
Distributed File System

1 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

How do we get data to the workers?

Compute Nodes

NAS

SAN

2 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Distributed File System

•  Don’t move data to workers… move workers to
the data!
–  Store data on the local disks of nodes in the cluster
–  Start up the workers on the node that has the data

local

•  Why?
–  Not enough RAM to hold all the data in memory
–  Disk access is slow, but disk throughput is reasonable

•  A distributed file system is the answer
–  GFS (Google File System) for Google’s MapReduce
–  HDFS (Hadoop Distributed File System) for Hadoop

3 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Features

•  Highly fault-tolerant
–  Failure is the norm rather than exception

•  High throughput
–  May consist of thousands of server machines, each

storing part of the file system’s data.
•  Suitable for applications with large data sets

–  Time to read the whole file is more important than the
reading the first record

–  Not fit for
•  Low latency data access
•  Lost of small files
•  Multiple writers, arbitrary file modifications

•  Streaming access to file system data
•  Can be built out of commodity hardware

Blocks

•  Minimum amount of data that it can read or write
•  File System Blocks are typically few KB
•  Disk blocks are normally 512 bytes
•  HDFS Block is much larger – 64MB by default

–  Unlike file system the smaller file does not occupy the
full 64MB block size

–  Large to minimize the cost of seeks
–  Time to transfer blocks happens at disk transfer rate

•  Block abstractions allows
–  Files can be larges than block
–  Need not be stored on the same disk
–  Simplifies the storage subsystem
–  Fit well for replications
–  Copies can be read transparent to the client

Name Nodes and Data Nodes

�  Master/slave architecture
�  DFS cluster consists of a single name node, a master

server that manages the file system namespace and
regulates access to files by clients.

�  There are a number of data nodes usually one per node
in a cluster.

�  The data nodes manage storage attached to the nodes
that they run on.

�  DFS exposes a file system namespace and allows user
data to be stored in files.

�  A file is split into one or more blocks and set of blocks are
stored in data nodes.

�  Data nodes serve read, write requests, perform block
creation, deletion, and replication upon instruction from
name node.

DFS Architecture

client

node
with data

control
node

node
with data

node
with data

Metadata protocol

Data protocol

Hearthbeat
protocol

Control
protocol

8 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Google File System

We will review the Google DFS implementation,
highlighting the differences with Hadoop DFS on
the way.

Slides based on

S. Ghemawat, H. Gobioff, and S.-T. Leung, Google Inc.
The Google File System
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.

http://labs.google.com/papers/gfs-sosp2003.pdf

Operational Scenario

•  High component failure rates
–  1000s low cost commodity parts
–  Inevitable software bugs

•  Huge files
–  Few files
–  Size greater than 100 MB (typically many GB)

•  Read/write semantics
–  Many sequential reads, few random reads
–  Write once then append
–  Caching is not so appealing
–  Multiple writers

•  High throughput better than low latency

9 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Design Decisions

•  Files are stored in chunks (blocks)
–  typical size: 64 MB

•  Simple centralized management
–  master server (namenode)
–  metadata

•  Reliability through replication
–  Each chunk replicated across 3+ chunkservers

(datanodes)
•  No data caching

–  metada caching in the master server
•  Custom API

–  Easy to use, but no POSIX-compliant
–  create, delete, open, close, read, write
–  snapshot, record append

10 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Architecture

11 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Picture taken from the referenced paper (see slide #2)

Master server

•  Scalability bottleneck
–  Clients never read and write file data through the

master
–  Large chunk size reduces:

•  clients’ need to interact with the master
•  network overhead by keeping a persistent TCP

connection
•  the size of the metadata stored on the master
•  but hot spots with executables

•  Single point of failure
–  Persistent, replicated operation log (secondary

namenode)

12 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Master responsabilities

•  Store and manage metadata
•  Manage and lock namespace
•  Periodic chunkservers communication
–  Issue commands
–  Collect status
–  Track health

•  Replica management
–  Create/delete/monitor/replicate/balance chunks
–  Garbege collection (deleted & stale replicas)

13 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Metadata

•  Three major types of metadata
–  the file and chunk namespaces
–  the mapping from files to chunks
–  the locations of each chunk’s replicas

•  All metadata is kept in the master’s memory
–  Fast periodic scanning

•  Memory limit
–  64 bits per chunk (64MB)
–  Filenames compressed

14 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

operation log

Anatomy of a read

15 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

1.  Client sends to master
–  read(filename)

2.  Master replies to client
–  (chunk ID, chunk version, replicas locations)

3.  Client (namenode) selects closest replica
–  IP-based inspection (rack-aware topology)

4.  Client sends to chunkserver
–  read(chunk ID, byte range)

5.  Chunkserver replies with data
6.  In case of errors, client proceeds with next

replica, remembering failed replicas

Anatomy of a write (GFS)

16 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

1.  The client asks the master
–  which chunkserver holds the current lease for the chunk
–  the locations of the other replicas
–  If no one has a lease, the master chooses a replica

2.  The client pushes the data to all the replicas
3.  Replicas acknowledge receiving the data
4.  The client sends a write request to the primary replica
5.  The primary assigns consecutive serial numbers to all the

mutations it receives, possibly from multiple clients
6.  The primary applies the write to its own local state in serial

number order
7.  The primary forwards the write request and order to all

secondary replicas
8.  The secondary replicas reply to the primary indicating that

they have completed the operation
9.  The primary replies to the client.
10.  In case of error the write is failed and the client must handle

the inconsistencies (retry or fallback)

Anatomy of a write (HDFS)

17 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

1.  In HDFS, the data push is performed by
data nodes in pipeline

2.  In case of error, if at least a replica is
correct, the system is going to build
asynchronously the missing replicas

3.  The current release of HDFS supports writing
new files only.

Fault Tolerance

•  High availability
–  Fast (re)start(up) of every component
–  Replication
–  Operation log
–  Shadow masters

•  Data Integrity
–  Chunkservers checksumming
–  Optimized for append operations

18 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Benchmarks

19 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

•  Machine configuration

–  1 Master, 2 Master replicas, 16 chunk servers, 16
clients

–  Dual 1.4 Ghz, P3, 2GB, 2 80Gb 5400 rpm disks, 100
Mbps full-duplex to Hp switch

–  19 GFS machines are connected to one switch

–  16 clients machines to other switch

–  Two switches are connected with a 1 Gbps link

Performance - Read

20 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

•  4MB region from a 320GB
file set

•  Repeat random 256 times
to read 1 Gig of data

•  Limit
–  125 Mbps when 1Gps link is

saturated or
–  12.5 Mbps per client on

100Mbps network

•  Measured
–  10Mbps or 80% of the limit
–  Aggregate reaches 94Mbps
–  Efficiency drops from 80% to

75% as the number of readers
increases

Performance - Write

21 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

•  N clients write
simultaneously to N
distinct files.

•  Each client writes 1 GB
of data to a new file in
a series of 1 MB writes.

•  Write rate is 6.3Mbps
about half of the limit

•  Aggregate rate
reaches to 35Mbps for
16 clients or 2.2 Mbps

Performance - Append

22 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

•  N clients append
simultaneously to a
single file

•  Performance is limited
by network bandwidth
of chunkservers
independent of no of
chunk servers

•  Starts at 6.0 MBps drops
to 4.8Mbps due to
congestion

Lab Requirements

23 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

•  Linux-compliant machine
•  Java 6 SDK installed
•  SSH and SSHD installed and running
•  Editor installed

•  Hadoop 0.20.2 distribution downloaded from
 http://hadoop.apache.org/mapreduce/releases.html

