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In the previous chapter we dealt with sorting atomic items, namely items that either occupy O(1)

space or have to be managed in their entirety as atomic objects, and thus without possibly deploying

their constituent parts. In the present chapter we will generalize those algorithms, and introduce

new ones, to deal with the case of variable-length items (aka strings). More formally, we will be

interested in solving efficiently the following problem:

The string-sorting problem. Given a sequence S [1, n] of strings, having total length N

and drawn from an alphabet of size σ, sort these strings in increasing lexicographic order.

The first idea to attack this problem consists of deploying the power of comparison-based sorting

algorithms, such as QuickSort or MergeSort, and implementing a proper comparison function be-

tween pair of strings. The obvious way to do this is to compare the two strings from their beginning,

character-by-character, find their mismatch and then use this character to derive their lexicographic

order. Let L = N/n be the average length of the strings in S , an optimal comparison-based sorter

would take O(L n log n) = O(N log n) average time on RAM, because every string comparison may

involve O(L) characters on average.

Apart from the time complexity, which is not optimal (see next), the key limitation of this ap-

proach in a memory-hierarchy is that S is typically implemented as an array of pointers to strings

which are stored elsewhere, possibly on disk if N is very large or spread in the internal-memory

of the computer. Figure 6.1 shows the two situations via a graphical example. Whichever is the

allocation your program chooses to adopt, the sorter will indirectly order the strings of S by moving

their pointers rather than their characters. This situation is typically neglected by programmers, with

a consequent slowness of their sorter when executed on large string sets. The motivation is clear,

every time a string comparison is executed between two items, say S [i] and S [ j], these two pointers

are resolved by accessing their corresponding strings, so that two cache misses or I/Os are elicited

in order to fetch and then compare their characters. As a result, the algorithm might incur Θ(n log n)

I/Os. As we noticed in the first chapter of these notes, the Virtual Memory of the OS will provide

an help by buffering the most recently compared strings, and thus possibly reducing the number of

incurred I/Os. Nevertheless, two arrays are here competing for that buffering space— i.e. the array

of pointers and the strings— and time is wasted by re-scanning over and over again string prefixes

which have been already compared because of their brute-force comparison.
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The rest of this lecture is devoted to propose algorithms which are optimal in the number of exe-

cuted character comparisons, and possibly offer I/O-conscious patterns of memory accesses which

make them efficient also in the presence of a memory hierarchy.

FIGURE 6.1: Two examples of string allocation, spread in the internal memory (left) and written

contiguously in a file (right).

6.1 A lower bound

Let ds be the length of the shortest prefix of the string s ∈ S that distinguishes it from the other

strings in the set. The sum d =
∑

s∈S ds is called the distinguishing prefix of the set S . Referring

to Figure 6.1, and assuming that S consists of the 4 strings shown in the picture, the distinguishing

prefix of the string all is al because this substring does not prefixes any other string in S , whereas

a does.

It is evident that any string sorter must compare the initial ds characters of s, otherwise it would

be unable to distinguish s from the other strings in S . So Ω(d) is a term that must appear in the

string-sorting lower bound. However, this term does not take into account the cost to compute the

sorted order among the n strings, which is Ω(n log n) string comparisons.

LEMMA 6.1 Any algorithm solving the string-sorting problem must execute Ω(d + n log n)

comparisons.

This formula deserves few comments. Assume that the n strings of S are binary, share the initial `

bits, and differ for the rest log n bits. So each string consists of `+log n bits, and thus N = n(`+log n)

and d = Θ(N). The lower bound in this case is Ω(d + n log n) = Ω(N + n log n) = Ω(N). But string

sorters based on Mergesort or Quicksort (as the ones detailed above) take Θ((` + log n)n log n) =

Θ(N log n) time. Thus, for any `, those algorithms may be far from optimality of a factor Θ(log n).

One could wonder whether the upper-bound can be turned to be smaller than the input size N.

This is possible because the string sorting could be implemented without looking at the entire con-

tent of strings, provided that d < N. And indeed, this is the reason why we introduced the parameter

d, which allows a finer analysis of the following algorithms.
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FIGURE 6.2: First distribution step in MSD-first RadixSort.

