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Operational equivalence

termination and determinacy does not matter:
operational equivalence is always well-deÞned

<latexit sha1_base64="//ZNANigHEqeFgQ4zAhG7GdVL4Y=">AAACnHicfVFda9RAFJ3Erxq1XfVRkMFFqFCWzVLUF6WoD4IKFdxtYWcJN7M36dD5iDM3agnx9/iXfPC/mOwuWFvxPp055x7u3HPzSqtA4/HPKL5y9dr1G1s3k1u372zvDO7emwVXe4lT6bTzxzkE1MrilBRpPK48gsk1HuWnr3v96Av6oJz9RGcVLgyUVhVKAnVUNvgBWSqCMlkjDNCJN42r2pZDNuGJ+FzDUpjcfWtUUbSrZyIK50HrzlMa2LOj77siERpsqbFzpXtrQfg1I7wqTwi8d1+5TcR7LOgPc843+b+PP0mywXA8Gq+KXwbpBgzZpg6zwS+xdLI2aElqCGGejitaNOBJSY1tIuqAFchTKHHeQQsGw6JZJdryx3UAcrxCz5XmKxLPOxowIZyZvOvsYwsXtZ78lzavqXi+aJStakIr+0Gkun37QUF61Z0K+VJ5JIL+58iV5RI8EKFXHKTsyLq7XZ9HenH7y2A2GaVPR+nH/eHBq00yW+wBe8R2WcqesQP2lh2yKZPRdrQfvYhexg/jN/G7+MO6NY42nvvsr4pnvwEiCsxo</latexit>

a1 ! op a2 i! " ! , n. ( #a1, ! $ % n & # a2, ! $ % n )

<latexit sha1_base64="o+lK31IVOuOknCmVb9b6UTRYj4U="></latexit>

b1 ! op b2 i! " ! , v. ( #b1, ! $ % v & # b2, ! $ % v )

<latexit sha1_base64="9/vAE+3MvxFJCAiWnIBEEVp/Cnw="></latexit>

c1 ! op c2 i! " ! , ! ! . ( #c1, ! $ % ! ! & # c2, ! $ % ! ! )
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Congruence

take any context

is it the case that ?

that is: can we replace a subexpressions with
any equivalent one without changing the outcome?

<latexit sha1_base64="//ZNANigHEqeFgQ4zAhG7GdVL4Y="></latexit>

a1 ! op a2 i! " ! , n. ( #a1, ! $ % n & # a2, ! $ % n )

<latexit sha1_base64="qUm6nkN0JOhfRWz35Rqq7GEba+U=">AAACBXicbVC7TsNAEDyHVwgvB0qaExESVWQjBJQBGsogkYdkW9H5sgmnnB+6W4MiKzVfQQsVHaLlOyj4F2zjAhKmGs3samfHj6XQaFmfRmVpeWV1rbpe29jc2t4x67tdHSWKQ4dHMlJ9n2mQIoQOCpTQjxWwwJfQ8ydXud+7B6VFFN7iNAYvYONQjARnmEkDs+4GDO98P72YOS4fRugNzIbVtArQRWKXpEFKtAfmlzuMeBJAiFwyrR3bitFLmULBJcxqbqIhZnzCxuBkNGQBaC8tos/oYaIZRjQGRYWkhQi/N1IWaD0N/GwyD6rnvVz8z3MSHJ17qQjjBCHk+SEUEopDmiuRdQJ0KBQgsjw5UBFSzhRDBCUo4zwTk6ykWtaHPf/9IukeN+3Tpn1z0mhdls1UyT45IEfEJmekRa5Jm3QIJw/kiTyTF+PReDXejPef0YpR7uyRPzA+vgFUMJih</latexit>

A[á]

<latexit sha1_base64="MWP2YHHMCgcel/5OGULLAhTpunM="></latexit>

a1 ! op a2 " A[a1] ! op A[a2]

<latexit sha1_base64="m7lRvSWaVB5VLIeQomcwsXvLfP4=">AAACB3icbVDLSsNAFJ3UV62vaJduBotQEUpSfC2LblxWsA9IQplMb+vQyYOZG6GUfoBf4VZX7sStn+HCfzGJWWj1rA7n3Mu59/ixFBot68MoLS2vrK6V1ysbm1vbO+buXldHieLQ4ZGMVN9nGqQIoYMCJfRjBSzwJfT8yVXm9+5BaRGFtziNwQvYOBQjwRmm0sCsNl0UAWhad1w+jNA7Pj0amDWrYeWgf4ldkBop0B6Yn+4w4kkAIXLJtHZsK0ZvxhQKLmFecRMNMeMTNgYnpSFLA71ZfvycHiaaYURjUFRImovwc2PGAq2ngZ9OBgzv9KKXif95ToKjC28mwjhBCHkWhEJCHqS5EmkrQIdCASLLLgcqQsqZYoigBGWcp2KS1lRJ+7AXv/9Lus2Gfdawb05qrcuimTLZJwekTmxyTlrkmrRJh3AyJY/kiTwbD8aL8Wq8fY+WjGKnSn7BeP8C2ROYMw==</latexit>

2 ! ([á] + 5)e.g.
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Contexts
what are the possible contexts for arithmetic expressions?

