coLuMN 11: SEARCHING

Small computer programs are often educational and entertaining. This

column tells the story of a tiny program that, in addition to those qualities,
proved quite useful to a small company.

11.1 The Problem

The company had just purchased several personal computers. After I got
their primary system up and running, I encouraged people to keep an eye open
for tasks around the office that could be done by a program. The firm’s busi-
ness was public opinion polling, and an alert employee suggested automating
the task of drawing a random sample from a printed list of precincts. Because
doing the job by hand required a boring hour with a table of random numbers,
she proposed the following program.

I’d like a program to which the user types a list of precinct names
and an integer M. Its output is a list of M of the precincts chosen
at random. There are usually a few hundred precinct names (each
an alphanumeric string of at most a dozen characters), and M is
typically between 20 and 40.

That’s the user’s idea for a program. Do you have any suggestions about the
problem definition before we dive into coding?

My primary response was that it was a great idea; the task was ripe for
automation. I then pointed out that typing several hundred names, while
perhaps easier than dealing with long columns of random numbers, was still a
tedious and error-prone task. In general, it’s foolish to prepare a lot of input
when the program is going to ignore the bulk of it anyway. 1 therefore sug-
gested an alternative program.

The input consists of two integers M and N, with M<N. The out-
put is a sorted list of M random integers in the range 1..N in which
no integer occurs more than once. For probability buffs, we desire
a sorted selection without replacement in which each selection
occurs equiprobably.

117

118 PROGRAMMING PEARLS COLUMN 11

When M =20 and N =200, the program might produce a 20-element sequence
that starts 4, 15, 17, ... The user then draws a sample of size 20 from 200 pre-
cincts by counting through the list and marking the 4", 15 and 17* names,
and so on. (The output is required to be sorted because the hardcopy list isn't
numbered.)

That specification met with the approval of its potential users. After the
program was implemented, the task that previously required an hour could be
accomplished in a few minutes.

Now look at the problem from the other side: how would you implement
the program? Assume that your system provides a function Randint(l,J) that
returns a random integer chosen uniformly in the range /..J, and a function

RandReal (A,B) that returns a random real number chosen uniformly in the
interval [A.B).

11.2 One Solution

As soon as we settled on the problem to be solved, I ran to my nearest copy
of Knuth’s Seminumerical Algorithms (having copies of Knuth’s three volumes
both at home and at work has been well worth the investment). Because I had
studied the book carefully a decade earlier, I knew that it contained several
algorithms for problems like this. After spending a minute considering several
possible designs that we’ll study shortly, I realized that Algorithm S in Knuth’s
Section 3.4.2 was the ideal solution to this problem.

The algorithm considers the integers 1, 2, ..., N in order, and selects each
one by an appropriate random test. By visiting the integers in order, we
guarantee that the output will be sorted.

To understand the selection criterion, let’s consider the example that M =2
and N=5. We should select the integer | with probability 2/5; a program
implements that by a statement like

if RandReal(0,1) < 2/5 then ...

Unfortunately, we can’t select 2 with the same probability: doing so might or
might not give us a total of 2 out of the 5 integers. We will therefore bias the
decision and select 2 with probability 1/4 if 1 was chosen but with probability
2/4 1f | was not chosen. In general, to select S numbers out of R remaining,
we'll select the next number with probability S/R.
This probabilistic idea results in Program 1.
Select := M; Remaining := N
for I := 1 to N do
if RandReal(0,1) < Select/Remaining then

print I; Select := Select-1
Remaining := Remaining-1

As long as M =N, the program selects exactly M integers: it can’t select more
because when Select goes to zero no integer is selected and it can’t select fewer

COLUMN i1 SEARCHING 119

because when Select/Remaining goes to one an integer is always selected. The
for statement ensures that the integers are printed in sorted order. The above
description should help you believe that each subset is equally likely to be
picked; Knuth gives a probabilistic proof.

