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We survey
two connectedness theorems and
five exchange lemmas

Free Choice Nets (book, optional reading)
https://www7.in.tum.de/~esparza/bookfc.html
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Two theorems on strong
connectedness
(whose proofs are
optional reading)



Strong connectedness
theorem

Theorem : If a weakly connected system is
live and bounded then it Is strongly connected

(the proof requires some Exchange Lemmas
that we illustrate later)



Consequences

If a (weakly-connected) net is not strongly connected
then
It Is not live and bounded
If it Is live, 1t Is not bounded

If It IS bounded, It Is not live



Example

It Is now Immediate to see that this system
(weakly connected, not strongly connected)
cannot be live and bounded
(it Is live but not bounded)

prodl busy

A

prod1 S?M\CDA/DI'CGI end
prodl free sls




Exercise

On the basis of the previous observation:
Draw a net that is bounded but not live
Draw a net that is neither live nor bounded

(all nets must be weakly connected)



Exercise

Draw a net that is bounded but not live
(weakly, not strongly connected)

(2
pl t1 p2 p3

t3




Exercise

Draw a net that is neither live nor bounded
(weakly, not strongly connected)

t2
pl t1 p2 p3




Strong connectedness
via invariants

Theorem : If a weakly connected net has
a positive S-invariant | and a positive T-invariant J
then it is strongly connected
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Consequences

If a (weakly-connected) net is not strongly connected
then

we cannot find (two) positive S- and T-invariants
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Five Exchange Lemmas
(optional reading)



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with u" v¥= #
fM $ M' thenM $H M’

\/




Exchange lemma:
finite sequences (2)

Lemma: LetV cTanducT\V,with¥unNV¥=0 .
If M == M’ with! € V* then M = M’

V V [ I | Vn _1 V
AR A R | 1V !
| | | | | | [} | | Iu
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Exchange lemma:
finite sequences (2)

Lemma: LetV cTanducT\V,with¥unNV¥=0 .
If M == M’ with! € V* then M = M’

Vv Vv Vn -1 V
A AR ! | n '
| | | | | | [} Iu | |
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Exchange lemma:
finite sequences (2)

Lemma: LetV cTanducT\V,with¥unNV¥=0 .
If M == M’ with! € V* then M = M’

V V [ ] Vn _l V
A A R 1V !
|u | | | | | | [} | |
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More on sequences:
projection

Restriction: (also extraction / projection)
givenT'! T we inductively debnét: as:

I
) ) ottty iftt T
| — l | —
I (v L ft#T
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Example

(tatatztatats) e, 1) t1(tatztataty)re, 1
= tota(tztataty) e, oo
- 1 = tata(tatats) g, 1)

titate(tats)ir ey 1)

/7N
A p t1tatata(tz!) e, 10

t1tatata(tz) e, 1)

trtatata() e, 14
[1tat1t,!
x///// L1tats1y
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Exchange lemma:
finite sequences (3)

Lemma: LetU,V! T andU" V = #, wilth I¥U "V¥= #
fM $6 M'with! & (U' V)", thenM 9% M'

Vh —1 V
-]‘ [!,vl !Vz | | ' !ln M !

19



Exchange lemma:
finite sequences (3)

Lemma: LetU,V! T andU" V = #, wilth I¥U "V¥= #
fM $6 M'with! & (U' V)", thenM 9% M'

4

V1V2 V! 1Vn

\Y

|u1 |u2 I llflm! 1 lum

s
U1U2 Um 1Um
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Exchange lemma:
finite sequences (3)

Lemma: LetU,V! T andU" V = #, wilth I¥U "V¥= #
fM $6 M'with! & (U' V)", thenM 9% M'

4

V1V2 V! 1Vn

\Y

|H1 . - . |H2 |"' . llflm! 1 lum

s
U1U2 Um 1Um
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Exchange lemma:
finite sequences (3)

Lemma: LetU,V! T andU" V = #, wilth I¥U "V¥= #
fM $6 M'with! & (U' V)", thenM 9% M'

g
V1V2 V! 1Vn

n—1 V
M SV
1“1 1“2 | Ilrlm!l rlum

| .

