Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni
07 - Introduction to nets

Object

Overview of the basic concepts of Petri nets

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html

Why Petri nets

Business process analysis: validation: testing correctness verification: proving correctness performance: planning and optimization

Use of Petri nets (or alike) visual + formal tool supported

Approaching Petri nets

Are you familiar with automata / transition systems?
They are fine for sequential protocols / systems but do not capture concurrent behaviour directly

A Petri net is a mathematical model of a parallel and concurrent system
in the same way that a finite automaton is a mathematical model of a sequential system

Approaching Petri nets

Petri net theory can be studied at several level of details

We study some basics aspects, relevant to the analysis of business processes

Petri nets have a faithful and convenient graphical representation, that we introduce and motivate next

Finite automata examples

Applications

Finite automata are widely used, e.g., in protocol analysis, text parsing, video game character behavior, security analysis, CPU control units, natural language processing, speech recognition, mechanical devices
(like elevators, vending machines, traffic lights) and many more ...

How to

Identify the admissible states of the system Optional: Mark some states as error states

Add transitions
to move from one state to another
(no transition to recover from error states)

Set the starting state
Optional: Mark some states as final

Example: Turnstile

Example:

Computer controlled characters for games

States $=$ characters behaviours
Transitions = labelled by events that cause a change in behaviour

Example:

Pac-man moves in a maze wants to eat pills is chased by ghosts

by eating power pills, pac-man can defeat ghosts

Example:

Pac-Man Ghosts

Exercises

Without adding states, draw the automata for a SuperGhost that can't be eaten. It chases Pac-Man when the power pill is eaten, but returns to base if Pac-Man eats a piece of fruit.

Choose a favourite (video) game, and try drawing the state automata for one of the computer controlled characters in that game.

From automata to Petri nets

DFA

A Deterministic Finite Automaton (DFA) is a tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q is a finite set of states;
- Σ is a finite set of input symbols;
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function;
- $q_{0} \in Q$ is the initial state (also called start state);
- $F \subseteq Q$ is the set of final states (also accepting states)

Kleene-star notation A^{*}

Given a set A we denote by A^{*} the set of finite sequences of elements in A, i.e.:
$A^{*}=\left\{a_{1} \cdots a_{n} \mid n \geq 0 \wedge a_{1}, \ldots, a_{n} \in A\right\}$
We denote the empty sequence by $\epsilon \in A^{*}$

For example:
$A=\{a, b\} \quad A^{*}=\{\epsilon, a, b, a a, a b, b a, b b, a a a, a a b, \ldots\}$

Extended transit. func. (destination function)

Given $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we define $\widehat{\delta}: Q \times \Sigma^{*} \rightarrow Q$ by induction:
base case: For any $q \in Q$ we let

$$
\widehat{\delta}(q, \epsilon)=q
$$

inductive case: For any $q \in Q, a \in \Sigma, w \in \Sigma^{*}$ we let

$$
\widehat{\delta}(q, w a)=\delta(\widehat{\delta}(q, w), a)
$$

$(\widehat{\delta}(q, w)$ returns the state reached from q by observing $w)$

String processing

Given $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and $w \in \Sigma^{*}$ we say that A accept w iff

$$
\widehat{\delta}\left(q_{0}, w\right) \in F
$$

The language of $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is

$$
L(A)=\left\{w \mid \widehat{\delta}\left(q_{0}, w\right) \in F\right\}
$$

Transition diagram

We represent $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ as a graph s.t.

- Q is the set of nodes;
- $\left\{q \xrightarrow{a} q^{\prime} \mid q^{\prime}=\delta(q, a)\right\}$ is the set of arcs.

Plus some graphical conventions:

- there is one special arrow Start with $\xrightarrow{\text { Start }} q_{0}$
- nodes in F are marked by double circles;
- nodes in $Q \backslash F$ are marked by single circles.

