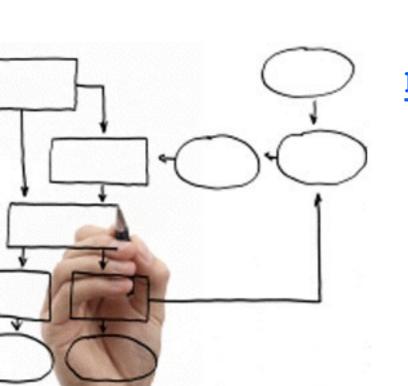
Methods for the specification and verification of business processes MPB (6 cfu, 295AA)



Roberto Bruni

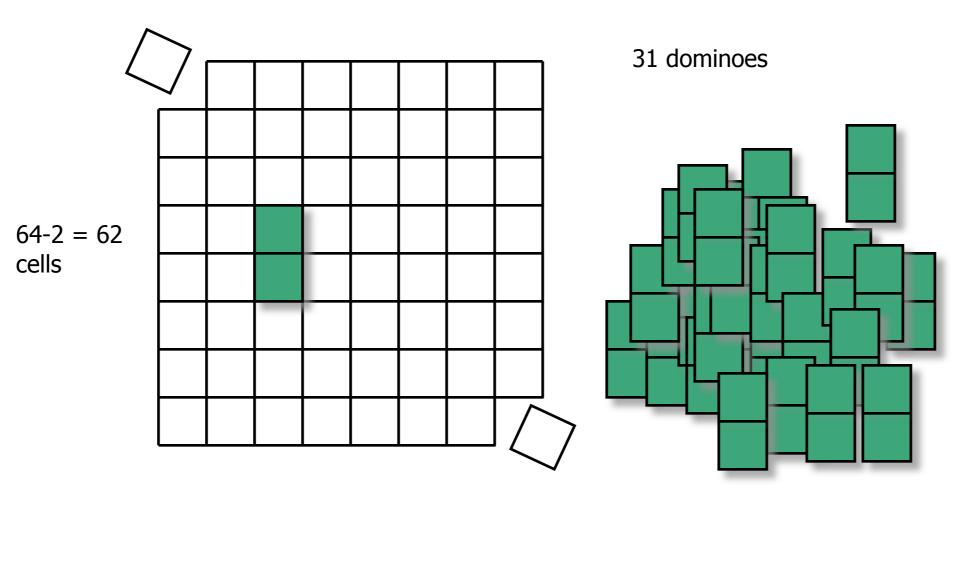
http://www.di.unipi.it/~bruni

10 - Invariants

Object

We introduce two relevant kinds of invariants for Petri nets

Puzzle time: tiling a chessboard with dominoes



Invariant

An invariant of a dynamic system is an assertion that holds at every reachable state

Examples:
liveness of a transition t
deadlock freedom
boundedness

Structural invariants

In the case of Petri nets, it is possible to compute certain vectors of **rational** numbers^(*) (directly from the structure of the net) (independently from the initial marking) which induce nice invariants, called

S-invariants

T-invariants

(*) it is not necessary to consider real-valued solutions, because incidence matrices only have integer entries

Why invariants?

Can be calculated efficiently (polynomial time for a basis)

Independent of initial marking

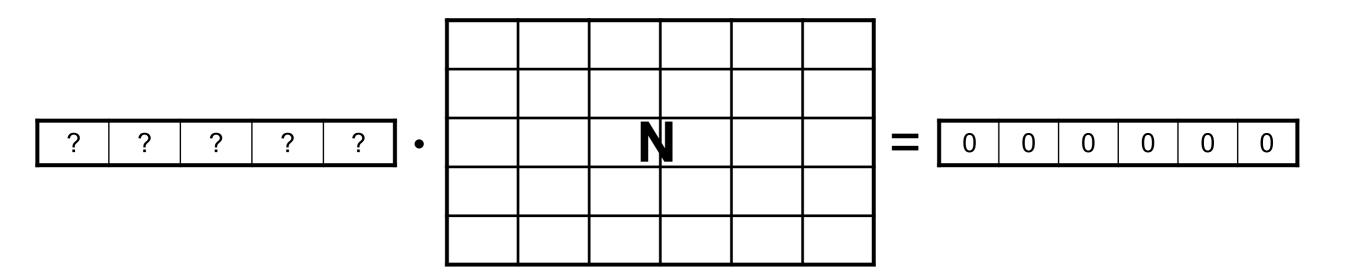
However, the main reason is didactical! You only truly understand a model if you think about it in terms of invariants!

