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Chapter 10

Inventory management problems

Inventories are stockpiles of items (raw materials, components and finished goods) wait-
ing to be processed, transported or used. The motivations for stockpiling such items
are for improving the service level, reducing the overall logistics costs, coping with ran-
domness in customer demands, and so on. However, keeping inventories can be very
expensive. It is therefore crucial to solve inventory management problems: that is, for
each stocking point in the supply chain, to decide when to reorder (for a single or mul-
tiple products) and how much to order, so that the expected (annual) cost is minimized
while achieving a certain service level.

Among the relevant involved costs, there are:

1. Procurement costs associated with the acquisition of goods; they can be fixed costs
or variable costs (i.e. dependent on the amount acquired): e.g. (fixed) reorder
costs, (variable) purchasing or manufacturing costs, transportation costs.

2. Inventory holding costs incurred when materials are stocked for a period of time:
e.g. opportunity (or capital) costs, i.e. the return on investment the firm would
have realized if money had been invested in a profitable economic activity instead
of inventory; warehousing costs, which may include space and equipment costs,
maintenance costs, taxes, or fees to pay for storing the goods.

3. Shortage costs are paid when customer orders are not met; for example:

• lost sales costs: they are related to lost profit and to a negative effect on
future sales;

• back order costs: they are due to the fact that, in case of a delayed sale, often
a penalty has to be paid.

4. Obsolescence costs.

Inventory management models can be classified according to various criteria:

• Deterministic versus stochastic models: in a deterministic model, demands, costs
and lead times are assumed to be known in advance, while in a stochastic model
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108 10.1. Single stocking point: single commodity, constant demand

some data are uncertain.

• Fast-moving items versus slow-moving items: fast-moving items are manufactured
and sold regularly, so we have to decide when to replenish stocking points and
how much to order each time; slow-moving items (e.g. spare parts of complex
machineries) have a very low demand (e.g. few units every 20 years), and the
main issue is to decide how many items to produce and store at the beginning of
the planning horizon.

• Number of stocking points: usually optimal inventory policies can be derived an-
alytically only for the case of a single stocking point.

• Number of commodities: inventory management models are different depending
on the fact that they deal with single or with multiple commodities.

• Instantaneous resupply versus noninstantaneous resupply : there are differences
depending on the fact that a stocking point can be replenished almost instanta-
neously or not (e.g. at a constant rate via a manufacturing process).

Hereafter we shall present some basic inventory management models, with different
characteristics according to the criteria that have been listed before.

10.1 Single stocking point: single commodity under con-
stant demand rate

The model is based on the following assumptions:

• we are dealing with a single stocking point for a single commodity, under a con-
stant demand rate, say d;

• the planning horizon is infinite.

Since d is a constant, a natural policy is to replenish the stocking point on a periodic
basis. To this end, let:

• T be the time lapse between two consecutive orders (period),

• q be the order size, i.e. the amount of product to order each time.

The figure below provides a graphical representation of the relationship among demand,
period and order size.

d d d d d d d d d d d d d d d

q q q q

T T T
time unit

Clearly it is: q = d · T .



Chapter 10. Inventory management problems 109

t

I(t)

−s

m

slo
pe

=
r
−
d

slope
=
−
d

T T

T1 T2 T3 T4

Tr

T = T1 + T2 + T3 + T4, Tr = T1 + T2

Figure 10.1: Inventory level I(t) as a function of time t

Notice that q (how much to reorder?) and T (when to reorder?) are variables to be
determined. In order to determine q and T , the following costs are taken into account
by the considered model:

• c: the value of an item;

• K: the fixed reorder cost;

• h: the holding cost per item and per time unit;

• u: the shortage cost per item (this is independent on the duration of the storage);

• v: the shortage cost per item and per (shortage) time unit.

Usually it is assumed h = p · c, i.e. h is a fraction p of c, with p a banking interest rate.

The inventory management problem under presentation is to determine q (and so T ),
the maximum shortage s (in each period) and the maximum inventory level m (in
each period) in such a way as to minimize the overall average cost per time unit. See
Figure 10.1 for a graphical representation of the maximum inventory level and of the
maximum shortage in each period.

In order to solve the problem, let:

• Tr ≥ 0 be the replenishment time, i.e. the time needed to replenish the stocking
point with q items;

• r be the replenishment rate, i.e. the number of items per unit of time received by
the stocking point during Tr.

