4

Seminumerical String Matching
1500 S

4.1. Arithmetic versus comparison-based methods

All of the exact matching methods in the first three chapters, as well as most of the methods
that have yet to be discussed in this book, are examples of comparison-based methods. The
main primitive operation in each of those methods is the comparison of two characters.
There are, however, string matching methods based on bit operations or on arithmetic,
rather than character comparisons. These methods therefore have a very different flavor
than the comparison-based approaches. even though one can sometimes see character
comparisons hidden at the inner level of these “seminumerical” methods. We will discuss
three examples of this approach: the Shiff-And method and its extension to a program
called agrep to handle inexact matching; the use of the Fast Fourier Transform in string
matching; and the random fingerprint method of Karp and Rabin.

4.2. The Shift-And method

R. Baeza-Yates and G. Gonnet [35] devised a simple, bit-oriented method that solves the
exact matching problem very efficiently for relatively small patterns (the length of a typical
English word for example). They call this method the Shift-Or method, but it seems more
natural to call it Shift-And. Recall that pattern P is of size n and the text T is of size m.

Definition Let M be an n by m + 1 binary valued array, with index i running from 1 to
n and index j running from 1 to m. Entry M(i, j) is | if and only if the first i characters of
P exactly match the i characters of T ending at character j. Otherwise the entry is zero.

In other words, M(i, j) is 1 if and only if P[1..i] exactly matches T'[j — i + L..j].
For example, if T = california and P = for, then M(1,5) = M(2,6) = M@3,7) =1,
whereas M(i, j) = 0 for all other combinations of i, j. Essentially, the entries with value
1 in row i of M show all the places in T where a copy of P[1..i] ends, and column j of
M shows all the prefixes of P that end at position j of T.

Clearly, M(n, j) = 1 if and only if an occurrence of P ends at position j of T'; hence
computing the last row of M solves the exact matching problem. For the algorithm to
compute M it first constructs an n-length binary vector U(x) for each character x of the
alphabet. U(x) is set to 1 for the positions in P where character x appears. For example,
if P = abacdeab then U(a) = 10100010.

Definition Define Bir-Shift(j — 1) as the vector derived by shifting the vector for column

; — 1 down by one position and setting that first to 1. The previous bit in position n
disappears. In other words, Bit-Shift(j — 1) consists of 1 followed by the first n — 1 bits
of column j — 1.

IFor example, Figure 4.1 shows a column j — 1 before and after the bit-shift.

70

4.2. THE SHIFT-:AND METHOD 71

0 1
0 0

~
J

Figure 4.1: Column J— 1 before and after operation Bit-Shiff(j — 1).

4.2.1. How to construct array M

Array M is constructed column by column as follows: Column one of M is initialized to
all zero entries if T(l)# P(1). Otherwise, when T(1) = P(l)its first entry is | and the
remaining entries are 0. After that, the entries for column J > lare obtained from colump
J—Tand the U vector for character T'(j). In particular, the vector for column J is obtained
by the bitwise AND of vector Bit-Shift(j — 1) with the U vector for character 7(j). More
formally, if we let M(j) denote the jth column of M, then M(j) = Bit-Shift(j — 1) AND
U(T(})). For example, if P = ubaac and T — xabxabaaxa then the eighth column of M is

S O O

because prefixes of P of lengths one and three end at position seven of T. The eighth
character of 7 is character a, which has a U vector of

S

When the eighth column of M is shifted down and an AND is performed with U(q), the
result is

O O

O e

which is the correct ninth cofumn of M.

To see in general why the Shift-And method produces the correct array entries, observe
that for any / > | the array entry for cell (i, j) should be 1 if and only if the first ;i — |
characters of P match the ; — I characters of T ending at character J — 1 and character
P(i) matches character r'(j). The first condition is true when the array entry for cel]
(1. —1yis 1, and the second condition is true when the ith bit of the U vector for
character 7(jyis 1. By first shifting column J = 1. the algorithm ANDs together entry
t—=1.j -~ 1)of column J = 1 withentry ; of the vector U(T(j)). Hence the algorithm
computes the correct entries for array M.

72 SEMINUMERICAL STRING MATCHING

4.2.2. Shift-And is effective for small patterns

Although the Shift-And method is very simple, and in worst case the number of bit oper-
ations is clearly ®(mn), the method is very efficient if n is less than the size of a single
computer word. In that case, every column of M and every U vector can be encoded
into a single computer word, and both the Bir-Shift and the AND operations can be done
as single-word operations. These are very fast operations in most computers and can be
specified in languages such as C. Even if n is several times the size of a single computer
word, only a few word operations are needed. Furthermore, only two columns of M are
needed at any given time. Column j only depends on column J —1,soall previous columns
can be forgotten. Hence, for reasonable sized patterns, such as single English words, the
Shift-And method is very efficient in both time and space regardless of the size of the
text. From a purely theoretical standpoint it is not a linear time method, but it certainly is
practical and would be the method of choice in many circumstances.