S-invariants

S-invariant (aka place-invariant)

Definition: An S-invariant of a net N=(P,T,F) is a rational-valued solution **x** of the equation

$$\mathbf{x} \cdot \mathbf{N} = \mathbf{0}$$



Fundamental property of S-invariants

Proposition: Let \mathbf{I} be an invariant of N.

For any $M \in [M_0]$ we have $\mathbf{I} \cdot M = \mathbf{I} \cdot M_0$

Fundamental property of S-invariants

Proposition: Let \mathbf{I} be an invariant of N.

For any $M \in [M_0]$ we have $\mathbf{I} \cdot M = \mathbf{I} \cdot M_0$

Since $M \in [M_0]$, there is σ s.t. $M_0 \stackrel{\sigma}{\longrightarrow} M$ By the marking equation: $M = M_0 + \mathbf{N} \cdot \vec{\sigma}$

Therefore:
$$\mathbf{I} \cdot M = \mathbf{I} \cdot (M_0 + \mathbf{N} \cdot \vec{\sigma})$$

$$= \mathbf{I} \cdot M_0 + \mathbf{I} \cdot \mathbf{N} \cdot \vec{\sigma}$$

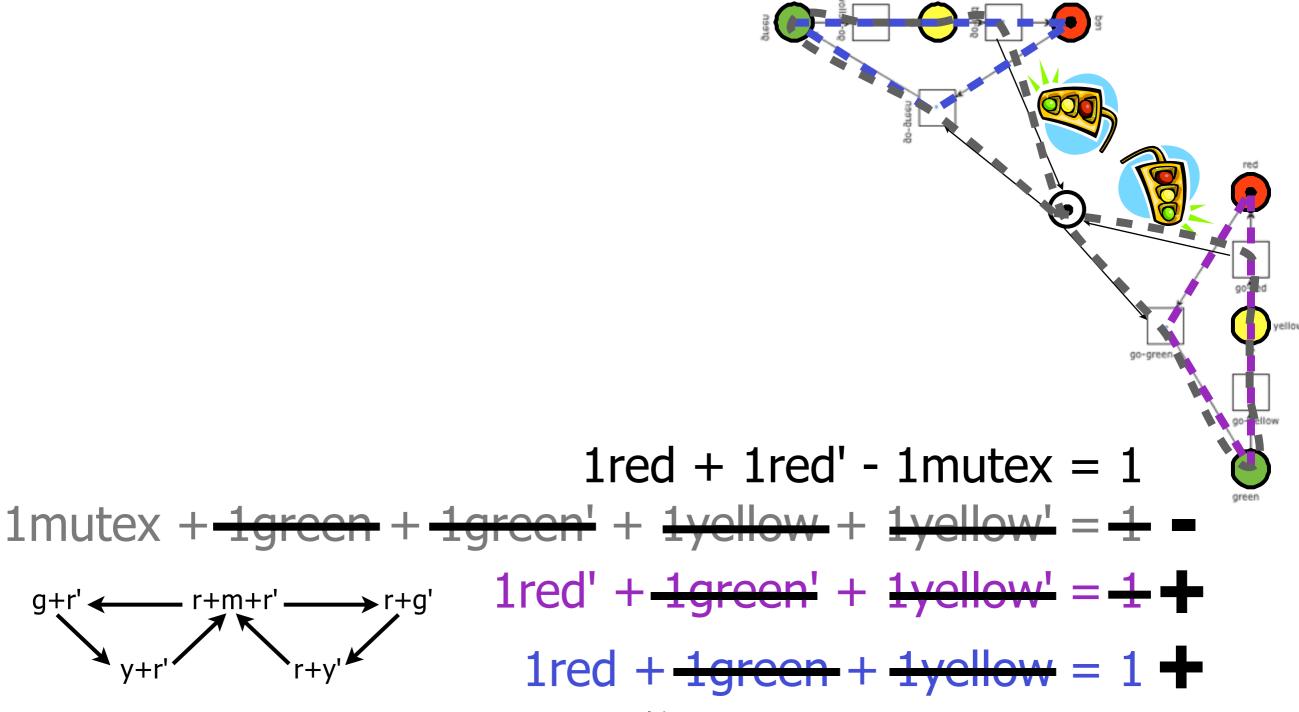
$$= \mathbf{I} \cdot M_0 + \mathbf{0} \cdot \vec{\sigma}$$