Therefore, q = r · Tr.

Note that during the replenishment (i.e. in Tr), the net number of items stocked per
unit of time is r − d (assuming r > d), whereas, after Tr, the stock level decreases at a
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rate equal to −d, since items are picked up at a rate d. Also, s+m = (r − d) Tr, i.e.:

m = (r − d)Tr − s = r Tr︸︷︷︸
q

−d Tr︸︷︷︸
q
r

−s = q

(
1− d

r

)
− s

Therefore,m depends on q and s, i.e. q and s are the variables to be determined, whereas
T and m can then be computed by means of the formulas:

T =
q

d
and m = q

(
1− d

r

)
− s

Recall that the optimal values of variables q and s are the ones that minimize the total
average cost per unit of time, which is given by the following function:

µ(q, s) =
1

T
(K + c q + h Ī T + u s+ v S̄ T︸ ︷︷ ︸

average cost per period

).

In this function, the holding cost h · Ī ·T and the shortage costs (u ·s and v · S̄ ·T ) depend
on the average inventory level Ī and on the average shortage level S̄, given respectively
by:

• Ī =
1

T

∫ T

0
I+(t)︸ ︷︷ ︸

“positive part” of I(t)

dt =
1

T

m(T2 + T3)

2
;

• S̄ =
1

T

∫ T

0
I−(t)︸ ︷︷ ︸

“negative part” if I(t)

dt =
1

T

s(T1 + T4)

2
.

See Figure 10.1 for a graphical illustration of the subintervals T1, T2, T3 and T4. In
order to express T1, T2, T3 and T4 as functions of variables q and s, observe that:

s = (r − d)T1

m = (r − d)T2

m = d T3

s = d T4

and so:


T1 = s/(r − d)

T2 = m/(r − d)

T3 = m/d

T4 = s/d.

Therefore:

Ī =
1

T

m(T2 + T3)

2
=

1

T

m2( 1
r−d + 1

d)

2
=

�d

2q
m2 �d+ r − �d

�d (r − d)
=

=
m2

2q

r

r − d
=
m2

2q

1
r−d
r

=
m2

2q(1− d
r )︸ ︷︷ ︸

as a function of q and m

=
[q(1− d

r )− s]2

2q(1− d
r )

.︸ ︷︷ ︸
as a function of q and s

(10.1)
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In a similar way we can derive:

S̄ =
s2

2q(1− d
r )
. (10.2)

By replacing (10.1) and (10.2) in µ(q, s) we get:

µ(q, s) = K
d

q
+ c d+

h[q(1− d
r )− s]2

2q(1− d
r )

+
u s d

q
+

v s2

2q(1− d
r )
.

This is a nonlinear, yet convex, function. Therefore, a (global) minimum point (q∗, s∗)
of µ(q, s) exists and can be obtained by solving:

∂

∂q
µ(q, s) = 0

∂

∂s
µ(q, s) = 0

stationary point.

We get (no proof provided):
q∗ =

√
h+ v

v
·
√

2Kd

h(1− d
r )
− (u d)2

h(h+ v)

s∗ =
(h q∗ − u d)(1− d

r )

h+ v

i.e., in each period, the optimal amount to order to minimize the total average unit cost
is q∗, and the optimal time interval to order is T ∗ = q∗/d.

Furthermore, in each period the optimal shortage level (to satisfy the demand by mini-
mizing µ(q, s)) is s∗, while the optimal maximum inventory level is m∗ = q∗(1− d

r )−s∗.

Notice that, in the simple inventory scenario under consideration, we have been able
to determine the optimal inventory policy in an analytical way, i.e. by means of the
formulas that have been derived for q∗, T ∗, s∗ and m∗.

An example

Golden Food distributes tinned foodstuff in Great Britain. Consider a warehouse in
Birmingham where:

• the demand rate d for tomato purée is 400 pallets a month (so, it is constant each
month);

• the value of a pallet is c = £2,500;

• the annual interest rate is p = 14.5 %, including warehousing costs;

• issuing an order costs K = £30;
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• the replenishment rate is r = 40 pallets per day;

• shortages are not allowed, i.e. s∗ = 0 (and so the shortage costs u and v are zero).

Using the data, the holding cost is:

h = 0.145 ·£2,500 = £362.5 per year per pallet
= £30.2 per month per pallet.