6.2 RadixSort

The first step to get a more competitive algorithm for string sorting is to look at strings as sequence

of characters drawn from an integer alphabet {0, 1, 2, . . . , σ−1} (aka digits). This last condition can

be easily enforced by sorting in advance the characters occurring in S , and then assigning to each of

them an integer (rank) in that range. This is typically called naming process and takes O(N logσ)

time because we can use a binary-search tree built over the at most σ distinct characters occurring

in S . After that, all strings can be sorted by considering them as sequence of σ-bounded digits.

Hereafter we assume that strings in S have been drawn from a integer alphabet of size σ and

keep in mind that, if this is not the case, a term O(N logσ) has to be added to the time complexity.

Moreover, we observe that each character can be encoded in dlog(σ + 1)e bits; so that the input size

is Θ(N logσ) whenever it is measured in bits.

We can devise two main variants of RadixSort that differentiate each other according to the order

in which the digits of the strings are processed: MSD-first processes the strings rightward starting

from the Most Significant Digit, LSD-first processes the strings leftward starting from the Least

Significant Digit.

6.2.1 MSD-first

This algorithm follows a divide&conquer approach which processes the strings character-by-character

from their beginning, and distributes them into σ buckets. Figure 6.2 shows an example in which

S consists of seven strings which are distributed according to their first (most-significant) digit in

10 buckets, because σ = 10. Since buckets 1 and 6 consist of one single string each, their ordering

is known. Conversely, buckets 0 and 9 have to be sorted recursively according to the second digit

of the strings contained into them. Figure ?? shows the result of the recursive sorting of those two

buckets. Then, to get the ordered sequence of strings, all groups are concatenated in left-to-right

order.

It is not difficult to notice that distribution-based approaches originate search trees. The classic

Quicksort originates a binary search tree. The above MSD-first RadixSort originates a σ-ary tree

because of the σ-ary partition executed at every distribution step. This tree takes in the literature

the name of trie, or digital search tree, and its main use is in string searching (as we will detail in

the Chapter 7). An example of trie is given in Figure 6.3.

Every node is implemented as a σ-sized array, one entry per possible alphabet character. Strings

are stored in the leaves of the trie, hence we have n leaves. Internal nodes are less than N, one per



6-4 Paolo Ferragina

FIGURE 6.3: The trie-based view of MSD-first RadixSort for the strings of Figure 6.2

character occurring in the strings of S . Given a node u, the downward path from the root of the

trie to u spells out a string, say s[u], which is obtained by concatenating the characters encountered

in the path traversal. For example, the path leading to the leaf 017 traverses three nodes, one

per possible prefix of that string. Fixed a node u, all strings that descend from u share the same

prefix s[u]. For example, s[root] is the empty string, and indeed all strings of S do share no prefix.

Take the leftmost child of the root, it spells the string 0 because it is reached form the root by

traversing the edge spurring from the 0-entry of the array. Notice that the trie may contain unary

nodes, namely nodes that have one single child. All the other internal nodes that have at least two

children are called branching nodes. In the figure we have 9 unary nodes and 3 branching nodes,

where n = 7 and N = 21. In general the trie can have O(d) unary nodes, but no more than n

branching nodes. The unary nodes correspond to buckets formed by items all sharing the same

compared-character in the distribution of MSD-first RadixSort (case 1 of the proof of Theorem ??),

the branching nodes correspond to buckets formed by items with distinct compared-characters in

the distribution of MSD-first RadixSort (case 2 of the proof of Theorem ??).

If edge labels are alphabetically sorted, as in Figure 6.3, reading the leaves according to the pre-

order visit of the trie gets the sorted S . This suggests a simple trie-based string sorter. The idea

is to start with an empty trie, and then insert one string after the other into it. Inserting a string

s ∈ S in the current trie consists of tracing a downward path until s’s characters are matched with

edge labels. As soon as the next character in s cannot be matched with any of the edges outgoing

from the reached node u,1 then we say that the mismatch for s is found. So a special node is

appended to the trie at u with that branching character. This special node points to s. The specialty

resides in the fact that we have dropped the not-yet-matched suffix of s, but the pointer to the string

keeps implicitly track of it for the subsequent insertions. In fact, if inserting another string s′ we

encounter the special-node u, then we resort the string s (linked to it) and create a (unary) path for

the other characters constituting the common prefix between s and s′ which descends from u. The

last node in this path branches to s and s′, possibly dropping again the two paths corresponding

to the not-yet-matched suffixes of these two strings, and introducing for each of them one special

character.2

Every time a trie node is created, an array of size σ is allocated, thus taking O(σ) time and space.