$$= \mathbf{I} \cdot M_0$$

Place-invariant, intuitively

A place-invariant assigns a weight to each place such that the weighted token sum remains constant during any computation

Traffic-lights example



Alternative definition of S-invariant

Proposition:

A mapping $\mathbf{I}:P\to\mathbb{Q}$ is an S-invariant of N iff for any $t\in T$:

$$\sum_{p \in \bullet t} \mathbf{I}(p) = \sum_{p \in t \bullet} \mathbf{I}(p)$$

Exercise

Prove the proposition about the alternative characterization of S-invariants

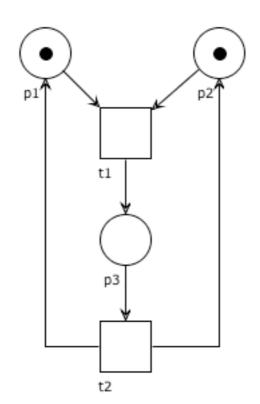
Consequence of alternative definition

Very useful in proving S-invariance!

The check is possible without constructing the incidence matrix

Question time

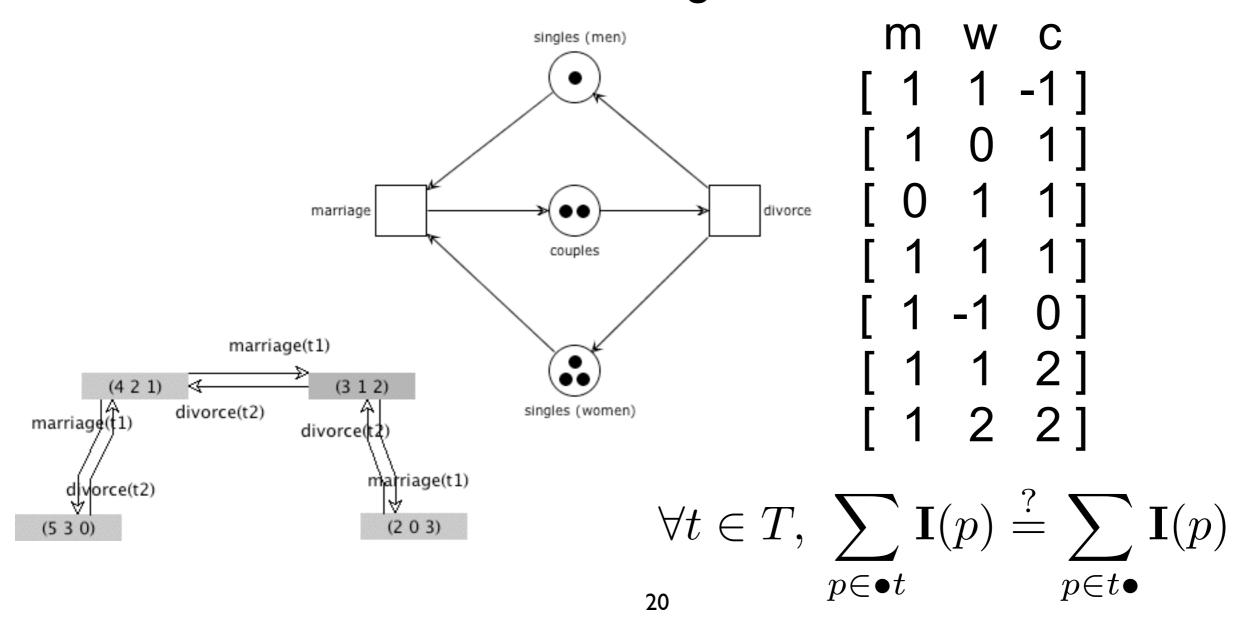
Which of the following are S-invariants?



