Fundamentals o
(Part 1)

Don Box

DevelopMentor
http://www.develop.com/dbox

. o

COM — The ldea

e COM s based on three fundamental ideas

— Clients program in terms of interfaces,
not classes

— Implementation code is not statically linked, but
rather loaded on-demand at runtime

— Object implementors declare their runtime
requirements and the system ensures that these
requirements are met

e The former two are the core of classic COM
e The latter I1s the core of MTS and COM+

Tale of Two COMSs

e COM is used primarily for two tasks

e Task 1: Gluing together multiple components inside
a process

— Class loading, type information, etc

e Task 2: Inter-process/Inter-host communications
— Object-based Remote Procedure Calls (ORPC)

e Pros: Same programming model and APIs used for
both tasks

e Cons: Same programming model and APIs used for
both tasks

e Design around the task at hand

Motivation

e We want to build dynamically composable systems
— Not all parts of application are statically linked

e We want to minimize coupling within the system
— One change propagates to entire source code tree

e We want plug-and-play replaceablity and extensibility

— New pieces should be indistinguishable from old,
known parts

e We want freedom from file/path dependencies
— xcopy /s *.dll C:\winnt\system32 not a solution

e We want components with different runtime
requirements to live peaceably together
— Need to mix heterogeneous objects in a single process

A Solution — Components

e Circa-1980’s style object-orientation based on
classes and objects
— Classes used for object implementation
— Classes also used for consumer/client type hierarchy

e Using class-based OO introduces non-trivial coupling
between client and object
— Client assumes complete knowledge of public interface
— Client may know even more under certain languages

(e.g., C++)

e Circa-1990’s object orientation separates client-
visible type system from object-visible
Implementation
— Allows client to program in terms of abstract types

— When done properly, completely hides implementation class
from client

Recall: Class-Based OOP

e The object implementor defines a class that...
— Is used to produce new objects
— |Is used by the client to instantiate and invoke methods

// faststring.h - seen by client and object implementor
class FastsString {

char* m_psz;
public:

FastString(const char* psz);

~Faststring();

int Length() const;

int Find(const char* pszSearchString) const;

}s

// faststring.cpp - seen by object implementor only
FastString: :FastString(const char* psz)

Recall: Class-Based OOP

e Client expected to import full definition of class

— Includes complete public signature at time of
compilation
— Also includes size/offset information under C++

// client.cpp

// import type definitions to use object
#include “faststring.h”

int FindTheoffset() {

int i = -1;
FastString* pfs = new FastString(“Hello, world!”);
if (pfs) {
i = pfs->Find(“o, W”);
delete pfs;
}
return 1i;

Class-Based OO Pitfalls

e Classes not so bad when the world is statically linked
— Changes to class and client happen simultaneously
— Problematic if existing public interface changes...

e Most environments do a poor job at distinguishing
changes to public interface from private details
— Touching private members usually triggers cascading rebuild
e Static linking has many drawbacks
— Code size bigger
— Can’t replace class code independently

e Open Question: Can classes be dynamically linked?

Classes Versus Dynamic Linking

e Most compilers offer a compiler keyword or directive
to export all class members from DLL

— Results in mechanical change at build/run-time
— Requires zero change to source code (except introducing the
directive)

// faststring.h

class __declspec(dllexport) FastString {
char* m_psz;

public:
FastString(const char* psz);

~Faststring();

int Length() const;
int Find(const char* pszSearchString) const;

}s
B

Classes Versus Dynamic Linking

e Clients statically link to Cllznz s
Import library
— Maps symbolic name to
'DLL'and entry name Client B faststring.dll
e Client imports resolved at
load time
e Note: C++ compilers non- _
standard wrt DLLs Client C o ctetrin I
. aststring.li
— DLL and clients must be /3 9
import name file name export name
?7@3fFastString_6Length faststring.dll | ??@3fFastString_6Length
??7@3fFastString_4Find faststring.dl] | ??@3fFastString_4Find
?7@3fFastString_ctor@sz2 | faststring.dl] | ?7@3fFastString_ctor@sz2
?7@3fFastString_dtor faststring.dl] | ?7@3fFastString_dtor

Classes Versus Dynamic Linking:
Evolution

e Challenge: Improve the performance of Length!
— Do not change public

interface and break | // faststring.cpp

encapsulation #include “faststring.h”
#include <string.h>

// faststring.h

: int FastString::Length() const {
class Faststring {

return strlen(m_psz);

char* m_psz; }
public:

FastString(const char* psz);

~Faststring(Q;

int Length() const;
int Find(const char* pszSearchString) const;

