Hinmhe Darrecy (0Rneren)

BASH TUNSIIONS
] Bz CHAPTER FOUR: QUERYING

hash function is to take h(z) = z.mad m for some value m > n/a, where a is
the loading, the ratio of records to available addresses, and m is usually chosen to
be a prime number. Thus, if asked to provide a hash function for 1,000 integer keys,
a programmer might suggest something like h(z) = x mod 1,399 to give a load
factor of & = 0.7 in a table declared to have 1,399 locations.

The smaller the value of c, the less likely it is that two of the keys collide at the
same hash value. Nevertheless, collisions are almost impossible to avoid. This fact
is somewhat surprising when first encountered and is demonstrated by the well-
known birthday paradox, which asks, “Given that threre are 365 days in the year, how
many people must be collected together before the p“robability that two people share
a birthday exceeds 0.5?” In other words, given 365 hash slots, how many keys can
be randomly assigned before the probability of collision exceeds 0.5? The initial
reaction is usually to say that lots of people are needed. In fact, the answer is just 23,
and the chance that a hash function of realistic size is collision-free is insignificant.’
For example, with 1,000 keys and 1,399 randomly selected slots, the probability of
there being no collisions at all is 2.35 % 10~217, (The derivation of this probability
can be found in the next subsection: it is given by Equation 4.1 with m = 1,399
and n = 1,000.) The inevitability of collisions has led to a large body of literature
on how best to handle them. Here, however, we seek instead those one-in-a-million
hash functions that do manage to avoid all collisions.

If the hash function has the additional property that, for z; and z; in L, h(z;) =
h(zx,) if and only if i = j,itisa perfect hash function. In this case, no collisions
arise when hashing the set of keys L.

If a hash function h is both perfect and maps into the range m = 7, each of the
n keys hashes to a unique integer between 1 and n and the table loading is & = 1.0.
Then h is a minimal perfect hash function, or MPHFE. An MPHF provides guaranteed
one-probe access to a set of keys, and the table contains no unused slots.

Finally, if a hash function has the property that if z; < T ; then h(z;) < h(x;),

it is order preserving. Given an order-preserving minimal perfect hash function (ab-
breviated OPMPHF and pronounced “oomph!”), keys are located in constant time
without any space overhead and can be processed in sorted order should that be
necessary. An OPMPHF simply returns the sequence number of a key directly.

Of course, an MPHE or OPMPHEF h for one set L will not be perfect for another
set of keys, and so it is nothing more than a precalculated lookup function for a
single set. Nevertheless, there are occasions when the precalculation is warranted,

and the space saving can be great.

1 Tt is always interesting to try this experiment with groups of people. Having tried this exper-
iment many times with students while teaching them about hash tables, there is one impor-
tant tip that we would like to pass on: the participants should be asked to write down their
birthday (or any other date) before the collation process is commenced, so that the tempta-
tion for mysterious negative feedback is eliminated. In our experience, unless this is done,
it can sometimes take 366 students before the first collision. Perhaps there is a psychology
paradox here too.

4.1 ACCESSING THE LEXICON] 63

Table 43 Tables for a minimal perfect hash function: (a) terms and hash functions;
(b) function g.

(@) Termt hi(t)y holt) hlt) (b) x gix)
jezebel 5 9 0 0 0
jezer 5 7 1 i 4
jezerit 10 12 2 2 0
jeziah 6 10 3 3 7
jeziel 13 1 4 4 6
jezliah 13 n 5 5 0
jezoar 4 2 6 6 1
jezrahiah] 3 1 7 1
jezreel 6 3 8 8 3
jezreelites 8 4 9 9 0
jibsam 9 14 10 10 2
jidlaph 3 1 1 1 2

12 0
13 3
14 10

As an example, Table 4.3 gives an OPMPHEF for the same set of 12 keys that was
used earlier. The methodology leading to this hash function is described in the next
section. The construction presumes the existence of two normal hash functions
h,(t) and h,(t) that map strings into integers in the range 0...m — 1 for some
value m > n, with duplicates permitted. One way to define these is to take the
numeric value for each character of a string radix 36, as before, and compute a
weighted sum for some set of weights w;,

It!
hy(t) = (Zt[i] x wj[rz]) mod m,
i=1

where t[i] is the radix-36 value of the ith character of term ¢ and |t] is the length
in characters of term ¢. Then two different sets of weights (7] and wa[?] for 1 <
i < |t! yield two different functions h, () and h-(t). As well as these two functions,
a rather special array g is needed that maps numbers 0...m — 1 into the range
0...n — 1; this is shown in Table 4.3b.