$$\forall t \in T, \ \sum_{p \in \bullet t} \mathbf{I}(p) \stackrel{?}{=} \sum_{p \in t \bullet} \mathbf{I}(p)$$
 [1 2 1]

Question time

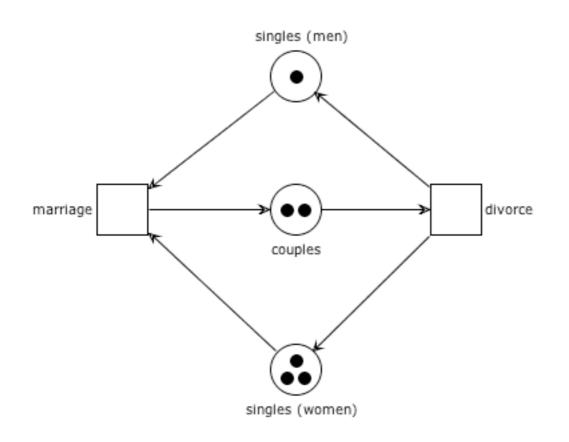
Which of the following are S-invariants?

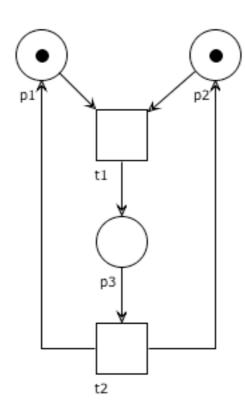


Exercises

Do S-invariants depend on the initial marking?

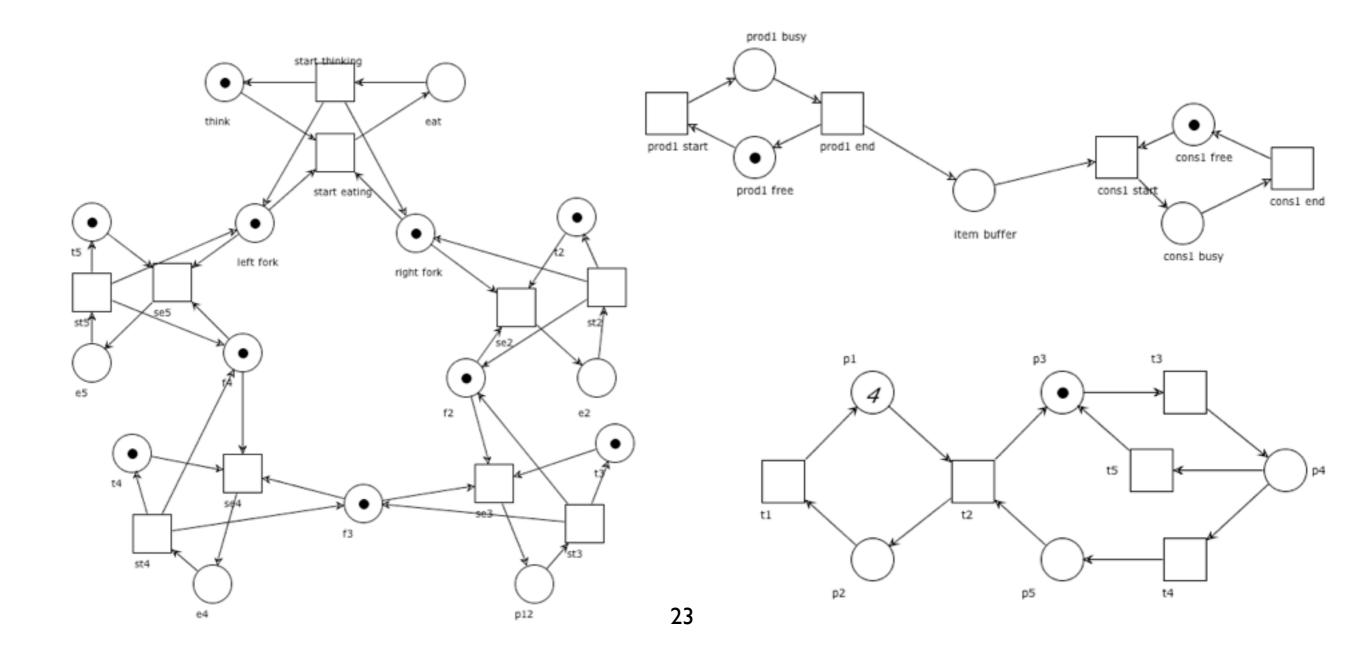
Can the two nets below have different S-invariants?