Note that the unit of time is a month. By applying the optimal inventory policy
previously presented, we get:

q∗ =

√
2Kd

h(1− d
r )

=

√
2 · 30 · 400

30.2 · (1− 400
40·20)

≈ 39.9 ≈ 40 pallets.

In the formulas we assumed that the number of workdays in a month is 20, hence the
monthly replenishment rate is 40 · 20. As a consequence:

T ∗ =
40

400
=

1

10
month = 2 workdays

T ∗r =
40

40
= 1 workday

m∗ = q∗
(

1− d

40 · 20

)
= 40 ·

(
1− 400

40 · 20

)
= 40 · 1

2
= 20 pallets.

Therefore, to minimize its total average unit cost the warehouse must order 40 (= q∗)
pallets every 2 (= T ∗) workdays. In each period, the replenishment will last 1 (= T ∗r )
workday, and the level of inventory will vary between 0 (because shortage is not allowed)
and a maximum level equal to 20 (= m∗).

10.1.1 The special case of instantaneous resupply

In case the resupply is instantaneous, the optimal inventory policy can be obtained from
the previous, more general, policy by considering r → +∞ and, so, Tr = q

r → 0. Then
we obtain: 

q∗ =

√
h+ v

v
·

√
2Kd

h
− (u d)2

h(h+ v)

s∗ =
h q∗ − u d
h+ v

If shortages are not allowed (i.e. s∗ = 0), then:

q∗ =

√
2Kd

h
.

This is the classical Economic Order Quantity (EOQ) model introduces by F.W. Harris
in 1913. The corresponding optimal cost is:

µ(q∗) = K
d

q∗
+ c d+

1

2
h q∗.
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Figure 10.2: Inventory level as a function of time in the EOQ model

The inventory level, as a function of time, in EOQ becomes the one depicted in Fig-
ure 10.2.

An example

Al-Bufeira motors manufactures spare parts for aircraft engines in Saudi Arabia. A
certain component Y02PN has the following supply requirements:

• the demand is d = 220 units per year;

• the unit production cost is c = $1200;

• the set-up cost (for producing the component) is K = $800;

• the annual interest rate is p = 18 % (including warehousing costs);

• no shortages are allowed (i.e. s = 0).

Therefore the holding cost is:

h = 0.18 · $1200 = $216 per year per unit.

Since replenishment is achieved via internal production, we can assume r → +∞, and
so the EOQ model can be applied (observe that d is a constant per year). According to
this model we can therefore derive:


q∗ =

√
2Kd

h
=

√
2 · 800 · 220

216
= 40.37 units

T ∗ =
40.37

220
= 0.18 years = 66.8 days

Therefore, to minimize its cost Al-Bufeira Motors has to manufacture ∼40 units of the
component Y02PN every ∼67 days.

Notice that, in practice, q∗ and T ∗ must be suitably rounded in order to apply the
optimal policy.
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10.2 Single stocking point: multicommodity with capacity
constraints

Let us consider now inventory problems where different types of commodity must be
stocked and a limit is placed on the total investment in inventories, or on the common
space. Assume that, for each product j, the assumptions made for the EOQ model can
be applied (see Section 10.1.1). In other words assume that, for each product j, the
demand rate dj is constant, the replenishment rate rj goes to infinity, and that shortage
is not allowed.

Let:

• n be the number of commodities in stock;

• qj be the amount of commodity j to reorder at each replenishment, j = 1, . . . n.

Under the EOQ assumption, the average unit cost for commodity j is:

µj(qj) =
Kj dj
qj

+ cj dj +
1

2
hj qj , j = 1, . . . n,

where Kj is the fixed reorder cost, cj is the unit value of item j and hj = pj cj is the
holding cost for item j.

Therefore, the average global unit cost (for all commodities in stock) is:

µ(q1, q2, . . . qn) =
n∑
j=1

µj(qj).