To evaluate the OPMPHEF h(t) for some string ¢, calculate

h(t) = g(hl(t)) +n g(h?.(t))v

164

CHAPTER FOUR: QUERYING

where +, means addition modulo n—that is, add the two numbers together, and
take the remainder on division of the sum by n. (For example, 4 +9 7 = 2.) In other
words, evaluate the two nonperfect hash functions, convert the resulting values us-
ing the mapping g, and then add them modulo n. The result of this calculation for
the example lexicon is shown in the fourth column of Table 4.3a. As if by magic, the
final hash values are exactly the ordinal positions within the list of strings.

To make this work, the array g must meet some very special constraints. A de-
tailed description of how it can be obtained appears shortly. Let us simply accept
that for any given set of strings it is possible to construct functions hi, hy, and g so
that h(t) = g(hi(£)) +n g(h,(t)) is the ordinal number of string t.

Suppose that an OPMPHF h is calculated for the set of index terms in a given lex-
:con. There is no need to store the strings or the string pointers—all that is required
is for f, and the inverted file address for term ¢ to be stored in the h(t)th positions
of their respective arrays.

There is a catch, which is the space required for the description of the hash func-
tion h. It has been shown that at least 1.44n bits of storage are required by any
MPHE (Fox, Heath, et al. 1992), and more typically, easily calculable MPHFs for
large values of n require from 4 to 20 bits per key. The specification of OPMPHFs
is even more lengthy and requires at least n log n bits of storage (Fox et al. 1991). In
the OPMPHEF described, the two functions h, and h, are determined by small tables
of weights w; and w,, so they require negligible space. On the other hand, array g is
m items long and occupies m logn bits even when stored as compactly as possible.
The method detailed in the next section operates with 72 22 1221, and this is why,
in the example of Table 4.3, then = 12 strings were handled using m = 15 entries in
the array g. This means that array g occupies at least 25 bits per string, or, in prac-
tical terms with each entry stored as a four-byte integer, 1.25 x 4 x 1,000,000 = 5
Mbytes for the hypothetical lexicon of n = 1,000,000 words. Another 8 Mbytes is
still required for the disk pointers and term frequencies. In total, if an OPMPHF of
the type described here is used, this lexicon can be reduced to 13 Mbytes, compared

with 15.5 Mbytes for a 3-in-4 front-coded representation.

Design of a minimal perfect hash function

To set the scene for the development of an algorithm for finding minimal perfect
hash functions, let us first calculate the probability for the birthday paradox. Sup-
pose that n items are to be hashed into m slots. The first item can be placed any-
where without risk of collision. The second item will avoid collision with probability
(m — 1)/m since one slot is now occupied; the third, with probability (m — 2) /m;
and so on. The probability of inserting n consecutive items without collision is the
product of these probabilities:

tem—i+1 m! ,
et (4

. m (m —n)!mn"
i

L

S R

e s s

4.1 ACCESSING THE LEXICON 165

When m = 365 and n = 22, the probability is 0.524, and when n = 23, the prob-
ability decreases to 0.493, so if there are 23 people in a room, it is more likely than
not that at least two of them will have the same birthday.

Now let us turn to the construction of the array g that is the secret of the MPHF
shown in the example in Table 4.3. Recall that

h(t) = g(hy(t)) +,, g(ha(t))
and that

1

hi(t) = (Z t[4] % wl[i]) mod m,
=1
it

h,(t) = (Zt[i] X wz[i]) mod m,
i=1

where t[4] is the ith character of the string being hashed. The first step in developing
an OPMPHE is to choose mappings xandemly for the functions ky and h;. There
are several ways to do this, the easiest of which is to generate random integers into
\'_}twhe two arrays w, and w, used in their definjtion. Once this is done, the search for
a function g can be commenced.

One way to visualize the situation is as an m-vertex graph, with vertices labeled
0...m — 1 and edges defined by (h(t), ha(t)) for each of the terms ¢. Each term
in the lexicon corresponds to one edge of the graph, and the values of the two hash
functions define to which vertices that edge is incident. Finally, suppose that each
edge is labeled with a value h(t), where h(t) is the desired value of the hash function
for term t. The graph corresponding to the functions h; and h;, in Table 4.3a is
shown in Figure 4.4. It has m = 15 verticesand n = 12 edges. Graph algorithms are
normally described with n as the number of vertices and m the number of edges,
but consistency has required the opposite convention for this discussion.