Exercises

Define two (linearly independent) S-invariants for each of the nets below



S-invariants and system properties

Semi-positive S-invariants

The S-invariant ${f I}$ is **semi-positive** if ${f I}>{f 0}$ (i.e. ${f I}\geq {f 0}$ and ${f I}\neq {f 0}$)

The **support** of **I** is: $\langle \mathbf{I} \rangle = \{ p \mid \mathbf{I}(p) > 0 \}$

The S-invariant ${\bf I}$ is **positive** if ${\bf I} \succ {\bf 0}$ (i.e. ${\bf I}(p) > 0$ for any place $p \in P$) (i.e. $\langle {\bf I} \rangle = P$)

A (semi-positive) S-invariant whose coefficients are all 0 and 1 is called **uniform**

A sufficient condition for boundedness

Theorem:

If (P, T, F, M_0) has a positive S-invariant then it is bounded

Let $M \in [M_0]$ and let **I** be a positive S-invariant.

Let
$$p \in P$$
. Then $\mathbf{I}(p)M(p) \leq \mathbf{I} \cdot M = \mathbf{I} \cdot M_0$

Since I is positive, we can divide by I(p):

$$M(p) \leq (\mathbf{I} \cdot M_0)/\mathbf{I}(p)$$

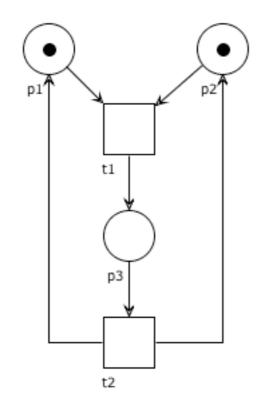
$$\mathbf{I} \cdot M = \sum_{q \in P} \mathbf{I}(q) M(q)$$

Consequence of previous theorem

By exhibiting a positive S-invariant we can prove that the system is **bounded for any initial marking**

Example

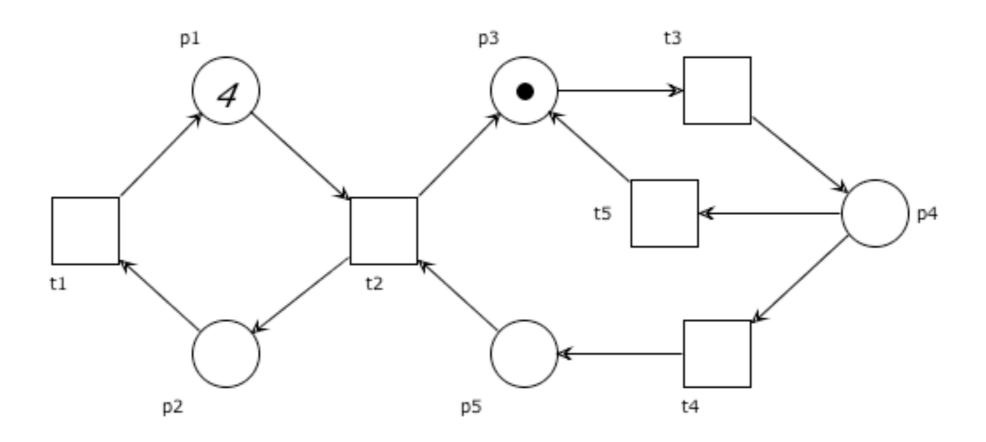
To prove that the system is bounded we can just exhibit a positive S-invariant



$$I = [1 \ 1 \ 2]$$

Exercises

Find a positive S-invariant for the net below



A necessary condition for liveness

Theorem:

If (P, T, F, M_0) is live then for every semi-positive invariant I:

$$\mathbf{I} \cdot M_0 > 0$$

Let $p \in \langle \mathbf{I} \rangle$ and take any $t \in \bullet p \cup p \bullet$.

