Tecniche di Progettazione:
Design Patterns

GoF: Composite

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Composite pattern

» Intent

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly. This is called recursive
composition.

» Applicability
Use the Composite pattern when

You want to represent part-whole hierarchies of objects

You want clients to be able to ignore the difference between
compositions of objects and individual objects.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Composite: structure

~---{ordered}

Component
. | far all child o: g.operation I\;\.I
+opearation(): i
Client | +acfdic; Componendl i 1l +
I +ramovieic: Cormponenflo Tee
+getThilc: inh:Component | child

g

Leaf Composite

+operationdg: +operationd: —

+addic: Component):
+remuove(s: Companent):
+etChild(i: inf): Camponent

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Composite: participants

» Component
declares the interface for object composition
implements default behaviour (if any)

declares an interface for accessing and managing the child components

» Leaf

Defines the behaviour of the composition primitive objects

» Composite:
defines behaviour for components having children
stores child components

implements operations to access childs

» Client;

manipulates objects in the composition through the Composite
interface

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

()

Composite: Example

Ohject1:Composite

child
Ohject4:Composite

‘ﬂhjectE:Leaf \ ‘ﬂhje-::tﬁ:Leaf \

child

‘ﬂhje-::tﬁ:Leaf \ ‘ﬂhjec:t?:Leaf \

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Composite: Collaboration

‘ﬂhjecﬂ:client\ 1: operation(: — Uhjectz:tumpusite\

1.1: nperatinn{::%} {71 2 operation:

‘Uhjectﬂ:tumpunent \ ‘ﬂhjectal:tumpunent \

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Directory / File Exan[lple]
/

» Directory = Composit

» File = Leaf | bin/ | | us;r/] | tmp/ |
/ \ N\
[file1 | file2 | [subdir/ [file3 |

/\

[filea][files

[Composite]

[Composite] [Complsite] [Composite]

(Leaf/] [T% [c}pos.te [\Leaf]

/\

[Leat | [Leat |

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Directory / File Example — Classes

» One class for Files (Leaf nodes)

» One class for Directories (Composite nodes)
Collection of Directories and Files
» How do we make sure that Leaf nodes and Composite
nodes can be handled uniformly?

Derive them from the same abstract base class
Composite Class:

Leaf Leaf Composite Directory
Class:
File + operation() + operation()

+ add()

+ removel()

+ getChild()

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Directory / File |

ixample — Structure

Leaf Class: File

Leaf

+ operation()

Component Abstract Base Class: Node
+ operation() 0.*
+ add() child
+ remove()
+ getChild()
Composite Class: Directory
Composite
+ operation() ~ 1
+ add() parent
+ remove()
+ getChild()

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Directory / File Example — Operation

Component Abstract Base Class: Node
: size() in bytes of entire directory
+ operation() 0..* . .
+ add() child and sub-directories
+ remove()
+ getChild()

Leaf Class: File %
size () of file

Composite Class: Directory

Leaf Composite size () Sum of file sizes in this
+ operationd) omerationd 1 directory and its sub-
+ add() parent directories
+ getcait long Directory::size () {
long total = 0;
Node* child;

for (int i = 0; child = getChild(); ++i; {
total += child->size();

}

return total;
}

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Consequences

» Solves problem of how to code recursive hierarchical
part-whole relationships.

» Client code is simplified.

Client code can treat primitive objects and composite objects
uniformly.

Existing client code does not need changes if a new leaf or
composite class is added (because client code deals with the
abstract base class).

» Can make design overly general.

Can’t rely on type system to restrict the components of a
composite. Need to use run-time checks.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementation Issues

» Should Component maintain the list of components that will be used by a
composite object? That is, should this list be an instance variable of
Component rather than Composite!?

Better to keep this part of Composite and avoid wasting the space in every leaf
object.

» Where should the child management methods (add(),
remove(), getChild()) be declared?

In the Component class: Gives transparency, since all components can be
treated the same. But it's not safe, since clients can try to do
meaningless things to leaf components at run-time.

In the Composite class: Gives safety, since any attempt to perform a
child operation on a leaf component will be caught at compile-time. But
we lose transparency, since now leaf and composite components have
different interfaces.

12 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Implementation Issues cont’d

» Is child ordering important?

Depends on application

» What's the best data structure to store components?

Depends on application

» A composite object knows its contained components,
that is, its children. Should components maintain a
reference to their parent component!?

Depends on application, but having these references supports
the Chain of Responsibility pattern

13 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