[á] + 5

<latexit sha1_base64="yrJSUFOyrRqxG/xFXMIW9QA296Q=">AAAB/XicbVDLSsNAFJ3UV62vqks3g0UQhJJIiy6LblxWsA9IQ5lMb+vQSSbM3AglFL/Cra7ciVu/xYX/YhKz0NazOpxzL/fc40dSGLTtT6u0srq2vlHerGxt7+zuVfcPukbFmkOHK6l032cGpAihgwIl9CMNLPAl9Pzpdeb3HkAbocI7nEXgBWwSirHgDFPJdQd8pNCjZ7Q5rNbsup2DLhOnIDVSoD2sfg1GiscBhMglM8Z17Ai9hGkUXMK8MogNRIxP2QTclIYsAOMleeQ5PYkNQ0Uj0FRImovweyNhgTGzwE8nA4b3ZtHLxP88N8bxpZeIMIoRQp4dQiEhP2S4FmkXQEdCAyLLkgMVIeVMM0TQgjLOUzFOy6mkfTiL3y+T7nndadSbt41a66popkyOyDE5JQ65IC1yQ9qkQzhR5Ik8kxfr0Xq13qz3n9GSVewckj+wPr4Bk2uU0w==</latexit>

2 ! ([á] + 5)

<latexit sha1_base64="UvltKiIgJhr77/f06Z6bAoWfKts=">AAACCXicbVDLSsNAFJ3UV62vqrhyM1iEilCS0qLLohuXFewDklAm09s6dPJg5kYooV/gV7jVlTtx61e48F9MYxbaelaHc+7l3Hu8SAqNpvlpFFZW19Y3ipulre2d3b3y/kFXh7Hi0OGhDFXfYxqkCKCDAiX0IwXM9yT0vMn13O89gNIiDO5wGoHrs3EgRoIzTKVB+ajuoPBB06rt8GGILj2nzbNBuWLWzAx0mVg5qZAc7UH5yxmGPPYhQC6Z1rZlRugmTKHgEmYlJ9YQMT5hY7BTGrA00k2y82f0NNYMQxqBokLSTITfGwnztZ76XjrpM7zXi95c/M+zYxxduokIohgh4PMgFBKyIM2VSHsBOhQKENn8cqAioJwphghKUMZ5KsZpUaW0D2vx+2XSrdesRq1526i0rvJmiuSYnJAqscgFaZEb0iYdwklCnsgzeTEejVfjzXj/GS0Y+c4h+QPj4xuUP5iJ</latexit>

2 ! ([á] + 5) " 50

<latexit sha1_base64="tocYqLMyEW/rss62sixPI9PhYQw=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAxCRAi7IUGPQS8eI5gHZJcwO+nEIbMPZ3qFEHLyE/wKr3ryJl79Ag/+i7trDppYp6Kqm+ouL5JCo2V9Grml5ZXVtfx6YWNza3vH3N1r6TBWHJo8lKHqeEyDFAE0UaCETqSA+Z6Etje6TP32PSgtwuAGxxG4PhsGYiA4w0TqmYcVB4UPmpa6Du+H6NJTWjuhjoQ7WrN6ZtEqWxnoIrFnpEhmaPTML6cf8tiHALlkWndtK0J3whQKLmFacGINEeMjNoRuQgOWRLuT7I0pPY41w5BGoKiQNBPh98aE+VqPfS+Z9Bne6nkvFf/zujEOzt2JCKIYIeBpEAoJWZDmSiT9AO0LBYgsvRyoCChniiGCEpRxnohxUlgh6cOe/36RtCplu1quXVeL9YtZM3lyQI5IidjkjNTJFWmQJuHkgTyRZ/JiPBqvxpvx/jOaM2Y7++QPjI9vgVebHA==</latexit>

(2 ! ([á] + 5) " 50) # x = y

<latexit sha1_base64="TfFFZPfn81G1irWRzcjfW0HbL9g=">AAACHnicbVDLTgJBEJzFF+IL9ehlIjFBTcgugejFhOjFIybySNgNmR0anDj7cKZXJYR/8BP8Cq968ma86sF/cUAOCtapUtWdri4/lkKjbX9aqbn5hcWl9HJmZXVtfSO7uVXXUaI41HgkI9X0mQYpQqihQAnNWAELfAkN//ps5DduQWkRhZfYj8ELWC8UXcEZGqmdPcgXXRQBaJpvubwToUcPaXmfuhJuaNk25A46PaD3J/12NmcX7DHoLHEmJEcmqLazX24n4kkAIXLJtG45dozegCkUXMIw4yYaYsavWQ9ahobMxPAG45+GdC/RDCMag6JC0rEIvzcGLNC6H/hmMmB4pae9kfif10qwe+wNRBgnCCEfHUIhYXxIcyVMWUA7QgEiGyUHKkLKmWKIoARlnBsxMe1lTB/O9PezpF4sOKVC+aKUq5xOmkmTHbJL8sQhR6RCzkmV1AgnD+SJPJMX69F6td6s95/RlDXZ2SZ/YH18A2OHn8U=</latexit>

x := 2 ! ([á] + 5)

<latexit sha1_base64="Xj3C46+QW3DTYtKVss3fjZxEGa8=">AAACDXicbVDLSgNBEJyNrxhfq57Ey2AQIkLYDQmKIAS9eIxgHpAsYXbSiUNmH8z0imEJfoJf4VVP3sSr3+DBf3Gz5qCJdSqquqnuckMpNFrWp5FZWFxaXsmu5tbWNza3zO2dhg4ixaHOAxmolss0SOFDHQVKaIUKmOdKaLrDy4nfvAOlReDf4CgEx2MDX/QFZ5hIXXPv/uycljooPNC00O7wXoAOPaaVo66Zt4pWCjpP7CnJkylqXfOr0wt45IGPXDKt27YVohMzhYJLGOc6kYaQ8SEbQDuhPksinTh9YUwPI80woCEoKiRNRfi9ETNP65HnJpMew1s9603E/7x2hP1TJxZ+GCH4fBKEQkIapLkSSTdAe0IBIptcDlT4lDPFEEEJyjhPxCgpK5f0Yc9+P08apaJdLlauy/nqxbSZLNknB6RAbHJCquSK1EidcPJAnsgzeTEejVfjzXj/Gc0Y051d8gfGxzfn9pnA</latexit>

while x ! 100 do x := 2 " ([á] + 5)

<latexit sha1_base64="aIWVoGwF+90fUoTOWyGOriToyGg="></latexit>
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Contexts
what are the possible contexts for arithmetic expressions?

