Algorithm Engineering 27 May 2021 - time 60 minutes

Question \#1 [scores 4+4]. Given the probabilities $\mathrm{p}(\mathrm{a})=0.15 ; \mathrm{p}(\mathrm{b})=0.2 ; \mathrm{p}(\mathrm{c})=0.1$; $p(d)=0.25 ; p(e)=0.3$,

1. Construct the Canonical Huffman code, showing the steps followed by the algorithm.
2. Then use it to decode the bit sequence 1001001, showing each decoding step.

Question \#2 [scores 5+5]. Given the string $S=$ accaracca, compute its

- parsing LZ77
- parsing LZ78 (with its trie data structure)

Question \#3 [scores 5]. Given the sequence of integers $S=(1,5,16,18,20,24,30)$, encode them using Elias-Fano coding.

Question \#4 [scores 4+3]

- Show the Suffix Array of the string $S=$ bababac
- Show the first two steps of using it to search for the string "ba" into S .

Algorithm Engineering -- THEORY
 27 May 2024-45 minutes

Name and Surname:

\#matricola:

Questions [score 8+8+8+6]

- Compute the probability of having a 0 in a specific position of the binary array of the Bloom Filter, whose size is m and number of inserted keys is n; and then derive/prove its overall error probability.
- Given a sequence of n non-negative integers smaller than u, state the space occupancy of Elias-Fano coding and prove it.
- State the I/O-complexity of the multi-way mergesort in terms of M, B, and N
- Given a dictionary D of n strings of variable length, totaling N chars. Discuss at least 3 solutions for their storage by also commenting their space complexity and their time/IO cost to support the retrieval of the i-th string (aka, Access(i)).