!Uluz---um! 1Um
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Exchange lemma:
finite sequences (3)

Lemma: LetU,V! T andU" V = #, wilth I¥U "V¥= #
fM $6 M'with! & (U' V)", thenM 9% M'

"% 3

|
[\/i .UlUZ---Um! 1Um M
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Notation Aw

Given a set A we denote by A%
the set of infinite sequences of elements in A, i.e.:

Aw:{CZlCLQ“' ‘ CL1,CL2,...€A}

24



Exchange lemma:
infinite sequences (4)

Lemma: Let U,V C T and UNV =), with eUNVe =1

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

Vn —1 v
M .er .rV2 !-.. !... ! !l n !
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Exchange lemma:
infinite sequences (4)

Lemma: Let UV CT and UNV =0, with eUNVe=1.

If M — with o € (UUV)¥

O\vo|v

and Olu € U*, then M —

.
V1V2 Vn ! 1Vn
. 1“1 1“2 . llr'm! 1 lum
| .
.Uluz---Um! 1Um



Exchange lemma:
infinite sequences (4)

Lemma: Let UV CT and UNV =0, with eUNVe=1.

If M — with o € (UUV)¥

O\vo|v

and Olu € U*, then M —

nh
V1V2 Vni 1Vn
M. " - Tt
|H1 |H2 I llflm 1 lum
| i
.Uluz---Um! 1Um



Exchange lemma:
infinite sequences (4)

Lemma: Let UV CT and UNV =0, with eUNVe=1.

O\vo|v

If M — with o € (UUV)¥ and oy € U", then M —

"
V1V2 Vni 1Vn

Vn —1 V
er rV2 |... ! !l n !
1-\'4 1“1 1“2 | Ilrlm! 1 rlum

| .

!Uluz---um! 1Um
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Exchange lemma:
infinite sequences (4)

Lemma: Let U,V CT and UNV =), with eUNVe =10

O'|UO'|V

If M — with 0 € (U UV)*“ and oy € U, then M —

%3

| L. % V1Vo..Vnt 1Vp ...

(\/i .UlUZ---Um! 1Um —
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Exchange lemma:
infinite sequences (5)

Lemma: Let U, V! Tand U" V =#, with ¥U " V¥=#
If M %% with 0 & (U' V) and oy & U%, then M $

Vn —1 v
M .er .rV2 !-.. !... ! !l n !
1“1 1“2 'll. llrlml 1 Ium !"'
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Exchange lemma:
infinite sequences (5)

Lemma: Let U, V! Tand U" V =#, with ¥U " V¥=#
If M %% with 0 & (U' V) and oy & U%, then M $
"y

V1V2 Vn ! 1Vn

\Y

n—1 \YJ
M !Vl !VZ !-.. !... ! !l n !

e e
UtUg... Um—1Um, - - -
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Exchange lemma:
infinite sequences (5)

Lemma: Let U, V! Tand U" V =#, with ¥U " V¥=#
If M %% with 0 & (U' V) and oy & U%, then M $

'|V

o ——
vlvg...vn_lvn\
/4

\Y

n —1 v
M !Vl !VZ !-.. !... ! !l n !
|u1 |u2 | llflm! 1 lum

%

1U2...Um1 1Um

U
= finite prefix !
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Exchange lemma:
infinite sequences (5)

Lemma: Let U, V! Tand U" V =#, with ¥U " V¥=#
If M %% with 0 & (U' V) and oy & U%, then M $

'|V

" —
U1U2---Un—1vn\

| .,J;& 3 / -
Z\/i .U1U2...Um! 1Um -

enabled
finite prefix
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Proofs of exchange
lemmas
(optional reading)



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with u" v¥= #
fM $ M' thenM $H M’

LetM I'" K" M
ClearlyM* = K L, ¥g+ U¥, with K'= K ! ¥,
K!
Since¥u # v¥= 9, then: M" I'" K'withM"= M ! ¥u

Therefore:
M=M"+xur" M"+ u¥r’ K'4+u¥=M"

35



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with u" v¥= #
fM $ M' thenM $H M’

letM " KI'' M lv K
lu MO



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with u" v¥= #
fM $ M' thenM $H M’

letM "' K" M'andK'= K ! ¥u l
V
K

pre-set of u w

U MO

ATV



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with ¥u" v¥= #.

