PSC 2023/24 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http://www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

27 - PEDPA

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

PEPA
Performance Evaluation Process Algebra

Building models

Conceptualise your system as a Markov chain
Construct your Markov chain (infinitesimal generator matrix)

Solve your equations to derive quantitative information

Building models

Conceptualise your system as a Markov chain
Construct your Markov chain (infinitesimal generator matrix)
Solve your equations to derive quantitative information

Monolithic approach: not suitable for complex systems

PEPA project

the PEPA project started in Edinburgh in 1991

motivated by the performance analysis
of large computer and communication systems

exploit interplay between Process Algebras and CTMC

Process Algebras (PA):
compositional description of complex systems,
formal reasoning (for correctness)

CTMC:
numerical analysis

compositional construction of CTMC

5

PEPA meets CTMC

mutual influence CTMC

interaction designed around CTMC ease of construction

actions have durations design of independent components

add rates to labels cooperation between components
probabilistic branching explicit interaction
quantitative measures reusable sub-models
probabilistic model checking easy to understand models
guantitative logics space reduction techniques

functional verification

Formal models

qualitative guantitative
O—O
OLO{%—%)
o/go
reachability: how long will it take
will the system arrive to a the system to arrive to a
particular state? particular state?

(taken from Jane Hillston’s slides)

7

Formal models

qualitative guantitative

/9

O—>O—>O > O—>O+T—>O

0.4 0
0 0.5 O<—O
conformance: how likely is that
does system behaviour system behaviour will
match its specification? match its specification?

does the frequency profile
of the system match
that of its specification?

(taken from Jane Hillston’s slides)

8

Formal models

qualitative guantitative

verification: Does a given property
does a given property hold within the system
hold within the system? with a given probability?

How long is it until
a given probability hold?

(taken from Jane Hillston’s slides)

9

PEPA workflow

AN /"\. —E_z

,,,,, _z

STATE MARKOV
SYSTEM —— TRANSITIOh‘ — Q= PROCESS

N A o

DIAGRAM
SOS rules

Process algebra model » Labelled transition system

v (EQUILIBRIUM PROBABILITY
p.p. D~ DISTRIBUTIONp

«, r).P
/(T) . l

component/

derivative PERFORMANCE MEASURES

activity rate e.g. throughput, response time, utilisation
(parameter of an
exponential distribution)

action type
or name

(taken from Jane Hillston’s slides)

|0

Communication style

PEPA parallel composition is based on Hoare’s CSP

CCS-style

actions and co-actions
binary synchronisation
conjugate sync

result in a silent action
restriction
parallel composition

one operator

CSP-style

no i/o distinction
multiple cooperation

shared name sync

result in the same name
hiding
cooperation combinator

parametric operator

CSP cooperation combinator

PQ

\ cooperation set

interleaving P = @ Py = @

PP, = QP PP, P BQ,

P = Q1 P, — Qo
Py I>LQP2Q1 =1 Q2

cooperation

pure interleaving P|lQ=P >1Q

12

PEPA
syntax and semantics

PEPA syntax

P, = nil iInactive process
(o, 7). P action prefix
P+Q choice
P Q cooperation combinator
P/ z hiding
C process constant

a €A action

L Cc A setofactions

A ={C; = P;};e; set of process declarations

| 4

PEPA LTS

ongoing interaction
with the environment
(with other processes)
and its rate

(a "“)

a process / \ the process

In ItS current state after the
state Interaction

small-step semantics

|5

PEPA semantics (basics)

(a,7)

(o, 7). P > P
P, (oz,r)> Q P, (oz,r)> Q
Pi+P -0 P 4P 0
(o)
C2PcA P > ()
o o0, Q)

Example

Server = (get, T).(download, 1).(rel, T).Server

\ /

extremely high rate
cannot influence the overall rate
of interacting components

Browser = (display, \1).(cache, m).Browser
+ (display, A2).(get, g).(download, T).(rel, r).Browser

a local choice

taken with probability)\1>"'3

+ Ao

Hiding and interleaving

i e
P/ /L P/l "% o/L

= Qs) % Qs

Py |>§P2 27, Q 1 Py Py |>L<|P2 27, p =1 Qs

Cooperation

p, 120 Q1 P2 e, (2
Py I>L<IP2 (aﬂ:)\> (1 |>L<] Q2

which rate should we put here?