By liveness, there are $M, M' \in [M_0]$ with $M \stackrel{t}{\longrightarrow} M'$

Then, M(p) > 0 (if $t \in p \bullet$) or M'(p) > 0 (if $t \in \bullet p$)

If
$$M(p) > 0$$
, then $\mathbf{I} \cdot M \ge \mathbf{I}(p)M(p) > 0$
If $M'(p) > 0$, then $\mathbf{I} \cdot M' \ge \mathbf{I}(p)M'(p) > 0$

In any case,
$$\mathbf{I} \cdot M_0 = \mathbf{I} \cdot M = \mathbf{I} \cdot M' > 0$$

$$\mathbf{I} \cdot M = \sum_{q \in P} \mathbf{I}(q) M(q)$$

Consequence of previous theorem

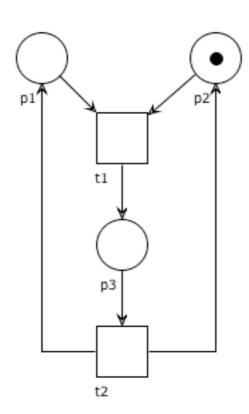
If we find a semi-positive invariant such that

$$\mathbf{I} \cdot M_0 = 0$$

Then we can conclude that the system is not live

Example

It is immediate to check the counter-example



$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0$$

$$M_0$$

Markings that agree on all S-invariant

Definition: M and M' agree on all S-invariants if for every S-invariant I we have I·M = I·M'

Note: by properties of linear algebra, this corresponds to require that the equation on **y** M + **N**·**y** = M' has some rational-valued solution

Remark: In general, there exist M and M' that agree an all S-invariants but such that none of them is reachable from the other

A necessary condition for reachability

Reachability is decidable, but EXPSPACE-hard

S-invariants provide a preliminary check that can be computed efficiently

Let (P, T, F, M_0) be a system.

If there is an S-invariant I s.t. $\mathbf{I} \cdot M \neq \mathbf{I} \cdot M_0$ then $M \notin [M_0]$

If the equation $\mathbf{N} \cdot \mathbf{y} = M - M_0$ has no rational-valued solution, then $M \notin [M_0]$

S-invariants: recap

Positive S-invariant Unboundedness

=> boundedness => no positive S-invariant

Semi-positive S-invariant I and liveness $=> I \cdot M_0 > 0$ Semi-positive S-invariant I and $I \cdot M_0 = 0$ => non-live

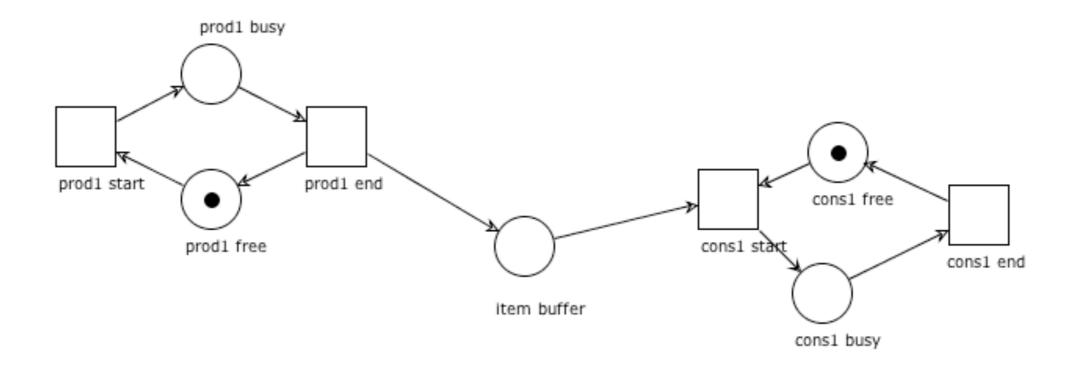
S-invariant I and M reachable S-invariant I and I·M \neq I·M₀