}s

Classes Versus Dynamic Linking:
Evolution

e Solution: Speed up FastString::Length by
caching length as data member

class __declspec(dllexport) FastString

{
char* m_psz;
int m_len;

public: FastString: :FastString(const char* sz)
FastString(const char*| : m_psz(new char[strlen(sz)+1]),
~FaststringQ; m_len(strlen(sz)) {
int Length() const; strcpy(m_psz, sz);

int Find(const char* p| }

}s

int FastString::Length() const {
return m_len;

}

Classes Versus Dynamic Linking:

Evolution

e New DLL assumes
sizeof(FastString) is 8

e Existing Clients assume
sizeof(FastString) is 4

e Clients that want new
functionality recompile

e Old Clients break!

e This is an inherent limitation
of virtually all C++
environments

sizeof==8

Client A

sizeof==4

sizeof==8

Client B

faststring.dll

sizeof==4

Client C

Classes Versus Dynamic Linking:

Interface Evolution

e Adding new public methods OK when statically linked

— Class and client code inseparable

e Adding public methods to a DLL-based class dangerous!

— New client expects method to be there

— OIld DLLs have never heard of this method!!

Client A

y

,| faststring.dll
(v2) (v1) |

FastString::FastString— FastString:
FastString: :~FastString—— FastString:
FastString::Length— FastString:
FastString::Find— ~ FastString:

FastString::FindN—>

:FastString
:~FastString
:Length
:Find

Conclusions

e Cannot change definition of a data type
without massive rebuild/redeployment of
client/object

e If clients program Iin terms of classes,
then classes cannot change in any
meaningful way

e Classes must change because we can'’t
get it right the first time

e Solution: Clients must not program
In terms of classes

Interface-Based Programming

e Key to solving the replaceable component problem
IS to split the world into two

e The types the client programs against can never
change
— Since classes need to change, these better not be classes!

e Solution based on defining alternative type system
based on abstract types called interfaces

e Allowing client to only see interfaces insulates
clients from changes to underlying class hierarchy

e Most common C++ technique for bridging interfaces
and classes Is to use abstract base
classes as interfaces

Abstract Bases As Interfaces

e A class can be designated as abstract by making
(at least) one method pure virtual
struct IFastString ({
virtual int Length() const = 0;
virtual int Find(const char*) const = 0;
};
e Cannot instantiate abstract base
— Can declare pointers or references to abstract bases

e Must instead derive concrete type that implements
each pure virtual function

e Classes with only pure virtual functions (no data
members, no implementation code) often called pure
abstract bases, protocol classes or interfaces

Interfaces And Implementations

e Given an abstract interface, the most common
way to associate an implementation with it is
through inheritance

class FastString : public IFastString {...};

e Implementation type must provide concrete

Implementations of each interface method

e Some mechanism needed to create instances
of the implementation type without exposing
layout
— Usually takes the form of a creator or factory

function

e Must provide client with a way to delete object

— Since the new operator is not used by the client, it
cannot call the delete operator
|

Exporting Via Abstract Bases

// faststringclient.h - common header between client/class

// here’s the DLL-friendly abstract interface:
struct IFastString {

virtual void Delete() = O;

virtual int Length() const = 0;

virtual int Find(const char* sz) const = 0;

}s

// and here’s the DLL-friendly factory function:

extern “C” bool

CreateInstance(const char* pszClassName, // which class?
const char* psz, // ctor args
IFastString** ppfs); // the objref

Exporting Via Abstract Bases

// faststring.h - private source file of class

#include “faststringclient.h”

class FastString : public IFastString {

// normal prototype of FastString class + Delete
void Delete() { delete this; }

};

// component.cpp - private source file for entire DLL
#include “faststring.h” // import FastString
#include “fasterstring.h” // import FasterString (another class)

bool CreateInstance(const char* pszClassName,
const char* psz, IFastString** ppfs) {

*ppfs = 0;
if (strcmp(pszClassName, “FastString”) == 0)

ppfs = static_cast<IFastString>(new FastString(sz));
else if (strcmp(pszClassName, “FasterString”) == 0)

ppfs = static_cast<IFastString>(new FasterString(sz));
return *ppfs != 0;

}

Exporting Using Abstract Bases

Client Object
pfs ° > vptr ° ~| FastString::Delete
m_text FastString::Length
m_Jlength FastString::Find