C[á] ::= x := A[á]
| C[á]; c
| c; C[á]
| if B[á] then c else c
| if b then C[á] else c
| if b then c else C[á]
| while B[á] do c
| while b do C[á]

<latexit sha1_base64="obMn5bEVQ1yrivZ0YMcvdtA8Ndk="></latexit>

B[á] ::= A[á] cmp a
| a cmp A[á]
| ÂB[á]
| B[á] bop b
| b bop B[á]

<latexit sha1_base64="Ts1A2ym3PIsmrjFNe8zdz7rM8aQ="></latexit>

A[á] ::= [ á]
| A[á] op a
| a op A[á]

<latexit sha1_base64="cvLiGXTPsZKp2/DB9qEi/Gu3el8="></latexit>
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Proof obligations
many proof obligations to deal with:

<latexit sha1_base64="Rd6IRJM1ph5MthKWEy0PwG9Kf2E=">AAAClHichVFNaxRBEO0ZNcbxI6uCFy+FixAhLDOLRg8egkHwJFHcJLC9DDWd2k2T7pmhu0YNw/wX/5YH/4s9kz1oVrCg4fV79aqqq4vaaM9p+jOKb9y8tXV7+05y9979Bzujh4+OfdU4RTNVmcqdFujJ6JJmrNnQae0IbWHopLg47PWTr+S8rsovfFnTwuKq1EutkAOVj37IZeXQGMA9zLNwphMJuxKScJNe27yVFvnc2baquw6CDon8rFfnjM5V36BPA8n0nYdZ2sI01F15/LL3SMBus1AoP/2/L5HwIh+N00k6BGyCbA3GYh1H+eiXPKtUY6lkZdD7eZbWvGjRsVaGQs3GU43qAlc0D7BES37RDlN08LzxyBXU5EAbGEj609Gi9f7SFiFzGPW61pP/0uYNL98sWl3WDVOp+kasDQ2NvHI6fBHBmXbEjP3kBLoEhQ6ZyWlApQLZhD9Lwj6y66/fBMfTSbY/yT69HB+8W29mWzwVz8SuyMRrcSA+iCMxEyraivaiV9F+/CR+Gx/G769S42jteSz+ivjjb0g7yhs=</latexit>

! a, a1, a2. ( a1 " op a2 # a1 op a " op a2 op a )
<latexit sha1_base64="j+qt/kICx/XWAop0mQS2QC3di/8="></latexit>

! a, a1, a2. ( a1 " op a2 # a op a1 " op a op a2 )

<latexit sha1_base64="VXlZezPo+bhdzk/hRSVY2zTzwdY="></latexit>

! a, a1, a2. ( a1 " op a2 # a cmp a1 " op a cmp a2 )

<latexit sha1_base64="IuvVaNqFopSZETU2lE6KzlqvpSI=">AAAClnicjVFNb9QwEHVSoEv4WuCCxMVihVQkFCUr1PaEqiIExwWxbaX1Kpq4s1urdmLZE6CK8mf4Vxz4LzjpHqDLgZEsPb83b2Y8Lq1WnrLsZxTv3Lp9Z3d0N7l3/8HDR+PHT0583TiJc1nr2p2V4FGrCuekSOOZdQim1HhaXr7r9dOv6Lyqqy90ZXFpYF2plZJAgSrGP8SqdqA1h9dQ5OFMU8H3BE/CTXhlilYYoAtn2tp2HQ86T8Rntb4gcK7+xvs0Lgi/0zBLW+oGu2uPX7XS2E5w6LYrhfrT/zAmgr8qxpMszYbg2yDfgAnbxKwY/xLntWwMViQ1eL/IM0vLFhwpqTHUbDxakJewxkWAFRj0y3YYo+MvGw9Uc4uOK80HEv90tGC8vzJlyBxmvan15L+0RUOrw2WrKtsQVrJvRErj0MhLp8InIT9XDomgnxy5qrgEB0ToFAcpA9mEX0vCPvKbr98GJ9M030/zT28mR8ebzYzYc/aC7bGcHbAj9pHN2JzJaBSl0UF0GD+L38bv4w/XqXG08Txlf0U8+w07F8rx</latexit>

! a, a1, a2. ( a1 " op a2 # a1 cmp a " op a2 cmp a )
<latexit sha1_base64="6iWDqS3qSBo1cQuoLC/+Kdh9wHY="></latexit>

! x, a1, a2. ( a1 " op a2 # x := a1 " op x := a2 )

similarly for boolean expressions and commands
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Denotational equivalence

(two functions are the same 
if they coincide on all arguments)

<latexit sha1_base64="sw3iD1p+W1eW6lRoYdNCkNikjCQ="></latexit>

a1 ! den a2 i! A !a1" = A !a2"