Multiway synchronization

def

F = (fork, r¢).(join, r;).F'
W; Z (fork, rs,).(doWorky, r1). Wi
W, < (fork, rs,).(doWorks, r2).Ws
) def) def

def
F/:...7 V\/]_:7 W2:
System d:ef(F B W1) =1 W,

{fork} {fork}

(fork,rf;)

(fork,rf

s (oin, r)F' W, s (doWorki, r1). W,
o) Goin, r;).F" DX (doWorky, r1). W/

{ fork }

(fork,rf,) ,
W> > (doWorkz, r2).Ws

fork,r’’ ..
F D w, D w, ! s (join, r;).F" DX (doWorky, r;) W/ {Eﬁ}(doWorkz,rg).sz

{ fork } { fork } { fork }

(taken from Mirco Tribastone’s slides)

20

Exclusive cooperation

. def
Premium =

(dwn, r,).Premium’

. def .
Basic = (dwn, rp,).Basic’

S Z (dwn, r5).5’

def

System = (Premium || Basic) B S,

L = {dwn}
] (dwn,r,) _
Premium s Premium’
. (dwnry) . . (dwra)
Premium || Basic > Premium’ || Basic S > S

(dwn,rps)

Premium || Basic BI'S > Premium’ || Basic DI 5/

(dwn,rps)

System > Premium’ || Basic B 5/
(taken from Mirco Tribastone’s slides)

21

Which rate for sync?

stochastic PA differ for the treatment of
rates of synchronised actions

r r
1 5 P _> _>
S St 1 Sy S1
S =max(s 4, S») Fr=r{Xr,
2 > 2 > r o
2 2

r_l =" r1 ?
r=r,
2 2
S2 > S2 > " >
EMPA: one participant IS passive bounded Capacity: new rate is the minimum of the rates

PEPA’s approach

(taken from Jane Hillston’s slides)

22

PEPA: bounded capacit

Each component has a bounded capacity to carry out
activities of some type, determined by the apparent rate

for that type

cooperation cannot make a component exceed its bounded
capacity

thus the apparent rate of a cooperation is the minimum of the
apparent rates of the co-operands

23

PEPA: apparent rates

No component can be made to carry out an action in
cooperation faster than its own defined rate for the actions

thus shared actions proceed at the minimum of the rates in
the participating components

the apparent rates of independent actions is instead the sum
of their rates within independent concurrent components

24

PEPA apparent rate

Is the observed rate of action «v in P

P
<a,:1/ Ym
Ql e Qn

Properties: min
(X1,M1) (X2,A2) (independent, exponentially distributed)

X (w) =min{ X4 (w), Xo(w)} is exponentially distributed
(X7 >\1 >\2)
P(X <z)&1—e Matia)e

(reminder, from CTMC slides)

26

PEPA apparent rate

Is the observed rate of action o in P
P
<a:~/ Yfr)
Q1 Qn

ro(P) =nr

PEPA apparent rate

Is the observed rate of action o in P
P
<ay YT)
Q1 Q)2

NOT ALLOWED!

PEPA apparent rate

Is the observed rate of action «v in P

ra(ml) =0
N é .f- _
a((8.r)-P)2 ¢ 0 o 2
ra(P+ Q) = ro(P) + ra(Q) (+ is not idempotent!)

ro(P) ifadlL
ro(P/L) é{ 0) el actions are

interleaved
Cra(P) 4 ra(Q) fagl

| min {ro(P),re(Q)} ifaclk
the slowest must

ra(C) = ro(P) i‘CCéPEA\be waited for

3
~
- X
<
>

<

29

Cooperation

p, 120 Q1 P2 e, (2
P X Py), Q1 B Qs

1 T2
— (P, DXI P
T T (1 T 2) Ta(Pl) r PQ)

/ probability of specific action («, ;)

apparent rate among the a-transitions of P;

the sum of the rates of all the
a-transitions that Py |>§ P> can do

30

Cooperation: example
S S

o,R;;
P Iii]PQ () Qi %sz
I'13 24

ra(P) ro(P)

_ mlﬂ{z le,zrlbk} . 14 . 7'2]'
. . 2Tk Dk

T2k

31

Cooperation: example

For r1, rn positive reals,

(o,). P o), P (o, r2). P2 — P2
(c,1).P1 B (a0,). P2 2 Py X1 P
where
r) :
R = min (ra a,n).P1),ro((a, n).Po)
ra((a, r1).P1) ra((a, I’2).P2) (()) (())
_nr min(ry,) = min(ry,).
" M

We recover the intuitive definition of the minimum between the two rates.

