ⇢

And we say that t1 is denotationally equivalent to t2.

From Theorem 9.4 it follows that:
⌘op) ⌘den

As pointed out in Example 9.1, the opposite does not hold:

⌘den; ⌘op

So in this sense we can say that the denotational semantics is more abstract then the operational one. Note
that if we assume t1 ⌘den t2 and t1, t2 , ? then we can only conclude that t1 ! c1 and t2 ! c2 for some
suitable c1 and c2. So we have ~c1� ⇢ = ~c2� ⇢, but nothing ensures that c1 = c2 as shown in the Example 9.1
at the beginning of this chapter.

Now we prove that if we restrict our attention only to the integers terms of HOFL, then the corresponding
operational and denotational semantics completely agree. This is due to the fact that if c1 and c2 are canonical
forms in Cint then it holds that ~c1� ⇢ = ~c2� ⇢, c1 = c2.

Theorem 9.8
Let t be a closed integer term of HOFL (i.e., t : int). Then:

~t� ⇢ = bnc () t �! n

Proof.

)) If ~t� ⇢ = bnc, then t + and thus t # by the soundness of denotational semantics (not proved here), namely 9n0
such that t �! n0, but ~t� ⇢ = bn0c by Theorem9.4, thus n = n0 and t �! n.

() Just Theorem 9.4.

⇤

9.4. A Simpler Denotational Semantics

In this section we introduce a simpler denotational semantics which we call unlifted, which does not use the
lifted domains. This semantics is simpler but also less expressive than the lifted one.

We define the following new domains:
Dint = N?

D⌧1⇤⌧2 = D⌧1 ⇥ D⌧2

D⌧1!⌧2 = [D⌧1 ! D⌧2 ]
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So we can simply define the interpretation function as follows:

~n� ⇢ = bnc
~x� ⇢ = ⇢ x
✓

t1 op t2
◆

⇢ = ~t1� ⇢ op? ~t2� ⇢
✓

i f t0 then t1 else t2
◆

⇢ = Cond(~t0� ⇢, ~t1� ⇢, ~t2� ⇢)
~(t1, t2)� ⇢ = (~t1� ⇢, ~t2� ⇢)
~fst(t)� ⇢ = ⇡1(~t� ⇢)
~snd(t)� ⇢ = ⇡2(~t� ⇢)
~�x.t� ⇢ = �d. ~t� ⇢[d/x]
~(t1 t2)� ⇢ = (~t1� ⇢)(~t2� ⇢)
~recx.t� ⇢ = fix �d. ~t� ⇢[d/x]

Note that the “unlifted” semantics di↵er from the “lifted” one only in the cases of pairing, projections,
abstraction and application. Obviously, on the one hand this denotational semantics is much simpler. On the
other hand this semantics is more abstract then the previous and does not express some interesting properties.
For instance, consider the two HOFL terms:

t1 = rec x.x : int �! int and t2 = �x.rec y.y : int �! int

In the lifted semantics we have ~t1� ⇢ = ?(N?�!N?)? and ~t2� ⇢ = b?N?�!N?c while in unlifted semantics
~t1� ⇢ = ~t2� ⇢ = ?N?�!N? . Note however that t1 8 while t2 #, thus the completeness property t #)+ t does
not hold for the unlifted semantics, at least for t : int �! int, since t2 # but t2 6+. However, completeness
holds for the unlifted semantics in the case of integers.

As a final comment, notice that the existence of two di↵erent, both reasonable, denotational semantics for
HOFL shows that denotational semantics is, to some extent, an arbitrary construction, which depends on the
properties one wants to express.