So the following theorem can be proved.

1This actually means that the slot in the σ-sized array of u corresponding to the next character of s is null.
2We are assuming that allocating a σ-sized array cost O(1) time.
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THEOREM 6.1 Sorting strings over an alphabet of size σ can be solved via a trie-based

approach in O(d (σ + tσ)) time and O(dσ) space. The term tσ describes the time cost for traversing

a trie-node given a string character to be matched: it is O(1) if an integer alphabet is used; it is

O(logσ) if a general alphabet is used.

Proof Every string s spells out a path of length O(ds), before that the special node pointing to

s is created. Each node of those paths allocates O(σ) space and takes that amount of time to be

allocated. Moreover tσ is the time cost for traversing a trie-node. Therefore O(σ + tσ) is the time

spent for each traversed/created node. The claim then follows.

The space occupancy is significant and should be reduced. An option is to replace the σ-sized

array into each node u with an hash table (with chaining) of size proportional to the number of edges

spurring out of u, say eu. This guarantees O(1) average time for searching and inserting one edge

in each node. The construction time becomes in this case: O(d) to insert all strings in the trie (here

tσ = O(1)), O(
∑

u eu log eu) = O(
∑

u eu logσ) = O(n logσ) for the sorting of the trie edges, and O(n)

time to scan the trie leaves rightward, and thus the dictionary strings in lexicographic order.

THEOREM 6.2 Sorting strings drawn from an integer alphabet of size σ, by using the trie-

based approach with hashing, takes O(d + n logσ) average time and O(d) space.

We cannot conclude that this result is better than the lower bound provided in Lemma 6.1 because

that applies to comparison-based algorithms and does not apply to hashing or integer sorting. The

space allocated for the trie can be further reduced to O(n) by using compacted tries, namely tries in

which the unary paths have been compacted into single edges whose length is equal to the length of

the compacted unary path. The discussion of this data structure is deferred to Chapter 7.

6.2.2 LSD-first

The next sorter was discovered by Herman Hollerith more than a century ago and led to the imple-

mentation of a card-sorting machine for the 1890 U.S. Census. It is curious to find that he was the

founder of a company that then became IBM [6]. The algorithm is counter-intuitive because it sorts

strings digit-by-digit starting from the least-significant one and using a stable sorter as black-box for

ordering the digits. We recall that a sorter is stable iff equal keys maintain in the final sorted order

the one they had in the input. This sorter is typically the CountingSort (see e.g. [4]), and this is the

one we use below to describe the LSD-first RadixSort. We assume that all strings have the same

length L, otherwise they are logically padded to their front with a special digit which is assumed

to be smaller than any other alphabet digit. The ratio is that, this way, the LSD-first RadixSort

correctly obtains an ordered lexicographic sequence.

The LSD-first RadixSort consists of L phases, say i = 1, 2, . . . , L, in each phase we stably sort

all strings according to their i-th least significant digit. A running example of LSD-first RadixSort

is given in Figure 6.4: the red digits (characters) are the ones that are going to be sorted in the

current phase, whereas the green digits are the ones already sorted in the previous phases. Each

phase produces a new sorted order which deploys the order in the input sequence, obtained from

the previous phases, to resolve the ordering of the strings which show equal digits in the currently

compared position i. As an example let us consider the strings 111 and 017 in the 2nd phase of

Figure 6.4. These strings present the same second digit so their ordering in the second phase poses

111 before 017, just because this was the ordering after the first sorting step. This is clearly a

wrong order which will be nonetheless correctly adjusted after the last phase which operates on

the third digit, i.e. 1 vs 0. The time complexity can be easily estimated as L times the cost of
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FIGURE 6.4: A running example for LSD-first RadixSort.

executing CountingSort over n integer digits drawn from the range [1, σ]. Hence it is O(L (n + σ)).

A nice property of this sorter is that it is in-place whenever the sorting black-box is in-place, namely

σ = O(1).