(taken from Mirco Tribastone’s slides)

32

Cooperation: example

For r a positive real,

(,r).P; 5 P (TP P,

o, R ’
(Oé, r).P1 Eﬁ(Oz,T).Pg ()> P1 Ejpg

(o.T),

where
r I .
R = (@0 P (@ TP min (ra((oz, r).P1), ra((oz,T).Pz))
— ;; min(r, T) =r.

We recover the intuitive definition of infinite capacity — the rate of
synchronisation is determined by the active component.

(taken from Mirco Tribastone’s slides)

33

Apparent rates in active cooperation

Cli £ (v, rg).Cli"
» / one server,
Ser = (o, ru).Ser two clients
Sys = (Cli || CIi) {Dﬁ Ser
(v, ryg).Cli* 227 i
cli 121, i (a, ru). Ser’ 12, Sep
cli || cli & N | Cli Ser 121, gopr
(a.R) ’

Cli || Cli {Df}Ser > Cli" || Cli {EﬁSer’

ry . 1

R = min(ry + rq, ry) = 5 min(ry + rq, ry)

g + Fgq Iy
(taken from Mirco Tribastone’s slides)

34

Apparent rates in active cooperation

Cli £ (v, rg).Cli"
o / one server,
Ser = (a, ry).Ser two clients
Sys = (Cli || CIi) Eﬁ Ser
(v, ry).Clit 129 ¢y
Cli (O"rd)> Cli’ (c, r,).Ser’ (a7ru)> Ser’
cli || cli &5 cii || cli Ser 1214, gep
(a,R") ’

Cli || Cli {EﬁSer > Cli || CIi’ %5&’

Fd r : 1 .
R" = F—— I’Z min(ry + rg, ry) = 5 min(rg + rg, ry) = R’

(taken from Mirco Tribastone’s slides)

35

Apparent rates in active cooperation

Cli £ (v, rg).Cli"
Ser £ (a, r,).Ser’

Sys = (Cli || CIi) Eﬂ} Ser

Cli || Cli EﬁSer

(oz, 1/2 min(2 rd,ru)) (oz, 1/2 min(2 rd,ru))

Cli" || Cli Ef}!Ser’ Cli || Cli’ EﬁSer’

(taken from Mirco Tribastone’s slides)

36

Careful with that cooperation set

apparent rate of a: min{r, s, t}

. ((a, r).Piﬂ}(a,s).Q) 1 (1, 1).R
apparent rate of a: min {r+s, t }

m ((a,r).P] (a,5).Q) Eﬁ(a, t).R
apparentrate of a: min{r,s } +t

. ((a, r).P{Eﬁ(a,s).Q) | (o, £).R

(taken from Jane Hillston’s slides)

37

Server

S
S1
52

Browser

31
32
33
B4

> > 1> [|>

> (> 1> > >+ >

Example

get, T).(download, 1).(rel, T).Server
et, T).51

display, A\1).(cache, m).Browser
display, Ag).(get, q).(download, T).(rel, r).Browser

38

Example

independent

S
S1
52

B
Bl
B2
B3
B4

> [I> [> > > > (> |

shared
L = {get, dnd, rel}

B D<IS

39

Example

S % (get, T).S1 B = (dis,\1).B1+ (dis, \y).B2
S1 = (dnd,p).S2 Bl = (cac,m).B
S2 = (rel,T).S B2 = (get,g). B3
B3 = (dnd,T).B
L = {get, dnd, rel} B4 = (rel,r).B
(B[B) BHS

(dis,\2) dis, A2
(B B) IS - (B2 || B) D15 122, (gD | B2) 1S

(get,
(B2 || B2) >Is 2% (B3 | B2) BxIS1 roet(B2) = g
ety roet(B2 || B2) = 2¢
Y T et(S) = |
B2 || B3) x1S1 9
(B2]| B3) I rget((B2 || B2) BIS) = 2¢

40

Consumer/producer

def

Cons; = (get, rz).Cons>
Cons, £ (cons, r.).Cons;
Prod; def (make, ry,).Prod>
Prod» £ (put, rp).Prod;
Buf, & (get, T).Buf;
Buf; £ (get, T).Bufy