fM $ M' thenM % M

LetM I'" r'“ |v| andK'= K ! ¥I I

ClearlyM' = K

% % KO is preserved
by the firing of u



Exchange lemma:

finite sequences (1)
Lemma: Let u,v! T with ¥u" v¥= #.

fM $ M' thenM % M

preserved by I\/I
thev flrlung of v

LetM ! K ! M andK'= K I w.
ClearlyM' = K

%

MO Sincexu # v¥= $

%ﬁ%@



Exchange lemma:

finite sequences (1)
Lemma: Let u,v! T with ¥u V¥ = #.

f M $ M' then M % M

MOS ce¥u# v¥=$ then: M* K’



Exchange lemma:

finite sequences (1)
Lemma: Let u,v! T with ¥u V¥ = #.

f M $ M' then M % M

MOS ce¥u# v¥=$ then: M* K’



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with u" v¥= #
fM $ M' thenM $H M’

Ww@
DA



Exchange lemma:

finite sequences (1)
Lemma: Letu,v! T with u" v¥= #
fM $ M' thenM $H M’

IO

u

AU



Exchange lemma:

finite sequences (1)
Lemma: Let u,v! T with ¥u V¥ = #.

f M $ M' then M S#%

%@@% P e



Exchange lemma:
finite sequences (2)

Lemma: LetV cTanduesT\ V, with YuNnV¥=10.
If M 2= M’ with! € V* then M == M’

The proof is by induction on the length af
base (o = €): trivially M ' M
induction (0 = o'v for some o' # V' and v# V):

Let M M" ™ M. Note that eu$ ve = %

By exchange lemma 13/ 17 M" ™V A
Let M F Y M™Y.

By inductive hypothesis F7 A" 1V o/

Ho o rl
Thus, M ™7 M' .



Exchange lemma:
finite sequences (3)

Lemma: LetU,V! T andU" V = # with ¥U " V¥= #
fM $% M'with! & (U’ V), thenM %6 M'
The proof Is by induction on the length df;y
base (! \y ="): trivially ! |y =
induction ( !,y = u!' forsome u! Uand !'! U):

LetM "#° ¥ "' M! with! = loul;and!o! V.
Note that! ' = (! 1))y and¥u $ V¥ = %

By exchange lemma 2M "¢ "%#° %' M'.
Note that (I o! 1)|U = (' 1)|U =1 and(! o! 1)|V = | IV -
By inductive hypothesisM "% % 4’ M

Ly !
Since! |y = u!', we conclude thaM %" #" M'
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Exchange lemma:
infinite sequences (4)

Lemma: Let U,V C T and UNV =), with eUNVe =1

o : w * A%
If M — with o € (UUV)% and oy € U*, then M —
Let! = I''I'" with !fU = and!l”v ="
(i.e., only transitions inV appears in ).
Such sequences exist becausg Is assumed to be pPni

Let M! be such thatM I M!'F

By Exchange Lemma (3) applied to' we have:
MoEYTY g

We conclude by observing that:

I =1 and! =1 1"
L] U L] L] V L] L]
| |U | vV,



Exchange lemma:
infinite sequences (5)

Lemma: Let U, V! Tand U" V =#, with ¥U " V¥=#
If M %% with 0 & (U' V) and oy & U%, then M $

To prove thatM " it sulces to show that
every bnite prebx df,y Is enabled atM .

Take any pbnite prep%’ of ! |, and
a corresponding Pnite prePxof ! such that
!

N
ClearlyM I' M for some suitableM '.

By Exchange Lemma (3), them I'" " M!, i.e.

M enables’|y = .
48



Proofs of theorems on
strong connectedness
(optional reading)



Strong connectedness
theorem

Theorem : If a weakly connected system Is
live and bounded then it Is strongly connected

Since the system is live and bounded, by a previous corollary: (see Lecture 11)
exists M € [My) and o such that M -2+ M and all transitions in T" occur in o.

Take any arc x — y in F"
we need to show that there is a path from y to x using arcs of F'.