Assume now that there is a side, linear, constraint (capacity constraint), usually repre-
senting a budget constraint or a warehouse constraint, of form:

n∑
j=1

aj qj ≤ b

where aj , j = 1, . . . n, and b are constants. Then, the inventory management problem
that we want to solve can be expressed as:

min

n∑
j=1

(
Kj dj
qj

+ cj dj +
1

2
hj qj

)
n∑
j=1

aj qj ≤ b

q1, q2, . . . qn ≥ 0

(10.3)

This is a nonlinear (hard) model, yet it is possible to suggest a simple heuristic for the
special case of identical interest rates, i.e. pj = p, j = 1, . . . n.
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10.2.1 A heuristic for the case of identical interest rates

The heuristic algorithm computes the sizes of the orders, i.e. q1, q2, . . . qn by performing
the following steps:

Step 1: Compute the EOQ order sizes as if the capacity constraint was absent:

q′j =

√
2Kjdj
p cj

, j = 1, . . . n.

Note that (q′1, . . . q
′
n) is the optimal solution of a relaxation of the nonlinear prob-

lem (10.3), since by removing the capacity constraint the n commodities can be
managed independently.

If
n∑
j=1

aj q
′
j ≤ b, then stop: (q′1, . . . q

′
n) is optimal also for the original (i.e. not

relaxed) problem.

Step 2:

• Increase the common interest rate p of a quantity δ:

qj(δ) =

√
2Kjdj

(p+ δ)cj
, j = 1, . . . n.

• Determine the minimum value of δ, say δ∗, that allows to satisfy the capacity
constraint, i.e.:

n∑
j=1

aj qj(δ
∗) = b.

We get:

n∑
j=1

(
aj

√
2Kjdj

(p+ δ)cj

)
= b

1√
p+ δ

n∑
j=1

(
aj

√
2Kjdj
cj

)
= b

√
p+ δ =

1

b

n∑
j=1

(
aj

√
2Kjdj
cj

)

δ = δ∗ =

1

b

n∑
j=1

(
aj

√
2Kjdj
cj

)2

− p.

• Return the feasible solution (q1(δ
∗), q2(δ

∗), . . . qn(δ∗), and stop.
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model yearly demand value yearly interest price
Preppie knapsack d1 = 150,000 units c1 = $30 h1 = 20 % c1

Yuppie suitcase d2 = 100,000 units c2 = $45 h2 = 20 % c2

Table 10.1

An example

New Frontier distributes Knapsacks and suitcases, whose most successful models are
the Preppie knapsack and the Yuppie suitcase. Table 10.1 summarizes the relevant
information about demand, value and interest rate of the two products. Notice that
the interest rate is at 20% for both products. In addition, the reorder cost is the same,
too: K1 = K2 = $250.

The company imposes the following additional constraint: the average capital invested
in inventory can not exceed $75,000, i.e. 30

2 q1 + 45
2 q2 ≤ 75,000. In fact, since

Ī =
[q(1− d

r )− s]2

2q(1− d
r )

is the average inventory level under the inventory policy presented in Section 10.1, in
the special case of EOQ the average inventory level is Ī = q/2.

So, q1/2 is the average inventory level for Preppie knapsacks, q2/2 is the average inven-
tory level for Yuppie suitcases, and therefore 30 q12 + 45 q22 is the average capital invested
in inventories. It is assumed, for precaution, that the overall average inventory level is
the sum of the average inventory levels for the two products.

Therefore, we can apply the previously presented heuristic:

Step 1:

q′1 =

√
2 · 250 · 150,000

0.2 · 30
= 3,535.53 units

q′2 =

√
2 · 250 · 100,000

0.2 · 45
= 2,357.02 units

It is 30
q′1
2

+ 45
q′2
2
> 75,000.

Step 2: δ∗ = 0.2

q1(0.2) =

√
2 · 250 · 150,000

(0.2 + 0.2) · 30
= 2,500 units

q2(0.2) =

√
2 · 250 · 100,000

(0.2 + 0.2) · 45
≈ 1,666 units
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Figure 10.3: Example of utilization of the reorder point policy

Therefore, according to the heuristic we have to maintain in stock 2500 Preppie knap-
sacks and about 1666 Yuppie suitcases.

10.3 The reorder point policy

The reorder point policy is a stochastic model„ since it assumes that the demand is
uncertain. Precisely, it is assumed that the demand to the stocking point is a random
variable. The inventory level I(t) is kept under observation in an almost continuous
way; when it reaches a reorder point `, then a constant quantity q is reordered. Such a
quantity q will be delivered after a reorder time, or lead time, t`, which is assumed to
be constant. Figure 10.3 shows an example of the policy at work.