LEMMA 6.2 LSD-first Radixsort solves the string-sorting problem over an integer alphabet of

size σ in O(L (n+σ)) = O(N + Lσ) time and O(N) space. The sorter is in-place iff an in-place digit

sorter is adopted.

Proof Time and space efficiency follow from the previous observations. The correctness is

proved by deploying the stability of the Counting Sort. Let α and β be two strings of S , and assume

that α < β according to the lexicographic order. Since we assumed that S ’s strings have the same

length we can decompose these two strings into three parts: α = γaα1 and β = γbβ1, where γ is

the longest common prefix between α and β (possibly it is empty), a < b are the first mismatch

characters, α1 and β1 are the two remaining suffixes (which may be empty).

Let us now look at the history of comparisons between the digits of α and β. We can identify

three stages, depending on the position of the compared digit within the three-way decomposition

above. Since the algorithm starts from the least-significant digit, it starts comparing digits in α1 and

β1. We do not care about the ordering after the first |α1| = |β1| phases, because at the immediately

next phase, α and β are sorted in accordance to characters a and b. Since a < b this sorting places

α before β. All other |γ| sorting steps will compare the digits falling in γ, which are equal in both

strings, so their order will not change because of the stability of the digit-sorter. At the end we will
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correctly have α < β. Since this holds for any pair of strings in S , the final sequence produced by

LSD-first RadixSort will be lexicographically ordered.

The previous time bound deserves few comments. LSD-first RadixSort processes all digits of

all strings, so it seems not appealing when d � N with respect to MSD-first RadixSort. But the

efficiency of LSD-first RadixSort hinges onto the observation that nobody prevents a phase to sort

groups of digits rather than a single digit at a time. Clearly the longer is this group, the larger is

the time complexity of a phase, but the smaller is the number of phases. We are in the presence

of a trade-off that can be tuned by investigating deeply the relation that exists between these two

parameters. Without loss of generality, we simplify our discussion by assuming that the strings in S

are binary and have equal-length of b bits, so N = bn and σ = 2. Of course, this is not a limitation

in practice because any string is encoded in memory as a bit sequence; in theory, we can assume

to pre-sort the alphabet-characters in O(N logσ) time and then encode them via bit-sequences of

dlogσe bits reflecting the digit order.

LEMMA 6.3 LSD-first RadixSort takes Θ( b
r
(n + 2r)) time and O(nb) = O(N) space to sort n

strings of b bits each. Here r ≤ b is a positive integer fixed in advance.

Proof We decompose each string in g = b
r

groups of r bits each. Each phase will order the

strings according to a group of r bits. Hence CountingSort is asked to order n integers between 0

and 2r − 1 (extremes included), so it takes O(n + 2r) time. As there are g = b
r

phases, the total time

is O(g (n + 2r)) = O(( b
r
)(n + 2r)).

Given n and b, we need to choose a proper value for r such that the time complexity is minimized.

We could derive this minimum via analytic calculus (i.e. first-order derivatives) but, instead, we

argue for the minimum as follows. Since the CountingSort uses O(n + 2r) time to sort each group

of r digits, it is useless to use groups shorter than log n, given that Ω(n) time has to be payed in

any case. So we have to choose r in the interval [log n, b]. As r grows larger than log n, the time

complexity in Lemma 6.3 also increases because of the ratio 2r/r. So the best choice is r = Θ(log n)

for which the time complexity is O( bn
log n

).

THEOREM 6.3 LSD-first Radixsort sorts n strings of b bits each in O( bn
log n

) time and O(bn)

space, by using CountingSort on groups of Θ(log n) bits. The algorithm is not in-place because it

needs Θ(n) space for the Counting Sort.

We finally observe that bn is the total length in bits of the strings in S , so we can express that

number as N logσ since each character takes logσ bits to be represented.

COROLLARY 6.1 LSD-first Radixsort solves the string-sorting problem on strings drawn

from an arbitrary alphabet in O(
N logσ

log n
) time and O(N logσ) bits of space.

If d = Θ(N) and σ is a constant, the comparison-based lower-bound (Lemma 6.1) becomes

Ω(d+ n log n) = Ω(N). So LSD-first Radixsort equals or even beats that lower bound; but this is not

surprising because this sorter operates on an integer alphabet and uses CountingSort, so it is not a

comparison-based string sorter.