What is needed now is a mapping g from vertices to integers 0...7 — 1 such
that, for each edge (h;(t), h2(t)), the mapping vields g(h, (1)) +, glha(t)) = h{t),
the label on the edge.

For a general graph, finding such a labeling, if it exists, is difficult. But suppose
that the graph is known to be acyclic; that is, it has no closed cycles of edges. For
example, the graph of Figure 4.4 is acyclic, but if there were an edge from vertex 2 to
vertex 8, then a cycle 2-4-8-2 would be formed, and it would no longer meet this
requirement. ¢

The desired function g for an acyclic graph is easily derived. Any unprocessed
vertex v is chosen and assigned g(v) = 0. The edges out of that vertex are then
traced, and the destinations of those edges are labeled with the h value of the edge
used. In the next step, a second generation of vertices is labeled, this time with
the difference between the tag on the edge used and the label of the vertex that is
the source of the edge. If there are unlabeled vertices, another root is chosen and
the process repeats. Work continues until all vertices are labeled, at which point the
mapping g is complete.

vy

e iR A SO R R RS GG AN A ST Y N ¢ S

166

CHAPTER FOUR: QUERYING

\
|

\
Figure 44 Graph corresponding to hash function of Table 4.3.

For example, suppose that vertex 0 in Figure 4.4 is chosen as the root of one of
these connected components, and the assignment g[0] = 0 is made. Then g[3] can
be set to 7, which in turn means that g[6] canbesetto 1 and g[1] can be set to 4. But
if g[6] = 1, then g{10] must be 2, and if g[10] = 2, then g[12] must be 0. This is the
end of the component rooted at vertex 0, and the next unlabeled vertex—in this case
vertex 2—is selected as the root of a new component, giving g[2] = 0, gl4] = 6,and
g[8] = 3. Finally, vertex 5 is taken as a root, and the remaining vertices are assigned
values for g during the processing of that component.

If the graph were not acyclic, this labeling process might trace around a cycle and
insist on relabeling some already-processed vertex with a different label than the one
that has already been assigned to it. On an acyclic graph this cannot happen, and
labeling is always possible. Because of this, the test for acyclicity can be built into the
labeling process. Figure 4.5 describes this process for an arbitrary undirected graph
G = (V,E). Tt is assumed that adjacent(v) is a list of vertices that share an edge
with vertex v and that h((v,u)) is the label associated with the edge joining v and
u.

This mechanism requires a linear number of steps to either fully assign the map-
ping g or to report that the graph is not acyclic, and the function LabelFrom will be
called at most 2m times. Figure 4.6 describes an iterative process that generates and

4.1 ACCESSING THE LEXICON] 57

To label an acyclic graph,
1. Forv eV,
Set g{v] + unknown.
2. ForveV,
If g{v] = unknown then
LabelFrom(v, 0).

where the function LabelFrom(v, c) is defined by
1. If g[v] & unknown then
If g[v] # c then
return with failure—the graph is not acyclic,
else
return—this vertex has already been visited.

2. Setglv] «c.

3. Foru € adjacent(v),
LabelFrom(u, h((v,u)) — g[v]).

Figure 45 Checking for acyclicity and assigning a mapping.

To generate a perfect hash function,
1. Choose a value for m.
2. Randomly choose weights w, [¢] and w; 4] for 1 < ¢ < maxscr, |t|, where L
is the set of strings to be hashed and |t| is the length of string ¢.
3. Generate the graph G = (V, E), where
V={1,...m}and
E = {(h(t), ha{(t)) |t € L}.
4. Use the algorithm of Figure 4.5 to attempt to calculate the mapping g.
5. 1f the labeling algorithm returns with failure, go back to step 2.

6. Return the arrays w,, w,, and g.

Figure 4.6 Generating a perfect hash function.

tests hash functions. The essence of this algorithm is simple: new functions h, and
h. are generated until an acyclic graph results.