Interfaces And Plug-compatibility

e Note that a particular DLL can supply multiple implementations
of same interface
Createlnstance(“SlowString”, “Hello!!”, &pfs);

e Due to simplicity of model, runtime selection of
Implementation trivial

— Explicitly load DLL and bind function address

bool LoadAndCreate(const char* szDLL, const char* sz,
IFastString** ppfs){
HINSTANCE h = LoadLibrary(szDLL);
bool (*fp)(const char*, const char*, IFastString*¥);
* ((FARPROC*)&fp) = GetProcAddress(h, “CreateInstance”);
return fp(“FastSstring”, sz, ppfs);

Interfaces And Evolution

e Previous slides alluded to interface remaining
constant across versions

e Interface-based development mandates that new
functionality be exposed using additional interface

— Extended functionality provided by deriving from
existing interface

— Orthogonal functionality provided by creating new
sibling interface
e Some technique needed for dynamically interrogating
an object for interface support

— Most languages support some sort of runtime cast operation
(e.g., C++’s dynamic_cast)

Example: Adding Extended Functionality

e Add method to find the nth instance of sz

// faststringclient.h
struct IFastNFind : public IFastString {
virtual int FindN(const char* sz, int n) const = 0;

}s;

// faststringclient.cxx

int FindlOthInstanceOfFoo(IFastString* pfs) {
IFastNFind* pfnf = 0;
if (pfnf = dynamic_cast<IFastNFind*>(pfs))
return pfnf->FindN(“Foo”, 10);
else
// implement by hand...

Example: Adding Extended Functionality

Client Object

pfs e FastString::Delete

FastString::Length
FastString::Find

Feigisiirine)iiFine)\

Example: Adding Orthogonal Functionality

e Add support for generic persistence

// faststringclient.h

struct IPersistentObject {
virtual void Delete(void) = 0;
virtual bool Load(const char* sz) = 0;
virtual bool Save(const char* sz) const = 0;

}s

// faststringclient.cxx

bool Ssavestring(IFastString* pfs) {
IPersistentObject* ppo = 0;
if (ppo = dynamic_cast<IPersistentobject*>(pfs))
return ppo->Save(“Autoexec.bat”);
else
return false; // cannot save...

Example: Adding Orthogonal Functionality

Client Object

pfs o FastString::Delete

FastString::Length

vJJ"rr FastString::Find

_J_JJ__J

gg) J=plefen)

Fixing Interface-Based Programming In C++

e The dynamic_cast operator has several problems that
must be addressed
— 1) Its implementation is non-standard across compilers

— 2) Thereis no standard runtime representation
for the typename

— 3) Two parties may choose colliding typenames

e Can solve #1 by adding yet another well-known
abstract method to each interface (a la Delete)

e #2 and #3 solved by using a well-known
namespace/type format for identifying interfaces

— UUIDs from OSF DCE are compact (128 bit), efficient and
guarantee uniqueness

— UUIDs are basically big, unique integers!

Querylnterface

e COM programmers use the well-known abstract
method (Querylinterface) in lieu of dynamic_cast
virtual HRESULT _stdcall
Queryinterface(REFIID riid,// the requested UUID
void** ppv // the resultant objref
)=0;
e Returns status code indicating success (S _OK) or
failure (E_ NOINTERFACE)

e UUID is integral part of interface definition
— Defined as a variable with IID_ prefixed to type name
— VC-specific __declspec(uuid) conjoins COM/C++ names

Querylnterface As A Better Dynamic Cast

void UseAsTelephone(ICalculator* pCalc) {
ITelephone* pPhone = 0;
pPhone = dynamic_cast<ITelephone*>(pCalc);
if (pPhone) {
// use pPhone

void UseAsTelephone(ICalculator* pCalc) {
ITelephone* pPhone = 0;
HRESULT hr = pCalc->QueryInterface(IID_ITelephone,
(void**)&pPhone) ;
if Chr == S_0K) {
// use pPhone

Fixing Interface-Based Programming In C++

e Previous examples used a “Delete” method to allow
client to destroy object

— Requires client to remember which references point to which
objects to ensure each object deleted exactly once

ICalculator* pCalcl = CreateCalc(Q);
ITelephone* pPhonel = CreatePhone();
ICalculator* pCalc2 = dynamic_cast<ICalculator*>(pPhonel);
ICalculator* pCalc3 = CreateCalc(Q);

pPhonel->Dial (pCalcl->Add(pCalc2->Add(pCalc3->Add(2))));

pCalcl->Delete(); // assume interfaces have Delete
pCalc2->Delete(); // per earlier discussion
pPhonel->Delete();

Fixing Interface-Based Programming In C++

e COM solves the “Delete” problem with
reference counting
— Clients blindly “Delete” each reference, not each object

e Objects can track number of extant references and
auto-delete when count reaches zero
— Requires 100% compliance with ref. counting rules

e All operations that return interface pointers must
increment the interface pointer’s reference count
— Querylinterface, Createlnstance, etc.