<latexit sha1_base64="gACjNa4fEdmqLvC2C5F0peoIql8=">AAAChXicdVHJTtxAEG07C4OzDXDMpZVRpFwyskeI5IKC4JIjkRhAGo+s6nYNadHddrrLKCPHH5prPoEviG18YK3Tq1evFr0SpVae4vhvED57/uLlxmgzevX6zdt3463tU19UTuJcFrpw5wI8amVxToo0npcOwQiNZ+LyqKufXaHzqrAntC5xaeDCqpWSQC2Vjf+ILEm9MlmdGqCfztQ52qbhIpvxKP1VQZ4aUfyu1WrV9GnU6yTo+rBJtRYO5CUS78Y4N2TR/pOq2S1VlI0n8TTugz8EyQAmbIjjbHyd5oWsDFqSGrxfJHFJyxocKamxidLKY9kOhwtctNCCQb+se5ca/rHyQAUv0XGleU/i7Y4ajPdrI1pld7y/X+vIx2qLilZfl7WyZUVoZbeIlMZ+kZdOtfYjz5VDIuguR64sl+CACJ3iIGVLVu0/7iz0ZMCtXd60JiX3LXkITmfTZG+a/NidHBwOdo3Ye/aBfWIJ+8IO2Hd2zOZMsn/BKNgKtsON8HO4G+7dSMNg6NlhdyL89h8Rf8XP</latexit>

b1 ! den b2 i! B!b1" = B!b2"

<latexit sha1_base64="z4h7ZuDZhKpeVj0BQFToxo7Qnx8="></latexit>

c1 ! den c2 i! C!c1" = C!c2"
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Compositionality principle

is it the case that ?

YES! it is guaranteed by the compositionally
principle of denotational semantics:

the meaning of a compound expression is solely
determined by the meaning of its constituents

<latexit sha1_base64="sw3iD1p+W1eW6lRoYdNCkNikjCQ="></latexit>

a1 ! den a2 i! A !a1" = A !a2"

take any context
<latexit sha1_base64="qUm6nkN0JOhfRWz35Rqq7GEba+U=">AAACBXicbVC7TsNAEDyHVwgvB0qaExESVWQjBJQBGsogkYdkW9H5sgmnnB+6W4MiKzVfQQsVHaLlOyj4F2zjAhKmGs3samfHj6XQaFmfRmVpeWV1rbpe29jc2t4x67tdHSWKQ4dHMlJ9n2mQIoQOCpTQjxWwwJfQ8ydXud+7B6VFFN7iNAYvYONQjARnmEkDs+4GDO98P72YOS4fRugNzIbVtArQRWKXpEFKtAfmlzuMeBJAiFwyrR3bitFLmULBJcxqbqIhZnzCxuBkNGQBaC8tos/oYaIZRjQGRYWkhQi/N1IWaD0N/GwyD6rnvVz8z3MSHJ17qQjjBCHk+SEUEopDmiuRdQJ0KBQgsjw5UBFSzhRDBCUo4zwTk6ykWtaHPf/9IukeN+3Tpn1z0mhdls1UyT45IEfEJmekRa5Jm3QIJw/kiTyTF+PReDXejPef0YpR7uyRPzA+vgFUMJih</latexit>

A[á]

<latexit sha1_base64="Ve5tIFQ1AVzX4TDTYLi2Nuux3Ps="></latexit>

a1 ! den a2 " A[a1] ! den A[a2]
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Consistency
if we guarantee the consistency between
the operational semantics and
the denotational semantics
then the congruence property is guaranteed
for the operational semantics too

<latexit sha1_base64="tOY4AkkZSDMODn9w1FJwm38j4E0="></latexit>

! a1, a2. ( a1 " op a2
?# a1 " den a2 )

<latexit sha1_base64="8juBRkFZsGlQkLKAHRcIJY3UWAA="></latexit>

! b1, b2. ( b1 " op b2
?# b1 " den b2 )

<latexit sha1_base64="qnT6PxXL+YbGjHl7GWwJoe6NsPw="></latexit>

! c1, c2. ( c1 " op c2
?# c1 " den c2 )
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Consistency: expressions

6.3 Equivalence Between Operational and Denotational Semantics 141

! x < 0) Then! x != 0and! x< 1are true, thus" n+ 1! =
" .

! x = 0) Then! x != 0 is false and thus" n+ 1! = ! =
! [0/ x].

1 # ! x < n+ 1) Then! x != 0 and1 # ! x < n+ 1 are true, thus
" n+ 1! = ! [0/ x].

! x $ n+ 1) Then! x != 0 is true, but1# ! x< n+ 1 is false,
thus" n+ 1! = " .

Summarising,

! x < 0

" n+ 1! = "

! x = 0

" n+ 1! = ! [0/ x]

1 # ! x < n+ 1

" n+ 1! = ! [0/ x]

! x $ n+ 1

" n+ 1! = "

Then
" n+ 1 = # ! . 0 # ! x < n+ 1 % ! [0/ x] , "

which provesP(n+ 1).

Finally we have

C !c" = Þx $ =
!

n&N

$ n" =
!

n&N

" n = # ! . 0 # ! x % ! [0/ x] , "

6.3 Equivalence Between Operational and Denotational
Semantics

This section deals with the issue of equivalence between the two semantics of IMP
introduced up to now. As we will show, the denotational and operational semantics
agree. As usual we will handle Þrst arithmetic and boolean expressions, then as-
suming the proved equivalences we will show that the operational and denotational
semantics agree also on commands.

6.3.1 Equivalence Proofs for Expressions

We start by considering arithmetic expressions. We want to prove that the operational
and denotational semantics coincide, that is, the results of evaluating an arithmetic
expression both by operational and denotational semantics are the same. If we
regard the operational semantics as an interpreter and the denotational semantics
as a compiler we are proving that interpreting an IMP program and executing its
compiled version starting from the same memory leads to the same result.

Theorem 6.1.For all arithmetic expressionsa & Aexp, the predicateP(a) holds,
where

142 6 Denotational Semantics of IMP

P(a) def= ! ! " " . #a, ! $% A !a" !

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n) def= ! ! . #n, ! $% A !n" ! holds because, given a generic! , we have
#n, ! $% n andA !n" ! = n.