Comparing the trie-based construction (Theorems 6.1–6.2) and the LSD-first RadixSort algorithm

we conclude that the former is always better than the latter for d = O( N
log n

), which is true for
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most practical cases. In fact LSD-first RadixSort needs to scan the whole string set whichever

are the string compositions, whereas the trie-construction may skip some string suffixes whenever

d � N. However the LSD-first approach avoids the dynamic memory allocation, incurred by the

construction of the trie, and the extra-space due to the storage of the trie structure. This additional

space and work is non negligible in practice and could impact unfavorably on the real performance

of the trie-based sorter, or even prevent its use over large string sets because the internal memory

has bounded size M.

6.3 Multi-key Quicksort

This is a variant of the well-known Quicksort algorithm extended to manage items of variable length.

Moreover it is a comparison-based string sorter which comes very close to the lower bound of

Ω(d + n logσ) stated in Lemma 6.1, and actually matches it whenever σ is large. For a recap about

Quicksort we refer the reader to the previous chapter. Here it is enough to recall that Quicksort

hinges onto two main ingredients: the pivot-selection procedure and the algorithm to partition the

input array according to the selected pivot. In Chapter 5 we discussed widely these issues, for the

present section we fix ourselves to a pivot-selection based on a random choice and to a three-way

partitioning of the input array. All other variants discussed in Chapter 5 can be easily adapted to

work in the string setting too.

The key here is that items are not considered as atomic, but they are strings to be split into their

constituent characters. Now the pivot is a character, and the partitioning of the input strings is done

according to the single character that occupies a given position within them. Figure 6.1 details the

pseudocode of Multi-key Quicksort, in which it is assumed that the input set R is prefix free, so

no string in R prefixes any other string. This condition can be easily guaranteed by assuming that

strings of R are distinct and logically padded with a dummy character that is smaller than any other

character in the alphabet. This guarantees that any pair of strings in R admits a bounded longest-

common-prefix (shortly, lcp), and that the mismatch character following the lcp does exist in both

strings.

Algorithm 6.1 MultikeyQS(R, i)

1: if |R| ≤ 1 then

2: return R;

3: else

4: choose a pivot-string p ∈ R;

5: R< = {s ∈ R | s[i] < p[i]};

6: R= = {s ∈ R | s[i] = p[i]};

7: R> = {s ∈ R | s[i] > p[i]};

8: A = MultikeyQS (R<, i);

9: B = MultikeyQS (R=, i + 1);

10: C = MultikeyQS (R>, i);

11: return the concatenated sequence A, B,C;

12: end if

The algorithm receives in input a sequence R of strings to be sorted and an integer parameter

i ≥ 0 which denotes the offset of the character driving the three-way partitioning of R. The pivot-

character is p[i] where p is randomly chosen string within R. The real implementation of this

three-way partitioning can follow the Partition procedure of Chapter 5. MultikeyQS(R, i) assumes



Sorting Strings 6-9

that the following pre-condition holds on its input parameters: All strings in R are lexicographically

sorted up to their (i − 1)-long prefixes. So the sorting of a string sequence R[1, n] is obtained by

invoking MultikeyQS(R, 1), which ensures that the invariant trivially holds for the initial sequence

R. Steps 5-7 partitions R in three subsets whose notation is explicative of their content. All these

three subsets are recursively sorted and their ordered sequences are eventually concatenated in order

to obtain the ordered R. The tricky issue here is the invocation of the three recursive calls:

• the sorting of the strings in R< and R> has still to reconsider the ith character, because

we just checked that it is smaller/greater than p[i] (and this is not sufficient to order

those strings). So recursion does not advance i, but it hinges on the current validity of

the invariant.

• the sorting of the strings in R= can advance i because, by the invariant, these strings are

sorted up to their (i − 1)-long prefixes and, by construction of R=, they share the i-th

character. Actually this character is equal to p[i], so p ∈ R= too.

FIGURE 6.5: A running example for MultikeyQS(R, 2). In red we have the 1-long prefix shared by

all strings in R.

