
Tecniche di Progettazione:

Design Patterns

GoF: Command

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

The Command Pattern

� When two objects communicate, often one object is
sending a message to a receiver to perform a particular
function

� The first object (the "sender") could hold a reference to
the second (the "receiver")

� or get it as a return value, or argument, or construct it

� The senders sends a specific method to the receiver

2

The Command Pattern

� But what if the sender is not aware of, or does not care
who the receiver is?

� The Command design pattern encapsulates the concept
of a "Command" as an object

� The sender holds a reference to a Command object
rather than to the specific receiver

� The Command object encapsulates the receiver

3

The Command Pattern

� The sender sends a vanilla message

� such as actionPerforme, execute, doit, or undo

to the Command object

� The Command object is then responsible for dispatching
the correct messages to the specific receiver(s) to get the
job done

4

Command Pattern in Java

� One object can send messages to other objects without
knowing anything about

� the actual operation or

� the type of object

� Polymorphism lets us encapsulate a request for services
as an object

� Establish a method signature name as an interface

� Vary the algorithms in the called methods

Uses

� The Command object can also be used when you need to
tell the program to execute the command later.

� In such cases, you are saving commands as objects to be
executed later

6

GoF example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

PasteCommand is a concrete Command

that implements paste function.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

OpenCommand is a concrete Command

that implements open function.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

MacroCommand is a concrete Command that

executes a sequence of commands.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

The Command Pattern structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Command: Participants

� Command: declares an interface for executing an
operation.

� ConcreteCommand: defines a binding between a
Receiver object and an action, and implements Execute.

� Client: creates a ConcreteCommand object and sets its
receiver.

� Invoker: asks the command to carry out the request.

� Receiver: knows how to perform the operations.

12

Università di Pisa, Dipartimento di Informatica. IS 200313

Command: collaboration (with two

invokers for a command)

Implementation issues

� How intelligent should a command be?

� one extreme: A command only defines a binding between a
receiver and the actions that carry out the request.

� the other extreme: A command implements everything itself
without delegating to a receiver at all.

� Supporting undo and redo. A ConcreteCommand class
might need to store some additional states:

� the Receiver object

� the arguments to the operation performed on the receiver

� any original values in the receiver that may change as a result
of handling the request

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Command pattern: Consequences

� You can undo/redo any Command

� Each Command stores what it needs to restore state

� You can store Commands in a stack or queue

� Command processor pattern maintains a history

� It is easy to add new Commands, because you do not
have to change existing classes

� Command is an abstract class, from which you derive new
classes

� execute(), undo() and redo() are polymorphic functions

Asynchronous Method Invocation

� Another usage for Command is to run commands
asynchronously in background of an application.

� In this case the invoker is running in the main thread and sends
the requests to the receiver which is running in a separate
thread.

� The invoker will keep a queue of commands to be run and will
send them to the receiver while it finishes running them.

� Instead of using one thread in which the receiver is
running more threads can be created for this. The
invoker will use a pool of receiver threads to run
command asynchronously.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

17

Summary

� The Command design pattern encapsulates the concept
of a command into an object.

� A command object could be sent across a network to be
executed elsewhere or it could be saved as a log of
operations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.26

Implementation issues (cont’d)

� In programming languages like C, there are the function
pointers.

� Java doesn't have function pointers, we can use the
Command pattern to implement callbacks.

� One might be tempted to use the Method objects of the
Reflection API. Better not to use the Reflection API when
other tools more natural to the Java programming
language will suffice

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