The reorder size q may be computed as follows:

q =

√
2Kd̄

h
,

which is the EOQ formula, where d̄ is the expected demand rate in the time unit. In
order to develop the model, we will make the assumption that the expected demand
rate d̄ and the standard deviation σd are constant in each unit of time.

In order to determine the reorder point `, we want that the inventory level I(t) be
nonnegative, during t`, with a given probability α. This is equivalent to impose that,
during the interval t`, the total demand does not exceed ` with probability α.

Let d be the random variable denoting the total demand in the lead time; then

d = d1︸︷︷︸
first time unit

+ d2 + . . . + dt`︸︷︷︸
last time unit

.

By assuming an identical demand distribution in each unit of time, and assuming d1,
d2, . . . dt` independent, if t` is sufficiently large then from the Central limit theorem
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it is possible to assume that d is distributed according to a normal distribution with
expected value d̄ · t`, and standard deviation σd

√
t`, i.e. d is N (d̄ t`, σd

√
t`).

Since the following property holds:

Property: if X is N (0, 1) (standard normal variable), then m+ σX is N (m,σ), i.e.
a normal variable with expected value m and standard deviation σ.

then d can be represented as
d = d̄ t` + σd

√
t`X,

with X being a N (0, 1).

Given α, let zα be the value under which X falls with probability α (e.g. zα = 2 for
α = 0.9772 and zα = 3 for α = 0.9987). Then, to guarantee

d = d̄ t` + σd
√
t` X︸ ︷︷ ︸

demand in t`

≤ ` with probability α,

we can set ` = d̄ t` + σd
√
t` zα; in fact, X ≤ zα with probability α, and so

d = d̄ t` + σd
√
t`X ≤ d̄ t` + σd

√
t` zα with probability α.

Due to this, the reorder point policy sets the reorder point ` = d̄ t` + σd
√
t` zα.

Moreover, ` minus the average demand in the reorder period gives the safety stock IS :

IS = d̄ t` + σd
√
t` zα︸ ︷︷ ︸

`

− d̄ t`︸︷︷︸
average demand

= σd
√
t` zα.

10.3.1 An example

Papier is a French retail chain which owns an outlet in Lyon. For this outlet:

• the expected demand d̄ for mouse pads is 45 units per month;

• the value of an item is c = AC4;

• the fixed reorder cost is K = AC30;

• the annual interest rate is p = 20 %;

• the forecast for standard deviation is σd = 5;

• the lead time is t` = 1 month;

• the required service level must be 97.7%, i.e. it is imposed that the demand for
mouse pads be satisfied with percentage 97.7% or, equivalently, in the reorder
period I(t) ≥ 0 with probability α = 0.977.
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First, compute the holding cost (the time unit is a month):

h = p c = 0.2 · AC4 = AC0.8/year per item = AC0.067/month per item.

Then, compute the reorder size:

q =

√
2Kd̄

h
=

√
2 · 30 · 45

0.067
≈ 201 items.

Since zα = 2, to guarantee the required service level we have to set

` = 45 · 1 + 5 · 1 · 2 = 45 + 10 = 55 units, and so
IS = 55− 45 = 10 units.

That is, we must reorder when the inventory level reaches ` = 55 units; the correspond-
ing safety stock is IS = 10 units (to take into account variations around the average
demand in the reorder period).

10.4 The slow-moving item model

When the demand is very low (e.g. spare parts of complex machineries), the main issue
is to determine how many items to purchase at the beginning of the planning horizon.
Consider a scenario in which:

• c is the purchase cost of an item at the beginning of the planning horizon;

• u is the purchase cost of an item during the planning horizon (u > c due to storage
penalty);

• holding costs are disregarded;

• n is the number of items to be purchased at the beginning of the planning horizon
(decision variable);

• m is the number of items demanded in the planning horizon (unknown).

Given m and n, the total purchase cost is:

C(n,m) =

c n if n ≥ m

c n+ µ(m− n) if n < m.