Knuth’s second volume made the program easy to write. Even including
titles, range checking and the like, the final program required only thirteen
lines of BASIC. It was finished half an hour after the problem was defined,
and has been used for several years without problems.

11.3 The Design Space

One part of a programmer’s job is solving today’s problem. Another, and
perhaps more important, part of the job is to prepare for solving tomorrow’s
problems. Sometimes that preparation involves taking classes or studying
books like Knuth's. More often, though, we programmers learn by the simple
mental exercise of asking how we might have solved a problem differently.
Let’s do that now by exploring the space of possible designs for the sampling
problem.

When [talked about the problem at West Point, I asked for a better
approach than the first problem statement (typing all 200 names to the pro-
gram). One student suggested photocopying the precinct list, cutting the copy
with a paper slicer, shaking the slips in a paper bag, and then pulling out the
required number of slips. That cadet showed the “conceptual blockbusting”
that is the subject of Adams’s book cited in Section 1.7.1

From now on we’'ll confine our search to a program to write M sorted
integers at random from I..N. We’ll start by evaluating Program 1. The algo-
rithmic idea is straightforward, the code is short, it uses just a few words of
space, and the run time is fine for this application. The run time might, how-
ever, be a problem in other applications: to select a dozen integers from the
range 1..2%' =1, for instance, would take hours on a supercomputer. It’s
therefore worth a few minutes of our time to study other ways of solving the
problem. Sketch as many high-level designs as you can before reading on;
don’t worry about implementation details yet.

One solution inserts random integers into an initially empty set until there
are enough. In pseudocode, it is

I Page 57 of that book sketches Arthur Koestler’s views on three kinds of creativity. Ah! insights
arc his name for originality, and <ha! insights are acts of discovery. He would call this cadet's
solution a haha! insight: the low-tech answer to a high-tech question is an act of comic inspiration
tas n Solution 1.10).

120 PROGRAMMING PEARLS COLUMN 11

Initialize set S to empty
Size := 0
while Size < M do
T := RandInt(1,N)
if T is not in S then
Insert T in S
Size := Size + 1
Print the elements of S in sorted order

The algorithm is not biased towards any particular element; its output is ran-
dom. We are still left with the problem of implementing the set S; think about
an appropriate data structure.

The bitmap data structure described in Section 1.4 is particularly easy to
implement. We represent the set § by an array of bits in which the I bit is
one if and only if the integer / is in the set. We initialize it by the subroutine
InitToEmpty, which turns off all bits.

for I := 1 to N do
Bit{I] := 0

The function Member(T) tells whether T is in S by returning Bit[T], and the
procedure Insert(T) inserts T in S by the assignment Bit|[T|:=1. Finally, the
routine PrintInOrder prints the elements of S.

for I := 1 to N do
if Bit[I] = 1 then
print I

These subroutines allow us to write more precise pseudocode for Program 2.

InitToEmpty
Size := 0
while Size < M do
T := RandInt(1,N)
if not Member(T) then
Insert(T)
Size := Size + 1
PrintInOrder

The bitmaps in Program 2 use N/b words of b-bit memory. The obvious
implementations of the initialization and printing routines both require time
proportional to N, but that can be reduced to N/b by simultaneously operating
on all b bits in a word (this holds as long as M <N/b; we’ll soon consider what
to do when M is close to N). There are always exactly M calls to the Insert
procedure, but there may be more calls to Member because some of Randlnt’s
random numbers may already be in the set. Problem 2 shows that as long as
M<<N/2, the expected number of Member tests is less than 2M. Both Member
and Insert require constant time per operation, so their total cost is propor-
tional to M. Thus the expected total run time of Program 2 is O(N/b).