Vars: P(x) def= ! ! . #x, ! $% A !x" ! holds because, given a generic! , we have
#x, ! $% ! x andA !x" ! = ! x.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressionsa0 anda1 and a binary operator
& " { + , ' , ( } of IMP, whose corresponding semantic operator isá. We
assume

P(a0) def= #a0, ! $% A !a0" !

P(a1) def= #a1, ! $% A !a1" !

and we want to prove

P(a0 & a1) def= #a0 & a1, ! $% A !a0 & a1" !

By using the inductive hypothesis we derive

#a0 & a1, ! $% A !a0" ! áA !a1" !

Finally, by deÞnition ofA

A !a0" ! áA !a1" ! = A !a0 & a1" !

)*

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2.For all boolean expressionsb " Bexp, the predicateP(b) holds, where

P(b) def= ! ! " " . #b, ! $% B !b" !

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are deÞned in

142 6 Denotational Semantics of IMP

P(a) def= ! ! " " . #a, ! $% A !a" !

Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n) def= ! ! . #n, ! $% A !n" ! holds because, given a generic! , we have
#n, ! $% n andA !n" ! = n.

Vars: P(x) def= ! ! . #x, ! $% A !x" ! holds because, given a generic! , we have
#x, ! $% ! x andA !x" ! = ! x.

Ops: Let us generalise the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressionsa0 anda1 and a binary operator
& " { + , ' , ( } of IMP, whose corresponding semantic operator isá. We
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very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3.! c " Com. ! ! , ! #" " . $c, ! %& ! # ' C !c" ! = ! #.

As usual we divide the proof into two parts:

Correctness: ! c " Com, ! ! , ! #" " we prove

P($c, ! %& ! #) def= C !c" ! = ! #

Completeness: ! c " Comwe prove

P(c) def= ! ! , ! #" " . C !c" ! = ! # ( $c, ! %& ! #

Notice that in this way the undeÞned cases are also handled for the equivalence: for
instance we have as a corollary that

$c, ! % )& ( C !c" ! = * " *

since otherwise, assumingC !c" ! = ! # for some! # " " , it would follow that
$c, ! % &! #. Similarly in the opposite direction:

C !c" ! = * " * ( $ c, ! % )&

6.3.2.1 Correctness

Let us prove the Þrst part of Theorem 6.3. We let

P
!
$c, ! %& ! #" def= C !c" ! = ! #

and prove thatP($c, ! %& ! #) holds for anyc " Comand! , ! #" " .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for theskip:

$skip, ! %& !

We want to prove

P($skip, ! %& ! ) def= C !skip" ! = !

Obviously the proposition is true by the deÞnition of the denotational
semantics.
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$c, ! % &! #. Similarly in the opposite direction:

C !c" ! = * " * ( $ c, ! % )&

6.3.2.1 Correctness

Let us prove the Þrst part of Theorem 6.3. We let

P
!
$c, ! %& ! #" def= C !c" ! = ! #

and prove thatP($c, ! %& ! #) holds for anyc " Comand! , ! #" " .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for theskip:

$skip, ! %& !

We want to prove

P($skip, ! %& ! ) def= C !skip" ! = !

Obviously the proposition is true by the deÞnition of the denotational
semantics.
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assign: Let us consider the rule for the assignment command:

!a, ! " # m

!x := a, ! " # ! [m/ x]

We assume!a, ! " # m and henceA !a" ! = mby the equivalence of the
operational and denotational semantics of arithmetic expressions.
We want to prove

P(!x := a, ! " # ! [m/ x])
def= C !x := a" ! = ! [m/ x]

By the deÞnition of the denotational semantics

C !x := a" ! = ! [A ! a" ! / x] = ! [m/ x]

seq: Let us consider the concatenation rule:

!c0, ! " # ! $$ !
c1, ! $$" # ! $

!c0;c1, ! " # ! $

We assume

P(!c0, ! " # ! $$) def= C !c0" ! = ! $$

P(
!
c1, ! $$" # ! $) def= C !c1" ! $$= ! $

We want to prove

P(!c0;c1, ! " # ! $) def= C !c0;c1" ! = ! $

By the denotational semantics deÞnition and the inductive hypotheses

C !c0;c1" ! = C !c1"%(C !c0" ! ) = C !c1"%! $$= C !c1" ! $$= ! $

Note that the lifting operator can be removed because! $$&= ' by the
inductive hypothesis.

iftt: Let us consider the rule

!b, ! " # true !c0, ! " # ! $

! if b then c0 elsec1, ! " # ! $

We assume

¥ !b, ! " # true and thereforeB !b" ! = true by the correspondence
between the operational and denotational semantics for boolean ex-
pressions;

¥ P(!c0, ! " # ! $) def= C !c0" ! = ! $
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We want to prove

P(! if b then c0 elsec1, ! " # ! $) def= C ! if b then c0 elsec1" ! = ! $

In fact, we have

C ! if b then c0 elsec1" ! = B !b" ! # C !c0" ! ,C !c1" !

= true # ! $,C !c1" !

= ! $

ifff: The proof for the second rule of the conditional command is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule

!b, ! " # false

!while b do c, ! " # !

We assume!b, ! " # falseand thereforeB !b" ! = false.
We want to prove

P(!while b do c, ! " # ! ) def= C !while b do c" ! = !

By the Þxpoint property of the denotational semantics

C !while b do c" ! = B !b" ! # C !while b do c"%(C !c" ! ), !

= false# C !while b do c"%(C !c" ! ), !