+ (put, T)BUfQ
Bufy & (put, T).Buf;

Sys % Cons; 4 Buf, > Prod,;
{get} {put}

Possible variants:

m A buffer with n places:

def

Buf, = (get, T).Buf,_;

def

Buf; = (get, T).Buf;_;
-+ (pUt, T).BUf;'_|_1,
forl<i<n-1

def

Bufy = (put, T).Buf;

m and k consumers:

k
Cons; | Cons; || ... || Cons;
=] Bufn =] PI’Odl
{get} {put}

(taken from Mirco Tribastone’s slides)

Consumer/producer

Cons; = (get,ry).Cons, Prod; = (make,ry,).Prod;
Cons, £ (cons,r.).Cons; Prod» £ (put, rp).Prod;
Buf, = (get, T).Bufy Buf;, £ (get, T).Bufy+ (put, T).Buf,
Bufy £ (put,T).Bufy Sys £ Cons; <1 Bufy D1 Prod,
t, 1
Con51 (ee rg)\ Co ONns» Bufg (get)\ Bu fl
t
COI‘ISl {Eftl Bufg (ge rg) > Con ns» {[?S Buf1
(get, rg)
Cons; X1 Bufs 1 Prod; v Conso, X1 Buf; X1 Prod;
{get} {put} {get} {put}

(getrg), » Cons»> B> Buf; Dﬂ Prod;

{get} {put}

Sys

(taken from Mirco Tribastone’s slides)

42

Consumer/producer

Cons; = (get,rg).Cons, Prod; = (make,rp).Prods
Cons, £ (cons,r.).Cons; Prod» £ (put, r,).Prod;
Buf, £ (get, T).Bufy Buf;, £ (get, T).Bufy+ (put, T).Buf,
Bufy £ (put,T).Bufy Sys £ Cons; <1 Bufy D1 Prod,
ke,rm
Prod (make,r)> Prod>
ke,rm
Cons; 53 Buf> 53 Prod; (make.rm), s Cons; 53 Buf> {Eﬁ Prod-
ke,rm
Sys (make.rm), s Consj 53 Buf> %ﬁ Prod-

(taken from Mirco Tribastone’s slides)

43

Consumer/producer

we may denote a state by (i, j, k) to indicate Cons; B> Buf; D{l Prod,

{get} {put}

(2,2,2)

(cons, y

(cons, rc)

(2,1,1) (1,2,2)
(make, rm)
(cons/ \(gety
make, rmy (1,0,2)
() (put m (make, rm)
(1,1,1) (2,1,2) (2,2,1)
(PUt p)
(get, r,) (make, rm)
(cons, rc)
make, rm (2,0,1) (1,1,2)
() (cons, rc)
(pUt7 rP)
(cons, rc) (get, rg)
| loop back
(1,0,1)

(taken from Mirco Tribastone’s slides)

44

Consumer/producer

we may denote a state by (i, j, k) to indicate Cons; B> Buf; {D{l} Prod,

{get}

put

(taken from Mirco Tribastone’s slides)

45

Bus maps

A third party app receives requests from users for live bus

positioning information. It sends requests to the the Google Map
APl and the TfE Bus Info APl and then aggregates the results to
present a map view of the bus data which is returned to the user.

Construct a PEPA model to represent this system.

(taken from Jane Hillston’s slides)

46

Bus maps

A third party app receives requests from users for live bus

positioning information. It sends requests to the the Google Map
APl and the TfE Bus Info APl and then aggregates the results to
present a map view of the bus data which is returned to the user.

def

User = (bus_pos_req,r).(bus_pos_resp, T).User
Map_finder & (bus_pos_req, r).(google_req, \1).
(google_resp, T).(bus_pos_resp, T).Map_finder
Bus_finder = (bus_pos_req, r).(tfe_req, \2).
(tfe_resp, T).(bus_pos_resp, T).Bus_finder
Google ! (google_req, T).(google_resp, 111). Google
TFE £ (tfe_req, T).(tfe_resp, uy). Tfe
System £ User > (Bus_finder B Map_finder) B (Google || TfE))

where L = {bus_pos_req, bus_pos_resp} and
K = {google_req, google_resp, (tfe_req, T).(tfe_resp, u2)}.