e Clients must inform object that a particular interface
pointer has been destroyed using well-known method
— Virtual ULONG _stdcall Release() = 0;

Reference Counting Basics

ICalculator* pCalcl = CreateCalc();
ITelephone* pPhonel = CreatePhone();
ICalculator* pCalc2 = 0;
ICalculator* pCalc3 = CreateCalc(Q);
ITelephone * pPhone2 = 0;
ICalculator* pCalc4 = O;

pPhonel->QueryInterface(IID_ICalculator, (void**)&pcCalc2);
pCalc3->QueryInterface(IID_ITelephone, (void*#*)&pPhone2);
pCalcl->QueryInterface(IID_ICalculator, (void**)&pcCalc4);

pPhonel->Dial (pCalcl->Add(pCalc2->Add(pCalc3->Add(2))));
pCalcl->Release(); pCalc4->Release();

pCalc2->Release(); pPhonel->Release();
pCalc3->Release(); pPhone2->Release();

B B

lUnknown

e The three core abstract operations (Queryinterface,
AddRef, and Release) comprise the core interface
of COM, IlUnknown

e All COM interfaces must extend lUnknown
e All COM objects must implement IlUnknown

extern const IID IID_IUnknown;
struct IUnknown {
virtual HRESULT STDMETHODCALLTYPE Quer'yInter'face(
const IID& riid, void** ppv) = 0;
virtual ULONG STDMETHODCALLTYPE AddrRef() = 0;
virtual ULONG STDMETHODCALLTYPE Release() = 0;

}s

Com Interfaces In Nature

e Represented as pure abstract base
classes in C++
— All methods are pure virtual
— Never any code, only signature
— Format of C++ vtable/vptr defines expected stack frame

e Represented directly as interfaces in Java

e Represented as Non-Creatable classes in
Visual Basic

e Uniform binary representation independent of how
you built the object

e I|dentified uniquely by a 128-bit Interface ID (lID)

Com Interfaces In Nature

e COM interfaces are described first in
COM IDL

e COMIDL is an extension to DCE IDL
— Support for objects + various wire optimizations

e |IDL compiler directly emits C/C++ interface
definitions as source code

e |DL compiler emits tokenized type library
containing (most) of original contents in an
easlly parsed format

e Java™/Visual Basic® pick up mappings from

type librar
_yp y

COM IDL

Foo.h
C/C++
Definitions

Foo_i.c
GUIDs

Foo.idl
IDL
Description

Foo_p.cC
Proxy/Stub

of Foo interfaces
and datatypes

dlidata.c

Class Loading
Support

*.java
Java
Definitions

Foo.tlb

Binary
Descriptions

COM IDL

e All elements in an IDL file can have attributes
— Appearin [] prior to subject of attributes

e Interfaces are defined at global scope
— Required by MIDL to emit networking code

e Must refer to exported types inside library block
— Required by MIDL to emit type library definition

e Can import std interface suite
- WTYPES.IDL - basic data types
« UNKNWN.IDL - core type interfaces
« OBJIDL.IDL - core infrastructure itfs
« OLEIDL.IDL - OLE itfs
« OAIDL.IDL - Automation itfs
« OCIDL.IDL - ActiveX Control itfs

COM IDL

CalcTypes.idl

[uuid(DEFACED1-0229-2552-1D11-ABBADABBADO0O), object]
interface ICalculator : IDesktopDevice {
import “dd.id1”; // bring in IDesktopDevice
HRESULT Clear(void);
HRESULT Add([in] short n); // n sent to object
HRESULT GetSum([out] short* pn); // *pn sent to caller

}

[
uuid(DEFACED2-0229-2552-1D11-ABBADABBADOO) ,

helpstring(“My Datatypes”)
]
library CalcTypes {
importlib(“stdole32.t1b”); // required
interface ICalculator; // cause TLB inclusion

}

B B B |

COM IDL - C++ Mapping

CalcTypes.h

#include “dd.h”
extern const IID IID_ICalculator;
struct
__declspec(uuid(“DEFACEDI-0229-2552-1D11-ABBADABBADOO”))
ICalculator : public IDesktopDevice {
virtual HRESULT STDMETHODCALLTYPE Clear(void) = 0;
virtual HRESULT STDMETHODCALLTYPE Add(short n) = 0;
virtual HRESULT STDMETHODCALLTYPE GetSum(short* pn) = 0;
}s
extern const GUID LIBID_CalcTypes;