= !

whtt: At last we consider the second rule of the while command:

!b, ! " # true !c, ! " # ! $$ !
while b do c, ! $$" # ! $

!while b do c, ! " # ! $

We assume

¥ !b, ! " # true and thereforeB !b" ! = true

¥ P(!c, ! " # ! $$) def= C !c" ! = ! $$

¥ P(!while b do c, ! $$" # ! $) def= C !while b do c" ! $$= ! $

We want to prove

P(!while b do c, ! " # ! $) def= C !while b do c" ! = ! $

By the deÞnition of the denotational semantics and the inductive hypotheses
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We want to prove
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We want to prove

P(! if b then c0 elsec1, ! " # ! $) def= C ! if b then c0 elsec1" ! = ! $

In fact, we have

C ! if b then c0 elsec1" ! = B !b" ! # C !c0" ! ,C !c1" !
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whff: Let us consider the rule
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!while b do c, ! " # !

We assume!b, ! " # falseand thereforeB !b" ! = false.
We want to prove

P(!while b do c, ! " # ! ) def= C !while b do c" ! = !

By the Þxpoint property of the denotational semantics

C !while b do c" ! = B !b" ! # C !while b do c"%(C !c" ! ), !

= false# C !while b do c"%(C !c" ! ), !
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whtt: At last we consider the second rule of the while command:

!b, ! " # true !c, ! " # ! $$ !
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!while b do c, ! " # ! $

We assume

¥ !b, ! " # true and thereforeB !b" ! = true

¥ P(!c, ! " # ! $$) def= C !c" ! = ! $$

¥ P(!while b do c, ! $$" # ! $) def= C !while b do c" ! $$= ! $

We want to prove

P(!while b do c, ! " # ! $) def= C !while b do c" ! = ! $

By the deÞnition of the denotational semantics and the inductive hypotheses146 6 Denotational Semantics of IMP

C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have
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very different formalisms: on the one hand we have an inference rule system which
allows us to calculate the execution of each command; on the other hand we have a
function which associates with each command its functional meaning. So to show
the equivalence between the two semantics we will prove the following property.

Theorem 6.3.! c " Com. ! ! , ! #" " . $c, ! %& ! # ' C !c" ! = ! #.

As usual we divide the proof into two parts:

Correctness: ! c " Com, ! ! , ! #" " we prove

P($c, ! %& ! #) def= C !c" ! = ! #

Completeness: ! c " Comwe prove

P(c) def= ! ! , ! #" " . C !c" ! = ! # ( $c, ! %& ! #

Notice that in this way the undeÞned cases are also handled for the equivalence: for
instance we have as a corollary that

$c, ! % )& ( C !c" ! = * " *

since otherwise, assumingC !c" ! = ! # for some! # " " , it would follow that
$c, ! % &! #. Similarly in the opposite direction:

C !c" ! = * " * ( $ c, ! % )&

6.3.2.1 Correctness

Let us prove the Þrst part of Theorem 6.3. We let

P
!
$c, ! %& ! #" def= C !c" ! = ! #

and prove thatP($c, ! %& ! #) holds for anyc " Comand! , ! #" " .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove that the property holds for the conclusion.

skip: Let us consider the operational rule for theskip:

$skip, ! %& !

We want to prove

P($skip, ! %& ! ) def= C !skip" ! = !

Obviously the proposition is true by the deÞnition of the denotational
semantics.
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##
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skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##
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the conclusion)c0;c1, ! * ! ! #. We have
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We need to prove

P(while b do c) def= ! ! , ! ". C !while b do c" ! = ! "

# $while b do c, ! %& ! "

By deÞnitionC !while b do c" ! = Þx " b,c ! =
! "

n' N " n
b,c(

#
! so

C !while b do c" ! = ! " # $while b do c, ! %& ! "

)! "
n' N " n

b,c(
#

! = ! " # $while b do c, ! %& ! "

)!
* n ' N. (" n

b,c( )! = ! "
#

# $while b do c, ! %& ! "

)

! n ' N.
!

" n
b,c( ! = ! " # $while b do c, ! %& ! "

#

Let A(n) def= ! ! , ! ". " n
b,c( ! = ! " # $while b do c, ! %& ! ".

We prove that! n ' N. A(n) by mathematical induction.

Base case: We have to proveA(0), namely

! ! , ! ". " 0
b,c( ! = ! " # $while b do c, ! %& ! "

Since" 0
b,c( ! = ( ! = ( and! " += ( the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n) def= ! ! , ! ". " n
b,c( ! = ! " # $while b do c, ! %& ! "

We want to show that

A(n+ 1) def= ! ! , ! ". " n+ 1
b,c ( ! = ! " # $while b do c, ! %& ! "

We assume" n+ 1
b,c ( ! = " b,c

!
" n

b,c(
#

! = ! ", that is

B !b" ! &
$
" n

b,c(
%, (C !c" ! ) , ! = ! "

Now eitherB !b" ! = falseor B !b" ! = true.
¥ If B !b" ! = false, we have$b, ! %& falseand! " = ! .

Now by using the rule (whff)

$b, ! %& false

$while b do c, ! %& !

we conclude$while b do c, ! %& ! .

By rule (skip)
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

We prove
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have

Then
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have

By consistency for expressions

By rule (asgn)
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

We prove
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C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have



2525

146 6 Denotational Semantics of IMP

C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have

Assume

We want to prove

146 6 Denotational Semantics of IMP

C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have

Assume

146 6 Denotational Semantics of IMP

C !while b do c" ! = B !b" ! ! C !while b do c"" (C !c" ! ) , !

= true ! C !while b do c"" ! ##, !

= C !while b do c"" ! ##

= C !while b do c" ! ##

= ! #

Note that the lifting operator can be removed since! ##$= %.