We distinguish two cases:
l. xePandyeT
2. xe€Tl andy € P

50



Strong connectedness theorem (case 1)

letV={v! T |y" 'v}andU= T\ V. (V is the set of transitions reachable frog)
Note that U andV are disjoint and that‘U # V¥ = $.

(to see this, supposg! ¥U# V¥ thenv" q" uforsomev! V andu! U,
but thenu! V, which is impossible becausé= T\ V) y
. _
By the Exchange Lemma (3), there existé ™ with M % M" 9% M (we want to find a
We claim thatM 94" path from y to x)
¥if 'y =" (l.e.,! does not contain any transition i),
then! |y =1.

¥ otherwise {|y & "), we can apply the Exchange Lemma (5) i WAL

Ly !y 888
to get M SROGIA i.e., M RIS
Since! |y can occur inPnitely often fronM , thenM "' M.

" !
By the Boundedness Lemmd "= M andM %'

Sincey ! V, y occursin! |y andy! x*, then (y subtracts a token fronk)
there must be some transition that occurs in! |y such thatv! *x. (v adds a token tox)
Sincev ! V, there is a pathy " ' .

I

We can extend this path by the arg/, X) to get a pathy " * X.
51



Strong connectedness theorem (case 2) | x

(U is the set of transitions from whick is reachablel
letU={u! T |u" *"x}andV =T\ U.
Note that U and V are disjoint and that‘U # V¥ = $. @
(to see this, supposg! ¥U# V¥ thenv" q" uforsomev! V andu! U,

but thenv ! U, which is impossible because= T\ U) (we want to find a
path from y to x)

By the Exchange Lemma (3), there existé” with M W MU M
By the Exchange Lemma (5) applied td 943"

1l 48 |y 448
we getM SROTVn ie.. M WHSEh
Since! |y can occur inPnitely often fronM , thenM " & M .

" !
By the Boundedness Lemmd "= M andM %" M .

Sincex ! U, x occurs in! y andx ! ¥y, then (x adds a token toy)
there must be some transition that occurs in! |y such thatu! y*.

(u subtracts a token fromy)
Sinceu! U, there is a pathu" ' x.
We can extend this path by the argy, u) to get a pathy " * x.

52



Strong connectedness
via invariants

Theorem : If a weakly connected net has
a positive S-invariant | and a positive T-invariant J
then it is strongly connected

Take any arcx — y In F:
we need to show that there is a path frognto x using arcs of-.
We distinguish two cases:

1. xeP andyeT
2. XxeTandy e P

53



Strong connectedness CID

via invariants: case (1) [,

LetV ={v! T | y" ' v} and dePne:
3°(t) = J() ift! V (V is the set of transitions reachable frog)
-0 otherwise

(we want to find a
path from y to x)

Takep! P:
¥ifJ(u=0 forallu! *p, then:

0= J (u) # J (1)
U#¥p t# p¥

(becausel has no negative entries).

¥ otherwise, assume that (u) = J(u) > Ofor someu! *p,i.e.,y" "u" p.
Then, for anyt ! p*: y" 't andJ (t) = J(t) > 0. So:

0< J (u) # J(u) = J(t) = J (1)
u#*p u#*p t# p¥ t# p¥

54



Strong connectedness CID

via invariants: case (1) [,

(we want to find a
path from y to x)

In both cases: J (u) < J (t)
u! *p | t! p® |
Then: (N -J)(p) = Ju—- J({)<O0foranypeP,

u! *p t! p®
l.,e., N -J has no positive entries.

Since | is an S-invariant: | - (N -J) =(1-N)-J =0
and since | is positive, N .J =0, ie.,J isa T-invariant. Hence:
! ) ! ) )
JMO= JO=I()=Jy) >0

tl *x t! x®

So there exists vV € X with J (V) > 0, which meansv €V, ie,y =% v.

Since V € °X, then y =% x.
55



Strong connectedness X

via invariants: case (2) (i)

(we want to find a
path from y to x)

TakeN' =(T,P, F)
(1.e., Invert the roles of places and transitions).

~

| is a positive T-invariant ofN .

J is a positive S-invariant oN '

By case (1),N’ contains a path fromy to x.
So, N contains a path fromy to X.

N
@ Then,N' = ! NT (whereN" is the transposed oN )
y
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