These observations make correctness immediate. We are therefore left with the problem of com-

puting the average time complexity of MultikeyQS(R, 1). Let us concentrate on a single string, say

s ∈ R, and count the number of comparisons that involve one of its characters. There are two cases,

either s ∈ R< ∪ R> or s ∈ R=. In the first case, s is compared with the pivot-string p and then

included in a smaller set R< ∪ R> ⊂ R with the offset i unchanged. In the other case s is compared

with p but, since the i-th character is found equal, it is included in a smaller set and offset i is ad-

vanced. If the pivot selection is good (see Chapter 5), the three-way partitions are balanced and thus

|R< ∪ R>| ≤ α n, for a proper constant α < 1. As a result, both cases cost O(1) time but one reduces

the string set by a constant factor, while the other increases i. Since the initial set R has size n, and

i is bounded above by the string length |s|, we have that the number of comparisons involving s is

O(|s| + log n). Summing up over all strings in R we get the time bound O(N + n log n). A finer look
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at the second case shows that i can be bounded above by the number of characters that belong to s’s

distinguishing prefix, because these characters will led s to be located in a singleton set.

THEOREM 6.4 Multi-key Quicksort solves the string-sorting problem on a general alphabet

by performing O(d + n log n) character comparisons on average. This is optimal, for a general

alphabet (or, equivalently, for a comparison-based algorithm). The bound can be turned into a

worst-case bound by adopting a worst-case linear-time algorithm to select the pivot as the median

of R.

Comparing this result against what was obtained for the MSD-first RadixSort is not easy (The-

orem ??), but the succinct space occupancy and the time complexity independent than σ make

Multi-key Quicksort very appealing in practice. Moreover, similarly as done for Quicksort, it is

possible to prove that if the partition is done around the median of 2t + 1 randomly selected pivots,

Multi-key Quicksort needs at most 2nHn

H2t−2−Ht+1
+O(d) average comparisons. By increasing the sample

size t, one can reduce the time near to n log n + O(d). This bound is similar to the one obtained

with the trie-based sorter (see Theorem 6.2, where the log-argument was σ instead of n), but the

algorithm is much simpler, it does not use additional data structures (i.e. hash tables), and in fact it

is the typical choice in practice.
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FIGURE 6.6: A ternary search tree for 12 two-letter strings. The low and high pointers are shown

as solid lines, while the pointers to the equal-child are shown as dashed lines. The split character is

indicated within the nodes.

We conclude this section by noticing an interesting parallel between Multikey Quicksort and

ternary search trees, as discussed in [5]. These are search data structures in which each node

contains a split character and pointers to low and high (or left and right) children. In some sense a

ternary search tree is obtained from a trie by collapsing together the children whose leading edges
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are smaller/greater than the split character. If a given node splits on the character in position i, its

low and high children also split on i-th character. Instead, the equal-child splits on the next (i + 1)-

th character. Ternary search trees may be balanced by either inserting elements in random order

or applying a variety of known schemes. Searching proceeds by following edges according to the

split-characters of the encountered nodes. Figure 6.6 shows an example of a ternary search tree.

The search for the word P =”ir” starts at the root, which is labeled with the character i, with the

offset x = 1. Since P[1] = i, the search proceeds down to the equal-child, increments x to 2, and

thus reaches the node with split-character s. Here P[2] = r < s, so the search goes to the low/left

child which is labeled n, and keeps x unchanged. At that node the search stops, because the split

character is different and no (low or high) children do exist. So the search concludes that P does not

belong to the string set indexed by the ternary search tree.

THEOREM 6.5 A search for a pattern P[1, p] in a perfectly-balanced ternary search tree

representing n strings takes at most blog nc + p comparisons. This is optimal when P is drawn from

a general alphabet (or, equivalently, for a comparison-based search algorithm).

6.4 Some observations on the I/O-model∞

Sorting strings on disk is not nearly as simple as it is in internal memory, and a bunch of sophisti-

cated string-sorting algorithms have been introduced in the literature which achieve I/O-efficiency

(see e.g. [1, 3]). The difficulty is that strings have variable length and their brute-force comparisons

over the sorting process may induce a lot of I/Os. In the following we will use the notation: ns is the

number of strings shorter than B, whose total length is Ns, nl is the number of strings longer than B,

whose total length is Nl. Clearly n = ns + nl and N = Ns + Nl,

The known algorithms can be classified according to the way strings are managed in their sorting

process. We can devise mainly three models of computations [1]:

Model A: Strings are considered indivisible (i.e., they are moved in their entirety and cannot

be broken into characters), except that long strings can be divided into blocks of size B.