6.3.2.2 Completeness

Let us conclude the proof of Theorem 6.3 by showing that, for allc & Com

P(c) def= ' ! , ! #& " . C !c" ! = ! #( )c, ! * ! ! #

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove

P(skip) def= ' ! , ! #. C !skip" ! = ! #( )skip, ! * ! ! #

By deÞnition we haveC !skip" ! = ! and)skip, ! * ! ! is an axiom of
the operational semantics.

assign: We need to prove

P(x := a) def= ' ! , ! #. C !x := a" ! = ! #( )x := a, ! * ! ! #

By the denotational semantics deÞnition we have! #= ! [A ! a" ! / x] and
by the equivalence between operational and denotational semantics for
expressions we have)a, ! * ! A !a" ! , thus we can apply the rule (assign)
to conclude

)x := a, ! * ! ! [A ! a" ! / x]

seq: We assume

¥ P(c0) def= ' ! , ! ##. C !c0" ! = ! ##( )c0, ! * ! ! ##

¥ P(c1) def= ' ! ##, ! #. C !c1" ! ##= ! #( )c1, ! ##* ! ! #

We want to prove

P(c0;c1) def= ' ! , ! #. C !c0;c1" ! = ! #( )c0;c1, ! * ! ! #

Let us assumeC !c0;c1" ! = ! #, the premise of the implication, and prove
the conclusion)c0;c1, ! * ! ! #. We have
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

we have
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Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

thus
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

for some
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

and
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

by inductive hypotheses
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

By rule (seq)
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""
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Assume
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

We prove
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

Assume
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

we have

6.3 Equivalence Between Operational and Denotational Semantics 147

C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

either
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""
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¥ if B !b" ! = true we have!b, ! " # true and
!
" n

b,c$
"%(C !c" ! ) = ! &

Since ! & '= $ there must exist some! &&'= $ with
C !c" ! = ! &&and by structural induction!c, ! " # ! &&.

Since
#
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(C !c" ! ) =

#
" n

b,c$
$

! &&= ! &we have

by the mathematical induction hypothesisA(n) that
%
while b do c, ! &&&# ! &

Finally, by using the rule (whtt)

!b, ! " # true !c, ! " # ! && %
while b do c, ! &&&# ! &

!while b do c, ! " # ! &

we conclude!while b do c, ! " # ! &.

6.4 Computational Induction

How are we able to prove properties about Þxpoints? To Þll this gap we introduce
ScottÕscomputational induction, which applies to a class of properties corresponding
to inclusive sets.

DeÞnition 6.10(Inclusive property). Let (D,( ) be a CPO, letP ) D be a set. We
say thatP is aninclusiveset if and only if

(* n + N. dn + P) ,
'

n+N

dn + P

A property isinclusiveif the set of values on which it holds is inclusive.

Intuitively, a setP is inclusive if whenever we form a chain out of elements inP,
then the limit of the chain is also inP, i.e.,P is inclusive if and only if it forms a
CPO.

Example 6.9(Non-inclusive property).Let ({ a,b} %- { a,b} ! , ( ) be a CPO where
# ( $ . / %. $ = #%. So the elements of the CPO are sequences ofa andb and
# ( $ iff # = $ or # is a Þnite preÞx of$ . Let us now deÞne the following property:

¥ # + { a,b} %- { a,b} ! is fair iff ' /$ + { a,b} %. # = $a! 0 # = $b!

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

¥ the sequencean is Þnite and thus fair for anyn + N;
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¥ # + { a,b} %- { a,b} ! is fair iff ' /$ + { a,b} %. # = $a! 0 # = $b!

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,

¥ the sequencean is Þnite and thus fair for anyn + N;
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C !c0;c1" ! = C !c1"! (C !c0" ! ) = ! "

Since! " #= $ , it must be thatC !c0" ! #= $ , i.e., we can assume the
termination ofc0 and thus omit the lifting operator:

C !c0;c1" ! = C !c1" (C !c0" ! ) = ! "

Let C !c0" ! = ! "". We haveC !c1" ! "" = ! ". Then we can apply modus
ponens to the inductive assumptionsP(c0) andP(c1), to get%c0, ! &' ! ""

and%c1, ! ""&' ! ". Thus we can apply the inference rule:

%c0, ! &' ! "" !
c1, ! """ ' ! "

%c0;c1, ! &' ! "

to conclude%c0;c1, ! &' ! ".
if: We assume

¥ P(c0) def= ( ! , ! ". C !c0" ! = ! " ) %c0, ! &' ! "

¥ P(c1) def= ( ! , ! ". C !c1" ! = ! " ) %c1, ! &' ! "

We need to prove

P(if b then c0 elsec1) def= ( ! , ! ". C ! if b then c0 elsec1" ! = ! "

) %if b then c0 elsec1, ! &' ! "

Let us assume the premiseC ! if b then c0 elsec1" ! = ! " and prove the
conclusion%if b then c0 elsec1, ! &' ! ". By deÞnition

C ! if b then c0 elsec1" ! = B !b" ! ' C !c0" ! ,C !c1" !

Now, eitherB !b" ! = falseor B !b" ! = true.
If B !b" ! = false, we have also%b, ! & ' false. Then

C ! if b then c0 elsec1" ! = C !c1" ! = ! "

By modus ponens on the inductive hypothesisP(c1) we have%c1, ! &' ! ".
Thus we can apply the rule

%b, ! &' false %c1, ! &' ! "

%if b then c0 elsec1, ! &' ! "

to conclude%if b then c0 elsec1, ! &' ! ".
The case whereB !b" ! = true is completely analogous and thus omitted.

while: We assume

P(c) def= ( ! , ! "". C !c" ! = ! "" ) %c, ! &' ! ""

thus for some
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¥ if B !b" ! = true we have!b, ! " # true and
!
" n

b,c$
"%(C !c" ! ) = ! &

Since ! & '= $ there must exist some! &&'= $ with
C !c" ! = ! &&and by structural induction!c, ! " # ! &&.