$$=> I \cdot M = I \cdot M_0$$

=> M not reachable

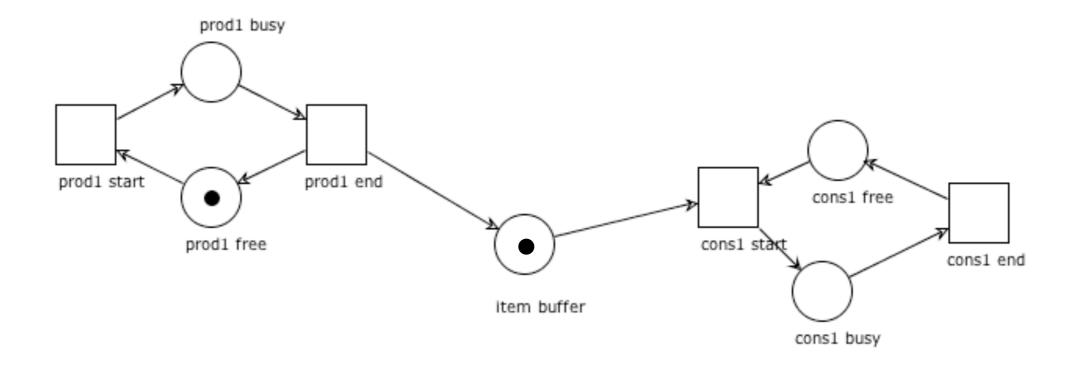
Exercises

Can you find a positive S-invariant?



Exercises

Prove that the system is not live by exhibiting a suitable S-invariant



T-invariants

Dual reasoning

The S-invariants of a net N are vectors satisfying the equation

$$\mathbf{x} \cdot \mathbf{N} = \mathbf{0}$$

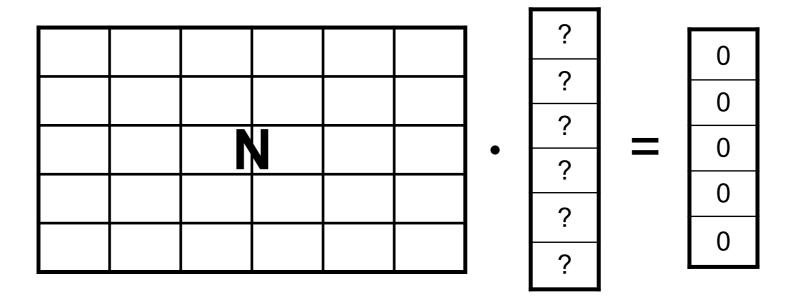
It seems natural to ask if we can find some interesting properties also for the vectors satisfying the equation

$$\mathbf{N} \cdot \mathbf{y} = \mathbf{0}$$

T-invariant (aka transition-invariant)

Definition: A **T-invariant** of a net N=(P,T,F) is a rational-valued solution **y** of the equation

$$\mathbf{N} \cdot \mathbf{y} = \mathbf{0}$$



Fundamental property of T-invariants

Proposition: Let $M \xrightarrow{\sigma} M'$.

The Parikh vector $\vec{\sigma}$ is a T-invariant iff M' = M

- \Rightarrow) By the marking equation lemma $M' = M + \mathbf{N} \cdot \vec{\sigma}$ Since $\vec{\sigma}$ is a T-invariant $\mathbf{N} \cdot \vec{\sigma} = \mathbf{0}$, thus M' = M.
- \Leftarrow) If $M \xrightarrow{\sigma} M$, by the marking equation lemma $M = M + \mathbf{N} \cdot \vec{\sigma}$ Thus $\mathbf{N} \cdot \vec{\sigma} = M - M = \mathbf{0}$ and $\vec{\sigma}$ is a T-invariant

Example

An easy-to-be-found T-invariant



Transition-invariant, intuitively

A transition-invariant assigns a **number of occurrences to each transition** such that any
occurrence sequence comprising exactly those
transitions leads to the same marking where it started
(independently from the order of execution)