Model B: Relaxes the indivisibility assumption of Model A by allowing strings to be divided

into single characters, but this may happen only in internal memory.

Model C: Waives the indivisibility assumption by allowing division of strings in both internal

and external memory.

Model A forces to use Mergesort-based sorters which achieve the following optimal bounds:

THEOREM 6.6 In Model A, string sorting takes Θ(
Ns

B
logM/B

Ns

B
+ nl logM/B nl +

Ns+Nl

B
) I/Os.

The first term in the bound is the cost of sorting the short strings, the second term is the cost of

sorting the long strings, and the last term accounts for the cost of reading the whole input. The result

shows that sorting short strings is as difficult as sorting their individual characters, which are Ns,

while sorting long strings is as difficult as sorting their first B characters. The lower bound for small

strings in Theorem 6.6 is proved by extending the technique used in Chapter 5 and considering the

special case where all ns small strings have the same length Ns/ns. The lower bound for the long

strings is proved by considering the nl small strings obtained by looking at their first B characters.

The upper bounds in Theorem 6.6 are obtained by using a special Multi-way MergeSort approach

that takes advantage of a lazy trie stored in internal memory to guide the merge passes among the

strings.
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Model B presents a more complex situation, and leads to handle long and short strings separately.

THEOREM 6.7 In Model B, sorting long strings takes Θ(nl logM nl+
Nl

B
) I/Os, whereas sorting

short strings takes O(min{ns logM ns,
Ns

B
logM/B

Ns

B
}) I/Os.

The first bound for long strings is optimal, the second for short strings is not. Comparing the

optimal bound for long strings with the corresponding bound in Theorem 6.6, we notice that they

differ in terms of the base of the logarithm: the base is M rather than M/B. This shows that breaking

up long strings in internal memory is provably helpful for external string-sorting. The upper bound

is obtained by combining the String B-tree data structure (described in Chapter 7) with a proper

buffering technique. As far as short strings are concerned, we notice that the I/O-bound is the same

as the cost of sorting all the characters in the strings when the average length Ns/ns is O( B
logM/B M

).

For the (in practice) narrow range B
logM/B M

<
Ns

ns
< B, the cost of sorting short strings becomes

O(ns logM ns). In this range, the sorting complexity for Model B is lower than the one for Model A,

which shows that breaking up short strings in internal memory is provably helpful.

Surprisingly enough, the best deterministic algorithm for Model C is derived from the one de-

signed from Model B. However, since Model C allows to split strings on disk too, we can use

randomization and hashing. The main idea is to shrink strings by hashing some of their pieces.

Since hashing does not preserve the lexicographic order, these algorithms must orchestrate the se-

lection of the string pieces to be hashed with a carefully designed sorting process so that the correct

sorted order may be eventually computed. Recently [3] proved the following result (which can be

extended to the more powerful cache-oblivious model):

THEOREM 6.8 In Model C, the string-sorting problem can be solved by a randomized algo-

rithm using O( n
B

(log2
M/B

N
M

)(log n) + N
B

) I/Os, with arbitrarily high probability.

References

[1] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeff S. Vitter. On sorting strings in

external memory. In Procs of the ACM Symposium on Theory of Computing (STOC),

pp. 540–548, 1997.

[2] Jon L. Bentley and Doug McIlroy. Engineering a sort function. Software-Practice and

Experience, pages 1249–1265, 1993.

[3] Rolf Fagerberg, Anna Pagh, Rasmus Pagh. External String Sorting: Faster and

Cache-Oblivious. In Procs of the Symposium on Theoretical Aspects of Computer Sci-

ence (STACS), LNCS 3884, Springer, pp. 68-79, 2006.

[4] Cormen T.H. Leiserson C.E. Rivest R.L. Stein C. Introduction to Algorithms. The MIT

Press, third edition, 2009.

[5] Robert Sedgewick Jon L. Bentley. Fast algorithms for sorting and searching strings.

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 360-369, 1997.

[6] Herman Hollerith. Wikipedia’s entry at http://en.wikipedia.org/wiki/Herman Hollerith.


