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Probability

Nondeterminism: unpredictable future

Probability: guantitative estimation
how likely is a series of events?
how likely is to find the system in a given state?
what is the expected throughput of the system?



Models

probabilistic models:

when many actions are enabled at the same time
the system uses a probability measure

to choose what to do next

stochastic models:

each event has a duration

a random variable is bound to each action

(it represents the time needed to perform the action)
exponential distribution (memoryless, defined by a rate)
when a race between events is enabled,

the fastest action is taken



Probabilistic programming

Quantum computing
Approximate computing

Randomised algorithms  functional / imperative programs
Bayesian networks randomly drawn values

Security protocols condition values by observations
Biological modelling

Reliability analysis

Decision making



Stochastic models

Markovian queueing networks
Stochastic Petri nets

Stochastic activity networks
Stochastic process algebras
Calculi for biological systems
Interactive Markov chains
Performance analysis



probabillistic puzzles



Fair die

Take a fair die and toss it ten times

o

which sequence is more likely?

1111111111 A - first sequence
B - second sequence
1432516245 C - equally likely

D - don’t know



Fair coins

| take two fair coins,
toss one and then the other
(without showing the outcomes to you) \

You can bet about the fact that
the coins give equal results or different ones:
your winning chances are greater if you bet on

A - equal results HH
B - different results TT

C - equally likely HT

D - don’t know TH



Fair coins

| take two fair coins,
toss one and then the other

(without showing the outcomes to you)

l‘
You can bet about the fact that %
the coins give equal results or different ones: N

your winning chances are greater if you bet on

what if | tell you one is head

A - equal results
: HH
B - different results
: HT
C - equally likely TH
D - don’t know



Fair coins

| take two fair coins,
toss one and then the other

(without showing the outcomes to you)

l‘
You can bet about the fact that %
the coins give equal results or different ones: N

your winning chances are greater if you bet on

what if | tell you the first is head

A - equal results

B - different results HH
C - equally likely HT

D - don’t know



Monty Hall problem

my favourite puzzle: Monty Hall problem
(highly controversial)

loosely based on an American TV game show called
“Let’s make a deal” (1963)

named after its original host Monty Hall
(serving for nearly 30 years)



Monty Hall problem

first posed and solved in 1975

the puzzle became famous in 1990
after it was posted on a column of an
American Sunday newspaper magazine (Parade)

many readers were disappointed by the solution
and did not believe it (10.000 or more)

people wrote to the magazine claiming the solution was wrong

Paul Erdos, a great mathematician, remained unconvinced
until he was shown a computer simulation

| 4



Monty Hall problem

the puzzle comes in many variants,
here Is the most popular one

you are guest of the show, playing the final game

three closed doors, behind them: a brand new car

two goats

other versions:
three boxes, two empty, one has the key of the car



Monty Hall problem

you have to pick one door

the host opens one of the other doors
where he knows there is a goat

you are given the possibility to keep you choice or change it
A - keep

B - change

C - equally likely
D - don’t know

what is the best strategy to win the car?



probabllistic systems



sigma-field
2 elementary events (possible outcomes)

A C p(Q2) a set of events we are interested in
a family of subsets of elementary events

such that
De A the impossible event is present
Ac A= (Q\A) e A closed under complementation

{Aptnen CA= | | A, € A closed under countable union
neN



sigma-field: properties
De A 1. the impossible event is present

Ac A= (Q\A)eA 2. closed under complementation

{Ap}tnen CA= | J A, € A 3. closed under countable union
neN

QeA by 1 and 2
{An}neNg.Ai m A,e A by2and3

: N 4. =0\ [J @\ 4,)

neN neN



sigma-field: properties
In simpler terms

if A and B are events

AU B is an event (one of the two events happens)
AN B is an event (two events happen together)

A is an event (one event is not going to happen)

examples:

Q) = {HH,HT,TH, TT} A= o(Q)
A={0, {HH,TT}, {HT,TH}, Q)

20



Probability space

P:A—|0,1]
P(0) =0

P (U An) =Y P(A,) if {An}nen are pairwise disjoint

neN neN

P(Q) =1

probability space: (€2, A, P)

a o-field with a probability measure

21



Prob space: properties

PO\ A) = 1 — P(A)
P(Al UAQ) = P(Al) —I—P(AQ) —P(Al ﬂAQ)

P(A; N Ag) = P(A}) + P(Ay) — P(A; U Ay)

P(AN B)

conditional probability: ~ P(A|B) = P(B)

P(AN B) = P(A|B) - P(B) = P(B|A) - P(A)