CalcTypes_I.c

const IID IID_ICalculator = {OXDEFACED1l, 0x0229, 0x2552,
{ Ox1p, Ox11, OxAB, OxBA, OxDA, OxBB, OxAD, 0x00 } };

const GUID LIBID_CalcTypes = {OXDEFACED2, 0x0229, 0x2552,
{ Ox1p, Ox11, OxAB, OxBA, OxDA, OxBB, OxAD, Ox00 } };

COM IDL - Java/VB Mapping

CalcTypes.java

package CalcTypes; // library name
/**@com. interface(71d=DEFACED1-0229-2552-1D11-ABBADABBADOO) */
interface ICalculator extends IDesktopDevice {
public void Clear();
public void Add(short n);
public void GetSum(short [] pn); // array of length 1
public static com.ms.com._Guid 1iid =
new com.ms.com._Guid(OXDEFACED1, 0x0229, 0x2552,
Ox1D, Ox11, OxAB, OXBA,
OxDA, OxBB, OxAD, 0x00);

}

CalcTypes.cls

Public Sub Clear()
Public Sub Add(Byval n As Integer)
Public Sub Getsum(ByRef pn As Integer)

COM And Error Handling

e COM doesn’t support typed C++ or Java-style
exceptions

e All (remotable) methods must return a standard 32-bit
error code called an HRESULT
— Mapped to exception in higher-level languages

— Overloaded to indicate invocation errors from proxies
Severity (31) Facility (27-16) Code (15-0)

\ ‘ res \ N particular value
FACILITY_NULL
FACILITY_ITF

0 -> Success FACILITY_STORAGE
1 -> Failure FACILITY_DISPATCH

FACILITY_WINDOWS
FACILITY_RPC

HRESULTS

e HRESULT names indicate severity and facility
« <FACILITY> <SEVERITY> <CODE>
- DISP_E_EXCEPTION
+ STG_S_CONVERTED

e FACILITY_NULL codes are implicit
- <SEVERITY>_ <CODE>
- S OK

S_FALSE

E_FAIL

E_NOTIMPL

E_OUTOFMEMORY

E_INVALIDARG

E_UNEXPECTED

e Can use FormatMessage API to lookup human-readable
description at runtime

COM Data Types

IDL C++ Java Visual Basic Script
small char byte N/A No
short short short Integer Yes
long long int Long Yes
hyper __int64 long N/A No
unsigned small unsigned char byte Byte No
unsigned short unsigned short short N/A No
unsigned long unsigned long int N/A No
unsigned hyper |[unsigned __int64 long N/A No
float float float Single Yes
double double double Double Yes
char char char N/A No
unsigned char unsigned char byte Byte Yes
wchar_t wchar_t char Integer No
B |

COM Data Types

IDL C++ Java Visual Basic Script
byte unsigned char char N/A No
BYTE unsigned char byte Byte Yes
boolean long int Long No
VARIANT_BOOL | VARIANT_BOOL boolean Boolean Yes
BSTR BSTR java.lang.String String Yes
VARIANT VARIANT com.ms.com.Variant Variant Yes
CY long int Currency Yes
DATE double double Date Yes
enum enum int Enum Yes
Typed ObjRef IFoo * interface IFoo IFoo Yes
struct struct final class Type No
union union N/A N/A No
C-style Array array array N/A No

Example

struct MESSAGE { VARIANT_BOOL b; long n; };

[uuid(03C20B33-C942-11d1-926D-006008026FEA), object]

interface IAnsweringMachine : IUnknown {
HRESULT TakeAMessage([in] struct MESSAGE* pmsg);
[propput] HRESULT OutboundMessage([in] long msg);
[propget] HRESULT OutboundMessage([out, retval] long* p);

}

public final class MESSAGE {
public boolean b; public int n;

}

public interface IAnsweringMachine extends IUnknown

{
public void TakeAMessage(MESSAGE msg);

public void putoutboundMessage(int);
public int getOutboundMessage();

}

Where Are We?

e Clients program in terms of abstract data
types called interfaces

e Clients can load method code dynamically
without concern for C++ compiler
iIncompatibilities

e Clients interrogate objects for extended
functionality via RTTI-like constructs

e Clients notify objects when references are
duplicated or destroyed

e Welcome to the Component Object Model!

References

e Programming Dist Apps With Visual Basic
and COM

— Ted Pattison, Microsoft Press

e Inside COM
— Dale Rogerson, Microsoft Press

e Essential COM(+), 2nd Edition (the book)
— Don Box, Addison Wesley Longman (40Q99)

e Essential COM(+) Short Course,
DevelopMentor

— http://www.develop.com

e DCOM Mailing List
— http://discuss.microsoft.com