COLUMN 1] SEARCHING 121

Although the performance unalysis assumed that the set was implemented
by a bitmap, nothing in Program 2 says so. The InitToEmpty, Member, Insert
and PrintlnOrder operations all refer to an “abstract data type” of sets (a set
with these operations is usually called a dictionary, more on this in Section
12.5). Replacing those four subroutines can change the representation of the
sets and thereby change the performance of the program. This figure illus-
trates several possible data structures at the end of a run in which M =5,
N =10, and Randint(1.10) returns the sequence 3, 1,4, 1.5, 9.

Bit Vector: Unsorted Array . Sorted Array:

T101 11000101 131459 13459
l J

Bins: Binary Seurch Tree

o

ik

Binary scarch trees arc described in most texts on algorithms and data
structures. Because the insertions into the tree are in random order, it is
unlikely to get too far out of balance; complex balancing schemes are therefore
not needed in this application. The M bins can be viewed as a kind of hashing
in which the integers in the range 1..N/M are placed in the first bin, and the
integer / hashes to bin (roughly) /XM /N. The bins are implemented as an
array of linked lists. Because the integers are uniformly distributed, each
linked fist has expected length one. The average performance of the various
schemes, when M <N/b, is as follows.

SET O (TIME PER OPERATION) TotaL SPACE IN
REPRESENTATION Init Member Insert Print TIME WORDS
Bit Vector N'b 1 ! N/b O(N/b) N/b
Unsorted Array 1 M [M log M 0(M?) M
Sorted Array I log M M M O(M?) M
Binary Tree | log M log M M OM log M) M
Bins M 1 | M OM) M

Beware of the constant factors hiding in the big-ohs: the array operations
are usually cheap compared to some implementations of the bit vector accesses,
the pointer operations on binary trees, and the divisions used by bins. To
understand the performance issues. let's consider the case that N =1,000,000
and A=132. When M =5.000, hins ure probubly the most efficient structure;

122 PROGRAMMING PEARLS COLUMN 11

when M =50,000, bitmaps are faster and take less space; when M =500,000,
Program 1 uses much less space and is also faster. When M =999,995, though,
we would do better to represent the five elements not selected; either kind of
array would be easy to code and fast for this task.

Yet another approach to generating a sorted subset of random integers is to
shuffle an N-element array that contains the numbers 1..N, and then sort the
first M to be the output. Knuth’s Algorithm P in Section 3.4.2 shuffles the
array X[1..N].

for I := 1 to N do
Swap(X[I], X[RandInt(I,N)])

Ashley Shepherd and Alex Woronow of the University of Houston observed
that in this problem we need shuffle only the first M elements of the array,
which gives Program 3.

for I := 1 to N do X[I] := 1
for I := 1 to M do

Swap(X[I]l, X[RandInt(I,N)])
Sort(1, M)

The sorted list is in X[1..M]. The algorithm uses N words of memory and
O(N+M log M) time, but the technique of Problem 1.8 reduces this to
O(M log M) time. We can view this algorithm as an alternative to Program 2
in which we represent the set of selected elements in X{[1../] and the set of
unselected elements in X{/+1..N]. By explicitly representing the unselected
elements we avoid testing whether the new element was previously chosen.

Programs 1, 2 and 3 offer different solutions to the problem, but they by no
means cover the possible design space. Yet another approach generates the
“gaps’’ between successive integers in the set. J. S. Vitter’s *“‘Faster Methods
for Random Sampling’ in the July 1984 Communications of the ACM generate
M sorted random integers in O(M) time and constant space; those resource
bounds are within a constant factor of optimal.

11.4 Principles

This column illustrates several important steps in the programming process.
Although the following discussion presents the stages in one natural order, the
design process is more active: we hop from one activity to another, usually
iterating through each many times before arriving at an acceptable solution.

Understand the Perceived Problem. Talk with the user about the context in
which the problem arises. Problem statements often include ideas about solu-
tions; like all early ideas, they should be considered but not followed slavishly.

Specifv an Abstract Problem. A clean, crisp problem statement helps us first
to solve this problem and then to see how this solution can be applied to other
problems.