	Introduction
	Objectives
	Structure
	References

	Preliminaries
	Inference Rules
	Logic Programming

	IMP language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of IMP Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Inequality Proofs
	Diverging Computations


	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion

	Partial Orders and Fixpoints
	Orderings and Continuous Functions
	Orderings
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints
	Fixpoint Theorem

	Immediate Consequence Operator
	The  Operator
	Fixpoint of   


	Denotational Semantics of IMP
	-notation
	Denotational Semantics of IMP
	Function  A
	Function  B
	Function  C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs for  A and  B
	Equivalence of  C
	Completeness of the Denotational Semantics
	Correctness of the Denotational Semantics


	Computational Induction


	HOFL language
	Operational Semantics of HOFL
	HOFL
	Typed Terms
	Typability and Typechecking
	Church Type Theory
	Curry Type Theory


	Operational Semantics of HOFL

	Domain Theory
	The Domain N
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions

	HOFL Denotational Semantics
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Typing the Clauses
	Continuity of Meta-language's Functions
	Substitution Lemma

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalence
	A Simpler Denotational Semantics


	CCS
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Parallel Composition

	Hennessy - Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity



	Temporal and Modal Logic
	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking


	-calculus
	 -Calculus
	Syntax of -calculus
	Operational Semantics of -calculus
	Structural Equivalence of -calculus
	Abstract Semantics of  -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarity
	Weak Early and Late Ground Bisimulations



	Probabilistic Models and PEPA
	Measure Theory and Markov Chains
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables

	Stochastic Processes
	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity


	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	Larsen-Skou Logic

	DTMC With Non-determinism
	Segala Automata
	Simple Segala Automata
	Non-determinism, Probability and Actions



	PEPA - Performance Evaluation Process Algebra
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA



	Appendices
	Summary
	Induction rules 3.1.2
	Noether
	Weak Mathematical Induction 3.1.3
	Strong Mathematical Induction 3.1.4
	Structural Induction 3.1.5
	Derivation Induction 3.1.6
	Rule Induction 3.1.7
	Computational Induction 5.4

	IMP 2
	IMP Syntax 2.1
	IMP Operational Semantics 2.2
	IMP Arithmetic Expressions
	IMP Boolean Expressions
	IMP Commands

	IMP Denotational Semantics 5
	IMP Arithmetic Expressions  A: Aexpr (N) 
	IMP Boolean Expressions  B: Bexpr (B) 
	IMP Commands C: Com () 


	HOFL 6.1
	HOFL Syntax 6.1
	HOFL Types 6.1.1
	HOFL Typing Rules 6.1.1
	HOFL Operational Semantics 6.2
	HOFL Canonical Forms
	HOFL Axiom
	HOFL Arithmetic and Conditional Expressions
	HOFL Pairing Rules
	HOFL Function Application
	HOFL Recursion

	HOFL Denotational Semantics 8

	CCS 10
	CCS Syntax 10.1
	CCS Operational Semantics 10.2

	CCS Abstract Semantics 10.3
	CCS Strong Bisimulation 10.3.3
	CCS Axioms for Strong Bisimilarity 10.6
	CCS Weak Bisimulation 10.7
	CCS Observational Congruence 10.7.2
	CCS Axioms for Observational Congruence (Milner  Laws)
	CCS Dynamic Bisimulation 10.7.3
	CCS Axioms for Dynamic Bisimulation 10.7.3


	Temporal and Modal Logic
	Hennessy - Milner Logic 10.5
	Linear Temporal Logic 11.1.1
	Computation Tree Logic 11.1.2

	-Calculus 11.2
	-calculus 12
	-calculys Syntax 12.1
	-calculus Operational Semantics 12.2
	-calculus Abstract Semantics 12.4
	Strong Early Ground Bisimulation 12.4.1
	Strong Late Ground Bisimulation 12.4.2
	Strong Early Full Bisimilarity 12.4.3
	Strong Late Full Bisimilarity 12.4.3


	PEPA 15
	PEPA Syntax 15.2.1
	PEPA Operational Semantics 15.2.2

	LTL for Action, Non-determinism and Probability
	Real-valued Modal Logic
	Larsen-Skou Logic 14.1.0.2