4.2.3. agrep: The Shift-And method with errors

S. Wu and U. Manber [482] devised a method, packaged into a program called agrep,
that amplifies the Shift-And method by finding inexact occurrences of a pattern in a text.
By inexact we mean that the pattern either occurs exactly in the text or occurs with a
“small” number of mismatches or inserted or deleted characters. For example, the pattern
atcgaa occurs 1n the text aatatccacaa with two mismatches starting at position four; it
also occurs with four mismatches starting at position two. In this section we will explain
agrep and how it handles mismatches. The case of permitted insertions and deletions will
be left as an exercise. For a small number of errors and for small patterns, agrep is very
efficient and can be used in the core of more elaborate text searching methods. Inexact
matching is the focus of Part III, but the ideas behind agrep are so closely related to the
Shift-And method that it is appropriate to examine agrep at this point.

Definition For two strings P and T of lengths n and m, let M* be a binary-valued
array, where M*(i, j)is 1 if and only if at least i — k of the first i characters of P match
the i characters up through character j of T'.

Thatis, M*(i, j)is the natural extension of the definition of M (i, j) to allow up to k mis-
matches. Therefore, M is the array M used in the Shift-And method. If M*(n, j) = 1 then
there is an occurrence of P in T ending at position j that contains at most k mismatches.
We let M*(j) denote the jth column of M*.

In agrep, the user chooses a value of k and then the arrays M, M!, M2, ... M* are
computed. The efficiency of the method depends on the size of k — the larger k is, the
slower the method. For many applications, a value of k as small as 3 or 4 is sufficient, and
the method is extremely fast.

4.2.4. How to compute M*

Let & be the fixed maximum permitted number of mismatches specified by the user. The
method will compute M for all values of / between 0 and k. There are several ways to
organize the computation and its description. but for simplicity we will compute column
Jj of each array M' before any columns past j will be computed in any array. Further, for
every j we will compute column j in arrays M’ in increasing order of /. In particular. the

4.3. THE MATCH-COUNT PROBLEM AND FAST FOURIER TRANSFORM 73

sero column of each array is again initialized to all zeros. Then the jth column of M’ is
computed by:

M)y = M7y OR [Bit-Shift M'(j — 1)) AND U(T(j)] OR M'~'(j — 1),

Intuitively. this just says that the first 7 characters ot P will match a substring ot T
ending at position ;. with at most / mismatches, if and only if one of the following three
conditions hold:

e The first i characters of P match a substring of T ending at j, with at most / — 1 mis-
matches. .

e The first 7 — | characters of P match a substring of T ending at j — 1, with at most /
mismatches. and the next pair of characters in P and T are equal.

e The first/ — 1 characters of P match a substring of 7 ending at j — 1, with at most/ — |
mismatches.

It 1s simple to establish that these recurrences are correct. and over the entire algorithm
the number of bit operations is O (knm). As in the Shift-And method, the practical efficiency
comes from the fact that the vectors are bit vectors (again of length 1) and the operations
are very simple — shifting by one position and ANDing bit vectors. Thus when the pattern
is relatively small, so that a column of any M' fits into a few words, and k is also small,
agrep 1s extremely fast.

et s e Vi e B0 T PR

IS el / i
4.3. The‘match-count prob/l/(;m and Fast FW

€ requirement that only it operatiohsare permitted and allow each enfiy~.

een O and n, then an_easily adapt the Shift-And

ir i, j the number of characters o&£[1..i] that match
1..j]. This computation 1s in a formASf inexact matching, whichds the focus

Mvever, ag7was true of agrep;the solution is so cornected to the S And

" method that we Cons foduction to the next topic;

match-counts. F cfzhityQ;s define £ new matrix N
The matrix M &M j natrix, where entry

If we relax

and otherwise is set t
N again indicgt€s an occurre
. of charagérs that match for @ach of difterent alig
uses @{nm) additions and gbmpatgons, althoug
sim\p‘h.\just incrementingby one.
[f we wagt to comppte the entire MC afply then O(nnr) time # necessary, but the most
important informatién is contained in e lastsgw of MC. Por each positioy”] > n in
T. the last row indiveges the number g characters hat mgh when the right end of PAs
aligned with character ;»Qt 7. The problem of findingAhe last row of #1C is c:ell}Kthe
match-count problem. MatcR™gunts are useful in several problems @'be discussed later.

-

atry with value n in th€ last row
ssthan n count the fxact number
ments ofNP with 7/ This extension
each addition Opgration is particularly