Since
#

" n
b,c$

$%
(C !c" ! ) =

#
" n

b,c$
$

! &&= ! &we have

by the mathematical induction hypothesisA(n) that
%
while b do c, ! &&&# ! &

Finally, by using the rule (whtt)

!b, ! " # true !c, ! " # ! && %
while b do c, ! &&&# ! &

!while b do c, ! " # ! &

we conclude!while b do c, ! " # ! &.

6.4 Computational Induction

How are we able to prove properties about Þxpoints? To Þll this gap we introduce
ScottÕscomputational induction, which applies to a class of properties corresponding
to inclusive sets.

DeÞnition 6.10(Inclusive property). Let (D,( ) be a CPO, letP ) D be a set. We
say thatP is aninclusiveset if and only if

(* n + N. dn + P) ,
'

n+N

dn + P

A property isinclusiveif the set of values on which it holds is inclusive.

Intuitively, a setP is inclusive if whenever we form a chain out of elements inP,
then the limit of the chain is also inP, i.e.,P is inclusive if and only if it forms a
CPO.

Example 6.9(Non-inclusive property).Let ({ a,b} %- { a,b} ! , ( ) be a CPO where
# ( $ . / %. $ = #%. So the elements of the CPO are sequences ofa andb and
# ( $ iff # = $ or # is a Þnite preÞx of$ . Let us now deÞne the following property:

¥ # + { a,b} %- { a,b} ! is fair iff ' /$ + { a,b} %. # = $a! 0 # = $b!

Fairness is the property of an arbiter which does not favour one of two competitors
all the time from some point on. Fairness is not inclusive, indeed,
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n+N
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A property isinclusiveif the set of values on which it holds is inclusive.

Intuitively, a setP is inclusive if whenever we form a chain out of elements inP,
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By rule (whtt)
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• if B JbKs = true we havehb,si ! true and
!
G n

b,c?
"⇤ (C JcKs ) = s 0

Since s 0 6= ? there must exist somes 00 6= ? with
C JcKs = s 00 and by structural inductionhc,si ! s 00.

Since
#

G n
b,c?

$⇤
(C JcKs ) =

#
G n

b,c?
$

s 00 = s 0 we have

by the mathematical induction hypothesisA(n) that
%
while b do c,s 00&! s 0

Finally, by using the rule (whtt)

hb,si ! true hc,si ! s 00 %
while b do c,s 00&! s 0

hwhile b do c,si ! s 0

we concludehwhile b do c,si ! s 0.
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How are we able to prove properties about Þxpoints? To Þll this gap we introduce
ScottÕscomputational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, letP ✓ D be a set. We
say thatP is aninclusive set if and only if

(8n 2 N. dn 2 P) )
'

n2N
dn 2 P

A property isinclusive if the set of values on which it holds is inclusive.

Intuitively, a setP is inclusive if whenever we form a chain out of elements inP,
then the limit of the chain is also inP, i.e.,P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non-inclusive property). Let ({a,b}⇤ [ {a,b}! ,v) be a CPO where
a v b , 9g. b = ag. So the elements of the CPO are sequences ofa andb and
a v b iff a = b or a is a Þnite preÞx ofb . Let us now deÞne the following property:

• a 2 {a,b}⇤ [{a,b}! is fair iff 6 9b 2 {a,b}⇤. a = ba! _ a = bb!

Fairness is the property of an arbiter which does not favour one of two competitors
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We need to prove

P(while b do c) def= ! ! , ! ". C !while b do c" ! = ! "

# $while b do c, ! %& ! "

By deÞnitionC !while b do c" ! = Þx " b,c ! =
! "

n' N " n
b,c(

#
! so

C !while b do c" ! = ! " # $while b do c, ! %& ! "

)! "
n' N " n

b,c(
#

! = ! " # $while b do c, ! %& ! "

)!
* n ' N. (" n

b,c( )! = ! "
#

# $while b do c, ! %& ! "

)

! n ' N.
!

" n
b,c( ! = ! " # $while b do c, ! %& ! "

#

Let A(n) def= ! ! , ! ". " n
b,c( ! = ! " # $while b do c, ! %& ! ".

We prove that! n ' N. A(n) by mathematical induction.

Base case: We have to proveA(0), namely

! ! , ! ". " 0
b,c( ! = ! " # $while b do c, ! %& ! "

Since" 0
b,c( ! = ( ! = ( and! " += ( the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n) def= ! ! , ! ". " n
b,c( ! = ! " # $while b do c, ! %& ! "

We want to show that

A(n+ 1) def= ! ! , ! ". " n+ 1
b,c ( ! = ! " # $while b do c, ! %& ! "

We assume" n+ 1
b,c ( ! = " b,c

!
" n

b,c(
#

! = ! ", that is

B !b" ! &
$
" n

b,c(
%, (C !c" ! ) , ! = ! "

Now eitherB !b" ! = falseor B !b" ! = true.
¥ If B !b" ! = false, we have$b, ! %& falseand! " = ! .

Now by using the rule (whff)

$b, ! %& false

$while b do c, ! %& !

we conclude$while b do c, ! %& ! .
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Final remarks
Commands

Big-step operational semantics Denotational semantics

Termination

Determinacy

Operational equivalence Denotational equivalence
is a congruence

Consistency
(correctness + completeness)

Operational equivalence = Denotational equivalence
they are congruences

(partial functions)

Well-founded induction KleeneÕs Þxpoint theorem