P(A|B) - P(B)

P(Bl4) = —— 5

22



Example

two fair coins tosses ) ={HH,HT, TH, TT}
A = p(Q)

A = {HH} two heads P(A) =
B = {HH,HT} first is head P(B)




Example

two fair coins tosses ) ={HH,HT, TH, TT}

A= p(Q)
A = {HH} two heads P(A) = i
B = {HH,HT} first is head
C' = {HH,HT, TH} there is one head P(C) = Z




Random variable

(©2,A, P) probability space

X : Q2 = R (can just take discrete values)

VeeR {w e | X(w)<z}ed
equivalently: Vi e R. {w e Q| X(w) >z} e A

for every x we can assign a probability to the above sets

P X <z)=P{Hwe Q| X(w) <x})

25



Example

() sequences of n fair coin tosses

X counts the number of head in a sequence

for n = 2

>
T
T

I
N——r N—" j N—"
I

>

>
—
I

(
(
(
(

>

TT

P(X < 1) = PUHT,TH,TT}) = °

26



Stochastic processes
and Markov chains

27
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Stochastic processes

(over 15 answers)
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Stochastic process

a family of random variables indexed by T’

{ X¢ ber e discrete N

" continuous R

vieT. X : Q=R — set of states

29



Stochastic process

{ X¢ ber VieT. X;: Q) —- R

discrete time

we focus on discrete processes
(set of states is finite or countable) continuous time

we further assume states are positive natural numbers

S={Xi(w)|lweQAteT}=1{1,2,--- ,N}
for some N
Xt:i

“the stochastic process X is In state ¢ at time ¢"

30



Markov chain

(€2, A, P) probability space {X:}ter stochastic process

Vip <t1 <---<t, <t possible times
Vx,z0,21, - Ty  possible states

P(thﬁ\th = Ty, , X¢

=x9) = P(X; = x| X, = x,)

Markov property (memoryless)

0

furthermore, we only consider homogeneous Markov chains

P(Xt — ZE"th — QZ’n) — P(Xt—tn — ZIZ"X() — an)

time independence

31



Discrete Time MC

homogeneous

11t
(22, A, P) probability space { X,y Markov chain

P(Xn_|_1 — .CC‘Xn — Lp, ,X() — .CE()) — P(X1 — ZC‘XO — ZEn)

P entirely determined by
Q; j — P(X1 — ]|XO — Z) for 1, ] € {1, ,N}

/

called transition probabilities

32



Continuous Time MC

homogeneous

11t
(22, A, P) probability space { X,y Markov chain

P(th+At — -CU\th — L,y 7Xt0 — $0) — P(XAt — £U|X0 — iUn)

P entirely determined by the rates A; ; that govern
P(X; = jlXo=i) =1—e M

(the exponential distribution is the only memoryless one)

33



(homogeneous) DTMC

34



DTMC as matrices

. homogeneous
2, A, P) probability space X
(€, A, P) p ity Sp X pren Markov chain

Qg 5 — P(Xl = ]|X0 — Z)

a1 d12 -+ A1 N
a21 a22 - A2 N
P =
. an,1 an2 -t AN,N

Vi,je{l,.,N}.0<a;; <1

N
V1 € {1, ,N} Zai,j =1
j=1

35



— O wie

_I_

1/5

1/3 2/3
0

1

L 0
1 2
3 3
0 0
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DTMCas LTS

a1 air2 - Q1 N
21 d22 - A2 N
P =
 aN,1 AN2 AN N |
.. . Qg4 .
states S = {1,..., N} set of labels [0, 1] transitions ¢ —= j

for each state, the sum of the labels of outgoing arcs is equal to 1

also called probabilistic transition systems

p
.~ A . . bt+q .
Z\JJ same as 1 >

37



Example

" 4/5 1/5 0
P=| 0 1/3 2/3
1 0 0

4/5 1/3

38



Probabilistic transition
systems

transition function:
ap - S — ID)(S )

\

set of discrete probabilistic distributions over S

D(S) = {d d:5—[0,1], d(s) 1}

seS

more generally, we can allow for deadlock states
ap - S — D(S) U {*}

39



DTMC: uncertainty

the state of the system at time tis uncertain
we can estimate the likeliness of being in a certain state

the state of the DTMC at time tis a probability distribution
(t)

W(t):[ﬂét) y ﬂ-;t) y Tty TN ]