The single remaining question is crucial to the usefulness of this technique: how
likely is it that the graph G produced at steps 2 and 3 is acyclic? The answer to this

AT IR S B R

168

CHAPTER FOUR: QUERYING

question depends upon the value of m that is chosen in the first step. Clearly, the
larger the value of m, the sparser the graph G and the more likely it is to be acyclic.

Analysis based upon the theory of random graphs shows that for m < 2n,
the probability of generating an acyclic graph tends toward zero as n grows—the
edges are too dense, and it becomes inevitable that a cycle is formed somewhere
in the graph (Czech, Havas, and Majewski 1992). On the other hand, when m >
2n, the probability of a random graph of m vertices and n edges being acyclic is
approximately

—

m — 2n
\/ m

Hence the expected number of graphs generated until the first acyclic graph is
found is
[m

m—2n

For example, if m = 3n, then on average /3 & 1.7 graphs will be tested before one
suitable for use in the hash function is generated. In total, the time taken to generate
the hash function is proportional to the number of items in the set L, provided that
m > 2n.

The drawback of using . = 3n is the space required by the array g. If this array
takes three four-byte integers per term, then it is no cheaper than storing the terms
themselves. On the other hand, reducing m/n below 2 means that many graphs
must be generated before an acyclic one is found. This is tolerable only if the set of
keys is small and the time taken to generate the mapping is of no concern.

There is, however, another way to reduce the ratio m /n. The example given in
Table 4.3 and Figure 4.4 assumes the use of a 2-graph, where each edge connects two
vertices. Suppose a third random hash function h, is introduced, and a 3-graph is
formed on m vertices, where each edge is a triple of the form (h,(t), ha(t), hs(t)),
and the hash function is given by

h(t) = g(hi(t)) +n g(ha()) +n g(ha(t)).

The requirement for the existence of a mapping function g becomes somewhat
more complex, but the logic is the same: a graph can be used if there is some se-
quence of edge deletions such that each edge deleted has at least one vertex of degree
one, and the sequence removes all the edges. Another way to state this requirement
is to ask that no subgraph contain only vertices of degree two or greater.

Experiment and analysis have shown that with 3-graphs, the critical ratio of m to
11 is about 1.23 (Havas et al. 1993; Majewski et al. 1996). That s, if m > 1.23n, then
a graph with the desired property will be constructed on average after a constant
number of trials. All the other steps continue to take time proportional to the size
of the graph and in practice are extremely fast. For example, it takes less than 1
minute of processor time to build a minimal perfect hash function for the more
than 500,000 terms in the TREC lexicon.

Finally, we should admit to a small inconsistency. To avoid confusion, the exam-

. ple used in Table 4.3 and Figure 4.4 shows n = 12 and mm = 15 in the ratio 1.25 but

* dex is seatched po dgtermine

4.1 ACCESSING THE LEXICON] Hg

jezebel s NN
jezebel —_—t -

jezoar

jezer R

/ jezerit ——
jeziah —t

In-memory index

i ; jeziel e
to on-disk lexicon , .

jezliah —_—
» jezoar —t
jezrahiah —
jezreel —

/ f " Disk

address
On-disk lexicon of 1,

stored in blocks

Figure 4.7 Disk-based lexicon storage.

employs two hash functions rather than three. This worked because the example
was carefully chosen. .

Disk-based lexicon storage T
There is a much simplef way to reduce the amount of primaxy memory required
by\the lexicon: pugdt on disk, with just ensugh information re ined in primary
merhory to ideptly the disk block corresponding to each term .\Using 4 Kbyte
disk Blocks, .20 Mbyte example lexicon of skrings, inverted file pQinters, and
£, value gggethehoccupy akout 5,000 disk blocks\ Provided that the
in-block/tyyms are held in m¥pory in a searchableqrray, as little as 10
is memoMy-resident index table\ Figure 4.7 shows ho
from Bibfe might bagstored.

} idg correspduding to a given teriy, the in-memory in-
] block nuirber; that block is redq into a buffer, and
the search Ys.Continued within ¥ge block. \More generaily, a Bgee or other dy-
namic index stxucture cahbe used,

is approach idattractive bscause it Insimple andxequires a minimal dmount of

emory. However, a disk>kased leXigon is manj{imes slower to access than

ased one. Oge disk accesg per lowkup is reqiired—perhaps 10 milli-

seconds everon a fast machine, compared with'the few microseconds required by

an in-memory Diaary search. ‘Fhis extra time is tolsrable when just a few terms are
S