(taken from Jane Hillston’s slides)

47

Example

Procy B Resg

{taskl}

(task2, ry) (reset, ry)

Proco = (taskl,nr).Procy

(l(taskl,R)
Proci;, = (task2,r).Procg Proc; I Res;
Resg = (t35k17r3),R651 {task1}

(

reset’ r4). RGS() (reset,mkz, r)

Proc; X1 Res Proco B Res
Proco B Res Lfsay 00 0 (st 21

{taskl} R — mln(r17r3)

Re51 —

(taken from Jane Hillston’s slides)

48

Example

¢
Proco, & (taskl, ry).Procy E l R N
Proci £ (task2,r).Procg C
Resy £ (taskl,rs).Res; .
Res; & (reset, ry).Resq "/ y(
C Cy

Proco {1 Res

{taskl} R — mln(r17r3)

—R R 0 0 p-Q =
Q- 0 —(n+mn) n r> N
) 0 0 —I’4) zzzl ’

(taken from Jane Hillston’s slides)

49

R R 0 0 p-Q =
Q — 0 —(n+tn) n r> N
rq 0 0 —I’4/ ’Lzzl ’

- 20 4 -1 _E
P1 = = P2 = —— P3 = —— p4—41

50

Reward structure

C a set of PEPA components po:C — R a reward structure

C,...,.C PRI I
(e n p a steady state distribution

R, = Zpi - p(C)

sometimes rewards are defined in terms of activities
p: L —R

51

Example ’rhr'oughpu’r

- 0) P Q=0
Q — O (r2+r4) rn
) 0 — 0 ;= 1
rq 0 0 —I’4/ Zp
1 16

p(task;) =1 p(reset) =0

p(C1) = p(C2) = p(C3) =1
p(Cy) =0

20+4+1 20
= = 61
R 0 =17 = 61%

52

PEPA
further considerations

53

The impor’rance of being Exp

(o, r).Stop || (B, s).Stop

(O“V y@

Stop || (3, s).Stop (o, r).Stop || Stop

\ Cv r
Stop || Stop

We retain the expansion law of classical process algebra:

(o, r).Stop || (B,s).Stop =
(a, r).(B,5).(Stop || Stop) + (B, s).(a, r).(Stop || Stop)

only if the negative exponential distribution is assumed.

(taken from Jane Hillston’s slides)

54

Model aggregation

we can exploit CTMC bisimulation to reduce the state space
(notion of lumpable partition)

it is the only equivalence that preserves the Markov property

B

o -0 -0 -0 -0

(taken from Jane Hillston’s slides)

55

Compositionality

PEPA MODEL

..... —S e
MARKOV

Q- ROCESS matrix size can grow very large

TV=< EQUILIBRIUM PROBABILITY)
Y

p.B.p, ww DISTRIBUTION,p,

(taken from Jane Hillston’s slides)

56

Compositionality

Certain structures in the matrix are
PEPA MODEL known to be amenable to efficient,
decomposed solution.

Z _Z
..... :_z | _z_ _z_

N R R _ | "MARKOV 0= MARKOV

IMARKOQV | Q= PROCESS | eeeee = PROCESS

'PROCESS |
A o +

L e S [reee

I eeses -

7T = < EQUILIBRIUM PROBABILITY >
P.Py Py - DISTRIBUTION ... , PN

(taken from Jane Hillston’s slides)

57

Compositionality

|
| PEPA
S |
' PEPA MODEL >
F-—— == X SUBMODELS
|
|
| 4 N
..... Z cocee
..%._z =N [S kS
oo | MaARKOV |, o- MARKOV
B PROCESS PROCESS
...... Z....._Z_.....

T = EQUILIBRIUM PROBABILITY
<p1,p2,p3, ... DISTRIBUTION, pN>

lift independent structures to the PEPA model!

(taken from Jane Hillston’s slides)

58

Last badge

The final exam of a course consists of a list of 30 questions and a list of 30 answers.
Each student has to draw a bijective correspondence between the two lists,

linking each question to its answer.

The teacher will assign 1 point to each correct link and 0 to each wrong link.

Unfortunately, many students had no time to prepare for the exam, because they had a
tight deadline to deliver a project and they will answer completely random.

1. What is the average score for such students?

2. Would the average score be improved by adding more questions and answers?

59