Alternative definition of T-invariant

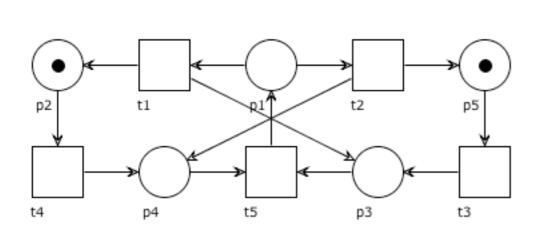
Proposition:

A mapping $\mathbf{J}:T\to\mathbb{Q}$ is a T-invariant of N iff for any $p\in P$:

$$\sum_{t \in \bullet p} \mathbf{J}(t) = \sum_{t \in p \bullet} \mathbf{J}(t)$$

Question time

Which of the following are T-invariants?



$$t_1$$
 t_2 t_3 t_4 t_5
 $\begin{bmatrix} 1 & 0 & 0 & 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 2 & 1 & 2 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 2 & 0 & 2 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \end{bmatrix}$
 $\begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

$$\forall p \in P, \ \sum_{t \in \bullet p} \mathbf{J}(t) \stackrel{?}{=} \sum_{t \in p \bullet} \mathbf{J}(t)$$

T-invariants and system properties

Pigeonhole principle

If n items are put into m containers, with n > m, then at least one container must contain more than one item

Reproduction lemma

Lemma: Let (P, T, F, M_0) be a bounded system.

If $M_0 \xrightarrow{\sigma}$ for some infinite sequence σ , then there is a semi-positive T-invariant \mathbf{J} such that $\langle \mathbf{J} \rangle \subseteq \{ t \mid t \in \sigma \}$.

Assume $\sigma = t_1 \ t_2 \ t_3 \dots$ and $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} \dots$

By boundedness: $[M_0]$ is finite.

By the pigeonhole principle, there are $0 \le i < j$ s.t. $M_i = M_j$ Let $\sigma' = t_{i+1}...t_j$. Then $M_i \xrightarrow{\sigma'} M_j = M_i$

By the marking equation lemma: $\vec{\sigma'}$ is a T-invariant. (fund. prop. of T-inv.) It is semi-positive, because σ' is not empty (i < j). Clearly, $\langle \mathbf{J} \rangle$ only includes transitions in σ .

Boundedness, liveness and positive T-invariant

Theorem: If a bounded system is live, then it has a positive T-invariant

By boundedness: $[M_0]$ is finite and we let $k = |[M_0]|$.

By liveness: $M_0 \xrightarrow{\sigma_1} M_1$ with $\vec{\sigma_1}(t) > 0$ for any $t \in T$

Similarly: $M_1 \xrightarrow{\sigma_2} M_2$ with $\vec{\sigma_2}(t) > 0$ for any $t \in T$

Similarly: $M_0 \xrightarrow{\sigma_1} M_1 \xrightarrow{\sigma_2} M_2 \dots \xrightarrow{\sigma_k} M_k$

By the pigeonhole principle, there are $0 \le i < j \le k$ s.t. $M_i = M_j$ Let $\sigma = \sigma_{i+1}...\sigma_j$. Then $M_i \xrightarrow{\sigma} M_j = M_i$

By the marking equation lemma: $\vec{\sigma}$ is a T-invariant. (fund. prop. of T-inv.) It is positive, because $\vec{\sigma}(t) \geq \vec{\sigma_j}(t) > 0$ for any $t \in T$.

Corollary of previous theorem

Every live and bounded system has:

a reachable marking M and an occurrence sequence $M \stackrel{\sigma}{\longrightarrow} M$

such that all transitions of N occur in σ .

Question time

Can you prove that a system is live and bounded by exhibiting a positive T-invariant?

Can you disprove that a system is live and bounded by showing that no positive T-invariant can be found?

Can you prove that a live system is bounded by exhibiting a positive T-invariant?

Exercises

Exhibit a system that has a positive T-invariant but is not live and bounded

Exhibit a live system that has a positive T-invariant but is not bounded

Note

Notation:
$$\bullet S = \bigcup_{s \in S} \bullet s$$

Every semi-positive invariant satisfies the equation

$$ullet \langle \mathbf{I}
angle = \langle \mathbf{I}
angle ullet$$

(the result holds for both S-invariant and T-invariant)

(pre-sets of support equal post-sets of support)