However, m is unknown. Let P (m) be the probability that m items will be demanded
during the planning horizon. Then, the expected cost if n items will be purchased can
be expressed as:

C(n) =
+∞∑
m=0

C(n,m) P (m) = c n+ u
+∞∑

m=n+1

(m− n) P (m).
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The problem to be solved is:
min C(n)

n ≥ 0, integer
(10.4)

To solve the problem in an analytical way, let F (m) = Prob(d ≤ m), where d denotes
the demand in the planning horizon, which is a discrete random variable. That is, F (m)
is the probability that m units (or less) will be demanded during the planning horizon.
Then, the following two relationships hold:

C(n− 1) = c (n− 1) + u
+∞∑
m=n

(m− n+ 1) P (m) =

= c n− c+ u
+∞∑
m=n

(m− n) P (m) + u
+∞∑
m=n

P (m) =

= C(n)− c+ u Prob(d ≥ n) =

= C(n)− c+ u Prob(d > n− 1) =

= C(n)− c+ u [1− F (n− 1)]

(10.5)

C(n+ 1) = c (n+ 1) + u

+∞∑
m=n+2

(m− n− 1) P (m) =

= c n+ c+ u
+∞∑

m=n+1

(m− n− 1) P (m) =

= c n+ c+ u
+∞∑

m=n+1

(m− n) P (m)− u
+∞∑

m=n+1

P (m) =

= C(n) + c− u Prob(d ≥ n+ 1) =

= C(n) + c− u Prob(d > n) =

= C(n) + c− u [1− F (n)]

(10.6)

Now, the minimum expected cost is achieved if n∗ items are purchased at the beginning
of the planning horizon, where:{

C(n∗) ≤ C(n∗ − 1)

C(n∗) ≤ C(n∗ + 1)

By exploiting (10.5) and (10.6), we derive:

����
C(n∗) ≤���c(n∗)− c+ u [1− F (n∗ − 1)] ⇐⇒ F (n∗ − 1) ≤ u− c

u
(10.7)

��
��

C(n∗) ≤���c(n∗) + c− u [1− F (n∗)] ⇐⇒ F (n∗) ≥ u− c
u

(10.8)
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That is, the optimal number n∗ of items to be purchased is such that:

F (n∗ − 1) ≤ u− c
u
≤ F (n∗).1

10.4.1 An example

Hydro Ltd uses five LIF03 generators in its power plants in Nigeria:

• each piece of machinery (and so each generator) has an average life of 20 years;

• in this period, the expected number of failures (i.e. the expected demand for spare
parts of generators) is 1.4;

• the cost of a spare part, purchased at the beginning, i.e. when a generator is
manufactured, is c = $60,000;

• the production unit cost of spare parts during the average period of life of the
generators is u = $300,000;

• the failure process during the planning horizon, described by a random variable
d, is assumed to be modelled according to a Poisson probability distribution with
expected value λ = 5 · 1.4 = 7 faults per cycle of life.

Recall that the Poisson random variable is a discrete random variable (assuming values
0, 1, 2. . . ), which is often used to model the random number of “arrivals” (i.e. generator
faults, in our case) in a given time horizon. According to the Poisson probability
distribution:

Prob(d = m) =
e−λ λm

m!
=
e−7 7m

m!
, m = 0, 1 . . .

while the cumulative probability can be computed according to:F (0) = Prob(d = 0) = 0.009

F (m) = F (m− 1) + Prob(d = m), m = 1, 2, . . .

By applying this recursive formula, we get the values in Table 10.2.

Since u−c
u = (300,000 − 60,000)/300,000 = 0.8, according to the table we have F (8) ≤

0.8 ≤ F (9) and so the number of spare parts to be purchased and stocked at the
beginning of the planning horizon to minimize the expected cost is n∗ = 9 (circled in
Table 10.2).

Note that, since F (m) is a monotone nondecreasing function, we have a unique2 n∗ such
that F (n∗ − 1) ≤ u−c

u ≤ F (n∗), and therefore n∗ is a local minimum but also a global
minimum, i.e. it is the optimal solution of the presented inventory model.

1Recall that F is a monotone nondecreasing function.
2More precisely: in case of a sequence of equal probability values, we select the minimum n∗ such

that F (n∗ − 1) ≤ u−c
u

≤ F (n∗).
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m Prob(d = m) F (m)

0 0.0009 0.0009
1 0.0064 0.0073
2 0.0223 0.0296
3 0.0521 0.0818
4 0.0912 0.1730
5 0.1277 0.3007
6 0.1490 0.4497
7 0.1490 0.5987
8 0.1304 0.7291
9 0.1014 0.8305
10 0.0710 0.9015

Table 10.2: The cumulative probability distribution of d
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