String processing as paths

A DFA accepts a string w, if there is a path in its transition diagram such that:
it starts from the initial state
it ends in one final state
the sequence of labels in the path is exactly w

DFA: example

Start

$q \begin{array}{lllllllllllll}0 & 1 & q_{0} & 1 & q_{0} & 1 & q_{0} & 0 & q_{1} & 0 & q_{1} & 0 & q_{1}\end{array} \notin F$

q| 0 | 1 | q_{0} | 0 | q_{1} | 0 | q_{1} | 1 | q_{2} | 1 | q_{2} | 0 | q_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\in F$

DFA: question time

Start

Does it accept 100 ?
Does it accept 011 ?
Does it accept 1010010 ?
What is $L(A)$?

Transition table
 Conventional tabular representation

its rows are in correspondence with states
its columns are in correspondence with input symbols
its entries are the states reached after the transition
Plus some decoration
start state decorated with an arrow
all final states decorated with *

Transition table

Start

DFA: example

DFA: exercise

Does it accept 100 ? Does it accept 1010 ? Write its transition table.

What is $L(A)$?

NFA

A Non-deterministic Finite Automaton (NFA) is a tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q is a finite set of states;
- Σ is a finite set of input symbols;
- $\delta: Q \times \Sigma$ powerset of $\mathrm{Q}=$ set of sets over Q
- $\delta: Q \times \Sigma \rightarrow \wp(Q)$ is the transition function;
- $q_{0} \in Q$ is the initial state (also called start state);
- $F \subseteq Q$ is the set of final states (also accepting states)

NFA: example

Can you explain why it is not a DFA?

Reshaping

Step 1: get a token

Step 2: forget initial state decoration

Step 3: transitions as boxes

Step 4: forget final states

Step 5: allow for more tokens

Example: token game

Step 6: allow for more

arcs

Terminology

Example: token game

Some hints

> Nets are bipartite graphs: arcs never connect two places arcs never connect two transitions

Static structure for dynamic systems: places, transitions, arcs do not change tokens move around places

Places are passive components Transitions are active components: tokens do not flow!
(they are removed or freshly created)

Petri nets: basic definition

Success due to simple and clean graphical and conceptual representation

```
kommunikationn.
    mit
Automaten
```

Von der Fakultät für Mathematik und Physik der Technischen Ilochschule Darmstadt

```
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
    (Dr. rer.nat.)
                genehmigte
                Dissertation
            vorgelegt von
        Carld_damPetri
        aus Leipzig
```

Referent: Prof.Dr.rer.techn.A.Walther Korreferent: Prof.Dr.Ing.Il.Unger

Tag der Einreichung:
Tag der mündlichen Prüfung:

Petri nets for us

Formal and abstract business process specification
Formal: the semantics of process instances becomes well defined and not ambiguous

Abstract: execution environment is disregarded
(Remind about separation of concerns)

Places

A place can stand for
a state
a medium
a buffer
a condition
a repository of resources
a type

Tokens

A token can stand for a physical object a piece of data
a resource an activation mark
a message a document
a case

Transitions

A transition can stand for
an event
an operation
a transformation
a transportation
a task
an activity

Notation: from sets...

Let S be a set.
Let $\wp(S)$ denote the set of sets over S.

Elements $A \in \wp(S)$ (i.e., $A \subseteq S$)
are in bijective correspondence with functions $f: S \rightarrow\{0,1\}$
$x \in A$ iff $f_{A}(x)=1$

Notation: ... to multisets

Let $\mu(S)$ (or S^{\oplus}) denote the set of multisets over S.