/
\ probability of being in state N at time
probability of being in state 2 at time

probability of being in state 7 attime t

40



Example

" 4/5 1/5 0
P=| 0 1/3 2/3
10 0
7@ =71,0,0] the system starts at state 1
0 =71/2.0, 1/2] initial states 1 and 3, equally likely

m® =[1/4,1/2, 1/4] initial state 2 more likely than 1, 3

41



Computing with uncertainty

If we know the distribution at time t

we can estimate the distribution at time t+17

the probability to be in state k at time t+17 is the sum
of the probabilities to be in each state / at time tand move to k

(D) Z O

L+ () | p . —

42



“omputing with uncertaint

If we know the distribution at time t

we can estimate the distribution at time t+17

the probability to be in state k at time t+17 is the sum
of the probabilities to be in each state / at time tand move to k

(D) Z O

2+ — (@) p . _

43



“omputing with uncertaint

If we know the distribution at time t

we can estimate the distribution at time t+17

the probability to be in state k at time t+17 is the sum
of the probabilities to be in each state / at time tand move to k

20+ () p

given the initial distribution we can compute the one at time ¢

_(t) _ (0) , pt

44



4/5 1/3 ) _
4/5 1/5 0
P = 0 1/3 2/3

1 0 0

) =11/3,1/3, 1/3]

rlt+l) =7

(14 1 11 11 1 2\
\3 5 3)'\3 5 3 3)'\3 3/

L0+ () p
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Exercise

A printing device has three states: working, faulty, cleaning. When it is
working it remains in state working with probability 1/2 and changes state
to faulty or cleaning with equal probability. Similarly, when it is cleaning
it remains in state cleaning with probability 1/2 and changes state to faulty
or working with equal probability. When it is faulty it remains faulty with
probability 1/3 or otherwise enters the cleaning state.

1. Represent the system as a DTMC.

w F C

46



Exercise

A printing device has three states: working, faulty, cleaning. When it is
working it remains in state working with probability 1/2 and changes state
to faulty or cleaning with equal probability. Similarly, when it is cleaning
it remains in state cleaning with probability 1/2 and changes state to faulty
or working with equal probability. When it is faulty it remains faulty with
probability 1/3 or otherwise enters the cleaning state.

1. Represent the system as a DTMC.

W F C

C1/2 1/4 1/4 1w
P=| 0 1/3 2/3 | F

1/4 1/4 1/2 | C

47



Finite path probability
let s1s89---5,, be the states traversed
along a finite path on the LTS of a DTMC

Qs s,
. . Si>5S4+1
l.e. Vi € {1, ceey T — 1} we have s; 7 Si+1

what is the probability of choosing that path?

n—1
P(8152 S Sn) — H Us;,8it1
1=1

48



4/5 1/3 ]
4/5 1/5
P=1| 0 1/3
10

2 2
l = —

1
P 1 2 3 1 E— ® b —_— —_ e — e
( ) 12 Q23" A31 — =3 15
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Example

W F C
- 1/2 1/4 1/4
P=1| 0 1/3 2/3
1/4 1/4 1/2

P(WFC’WF):aW,F-aF,C-aC,W-aW,F: A

50




Ergodic DTMC



Steady state distribution

if we let a DTMC work for long enough
can we estimate what is the probability

to find the system in a given state?
(t)

m; = lim m,

{— 00

does it depend on the initial distribution?
~(t) — —(0)  pt

if the limit exists, it should give a stationary distribution

N
7'(':[7-(17...77-(-”] T =7 P 27'(@:1
1—=1

52



Ergodic DTMC

if the DTMC is ergodic
the stationary distribution exists
it IS unique
it is independent from the Initial state distribution

ergodic DTMC

- iIrreducible: each state is reachable from any other state
(there is a path between any two nodes in the LTS)

- aperiodiC:  for any state, the gcd of the lengths of all paths
from the state to itself is 1

(e.g. it is enough to have a self-loop)

53



Ergodic DTMC: steady
state distribution

it the DTMC is ergodic

how to compute the steady state distribution?

take the unique solution of the system of linear equations

m=m- P
N

{Zﬂ'zl
i=1

54



4/5

4
57'('1 —+ 3

1 1
57'('1 —l— §7T2

2
3712

1 —|—7T2—|—7T3
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4/5
P = 0
I 1
T=1{2/3,

1/5, 2/15]



Example

w F C
C1/2 1/4 141 W
P=| 0 1/3 2/3 | F
- 1/4 1/4 1/2 | C
iWW—F%WF—Fi?TC = TF

1 2 1 m=1[8/33, 3/11, 16/33 |
1TW T 5TF + 5TC

|
N
Q

|
ek

T™W + TF + T
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