Algorithm Engineering
 2 February 2022 - time 60 minutes

Question \#1 [scores 5+5]. Given the string T = abababc,

- compress by LZ77
- compress by LZ78, showing the auxiliary data structure used.

Question \#2 [scores 6]. Given the string $S=$ "amata\$" show the result of the compression via the algorithmic pipeline BWT + MTF + RLEO + Huffman. Assume that MTF counts symbol positions from 0 , and RLEO uses the Wheeler's code.

Question \#3 [scores 4+3]. Given the two sored lists L1 = (1, 2, 4, 6, 9, 10, 15, 18, 20) and $\mathrm{L} 2=(2,3,7,8,18)$ compute their intersection using the

- Mutual partitioning strategy
- Two-level storage approach, with block size b=3 for the list L1

Question \#4 [scores 4]. Assume you are given a set of 4 strings \{aa, ac, bc, cc\} and you wish to construct a minimal ordered perfect hash function (MOPHF), where the order is the alphabetic one. Assume that $\operatorname{rank}(x)=2 ; 3 ; 4$ for the characters $x=a ; b ;$ c; respectively. Given a string xy of two characters, we let the two random functions required by the design of MOPHF be h1(xy) $=(3 * \operatorname{rank}(x)+\operatorname{rank}(y)) \bmod 7$ and $h 2(x y)=(\operatorname{rank}(x)+\operatorname{rank}(y)) \bmod 7$.

Question \#5 [scores 3] Given a text T[1,n], design an algorithm that exploits a Suffix Array built on T to efficiently establish whether: Given a string $\mathrm{P}[1, \mathrm{p}]$ and two positive integers k and q, there exists a range of k contiguous positions in T, say $T[i, i+k-1]$, where start q occurrence of P in T. In this case it prints " i " otherwise, if no such range does exist, it prints "-1".