Elements $B \in \mu(S)$ are in bijective correspondence with functions $M: S \rightarrow \mathbb{N}$
$M_{B}(x)$ is the number of instances of x in B
$x \in B$ iff $M_{B}(x)>0$

Sets vs Multisets

Set

Order of elements does not matter Each element appears at most once

Multiset

Order of elements does not matter
Each element can appear multiple times

Notation: sets

Empty set:
$\emptyset=\{ \}$ is such that $x \notin \emptyset$ for all $x \in S$

Set inclusion:
we write $A \subseteq B$ if $x \in A$ implies $x \in B$

Set strict inclusion:
we write $A \subset B$ if $A \subseteq B$ and $A \neq B$

Set union:
$A \cup B$ is the set s.t. $x \in(A \cup B)$ iff $x \in A$ or $x \in B$

Set difference:
$A-B$ is the set s.t. $x \in(A-B)$ iff $x \in A$ and $x \notin B$

Notation: multisets

Empty multiset:
\emptyset is such that $\emptyset(x)=0$ for all $x \in S$

Multiset containment:
we write $M \subseteq M^{\prime}$ if $M(x) \leq M^{\prime}(x)$ for all $x \in S$

Multiset strict containment:
we write $M \subset M^{\prime}$ if $M \subseteq M^{\prime}$ and $M \neq M^{\prime}$

Multiset union:
$M+M^{\prime}$ is the multiset s.t. $\left(M+M^{\prime}\right)(x)=M(x)+M^{\prime}(x)$ for all $x \in S$

Multiset difference (defined only if $M \supseteq M^{\prime}$):
$M-M^{\prime}$ is the multiset s.t. $\left(M-M^{\prime}\right)(x)=M(x)-M^{\prime}(x)$ for all $x \in S$

Operations on Multisets

Notation: multisets

Multiset $M=\left\{k_{1} x_{1}, k_{2} x_{2}, \ldots, k_{n} x_{n}\right\}$ as formal sum:
$k_{1} x_{1}+k_{2} x_{2}+\ldots+k_{n} x_{n}$
$\sum_{i=1}^{n} k_{i} x_{i}$

Question time

$$
\begin{aligned}
& 3 a+2 b \stackrel{?}{\subseteq} 2 a+3 b+c \\
& 3 a+2 b \stackrel{?}{\supseteq} 2 a+3 b+c \\
& a+2 b \stackrel{?}{\subsetneq} 2 a+3 b \\
& (a+2 b)+(2 a+c)=? \\
& (2 a+3 b)-(2 a+b)=? \\
& (2 a+2 b)-(a+c)=?
\end{aligned}
$$

Marking

A marking $M: P \rightarrow \mathbb{N}$ denotes the number of tokens in each place

The marking of a Petri net represents its state
$M(a)=0$ denotes the absence of tokens in place a

Petrinets

A Petri net is a tuple $\left(P, T, F, M_{0}\right)$ where

- P is a finite set of places;
- T is a finite set of transitions;
- $F \subseteq(P \times T) \cup(T \times P)$ is a flow relation;
- $M_{0}: P \rightarrow \mathbb{N}$ is the initial marking. (i.e. $M_{0} \in \mu(P)$)

Pre-set and post-set

A place p is an input place for transition t iff

$$
(p, t) \in F
$$

We let $\bullet t$ denote the set of input places of t. (pre-set of t)

A place p is an output place for transition t iff

$$
(t, p) \in F
$$

We let $t \bullet$ denote the set of output places of t. (post-set of t)

Example: pre and post

Pre-set and post-set

Analogously, we let
$\bullet p$ denote the set of transitions that share p as output place $p \bullet$ denote the set of transitions that share p as input place

$$
\begin{gathered}
\text { Formally: } \\
\bullet x=\{y \mid(y, x) \in F\} \\
x \bullet=\{y \mid(x, y) \in F\}
\end{gathered}
$$

Exercises

$$
\begin{array}{ll}
P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}\right\} \\
T=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\} \\
F=\left\{\left(p_{1}, t_{1}\right),\left(t_{1}, p_{2}\right), \ldots ?\right\} \\
M_{0}=2 p_{3}+\ldots ? \\
\bullet t_{1}=? & t_{1} \bullet=? \\
\bullet t_{2}=? & t_{2} \bullet=? \\
\bullet t_{3}=? & t_{3} \bullet=? \\
\bullet t_{4}=? & t_{4} \bullet=? \\
\bullet t_{5}=? & t_{5} \bullet=?
\end{array}
$$

