
Map Reduce

1 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

2 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

INPUT

PROCESS

OUTPUT

Typical application

3 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

INPUT

PROCESS

OUTPUT

What if…

4 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

INPUT

OUTPUT

Divide & Conquer

I1

W1

O1

I2

W2

O2

I3

W3

O3

I4

W4

O4

I5

W5

O5

Questions

•  How do we split the input?

•  How do we distribute the input splits?

•  How do we collect the output splits?

•  How do we aggregate the output?

•  How do we coordinate the work?

•  What if input splits > num workers?

•  What if workers need to share input/output splits?

•  What if a worker dies?

•  What if we have a new input?

5 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

6 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Design ideas

•  Scale “out”, not “up”
–  Low end machines

•  Move processing to the data
–  Network bandwidth bottleneck

•  Process data sequentially, avoid random access
–  Huge data files
–  Write once, read many

•  Seamless scalability
–  Strive for the unobtainable

•  Right level of abstraction
–  Hide implementation details from applications

development

7 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Typical Large-Data Problem

•  Iterate over a large number of records
•  Extract something of interest from each
•  Shuffle and sort intermediate results
•  Aggregate intermediate results
•  Generate final output

(Dean and Ghemawat, OSDI 2004)

Map Reduce
Programming Model

8 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Intermediate Values

Final Value Initial Value

Intermediate list

Input list

Fold

Map

g g g g g

f f f f f

From functional programming…

9 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

…To MapReduce
•  Programmers specify two functions:

map (k1, v1) → [(k2, v2)]

reduce (k2, [v2]) → [(k3, v3)]

•  All values with the same key are sent to the same
reducer

•  Input keys and values (k1, v1) are drawn from different
domain than output keys and values (k3, v3)

•  Intermediate keys (k2, v2) and values are from the same
domain as the output keys and values (k3, v3)

•  The runtime handles everything else…

10 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Programming Model (simple)

INPUT

OUTPUT

O1 O2 O3

I1

map

I2

map

I3

map

I4

map

I5

map

Aggregate values by key

reduce reduce reduce

11 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example (I)

12 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Example (II)

13 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Input
Hello world
Java and MapReduce
Hello Java

split 1
Hello world

split 2
Java and

MapReduce

split 3
Hello Java

map 3

(hello, 1)

(java, 1)

map 2

(and, 1)

(mapreduce, 1)

(java, 1)

reduce 1

(hello, 1)

(and, 1)

(hello, 1)

reduce 2

(world, 1)

(mapreduce, 1)

(java, 1)

(java, 1)

map 1

(hello, 1)

(world, 1)

Output
(hello, 2)
(world, 1)
(and, 1)
(java, 2)
(mapreduce, 1)

Runtime

•  Handles scheduling
–  Assigns workers to map and reduce tasks

•  Handles “data distribution”
–  Moves processes to data

•  Handles synchronization
–  Gathers, sorts, and shuffles intermediate data

•  Handles errors and faults
–  Detects worker failures and restarts

•  Everything happens on top of a distributed
FS

14 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

Partitioners and combiners

•  Programmers specify two functions:
map (k1, v1) → [(k2, v2)]
reduce (k2, [v2]) → [(k3, v3)]
–  All values with the same key are reduced together

•  The execution framework handles everything else…

•  Not quite…usually, programmers also specify:

partition (k2, number of partitions) → partition for k2
–  Often a simple hash of the key, e.g., hash(key) mod n
–  Divides up key space for parallel reduce operations

combine (k2, v2) → [(k2, v2)]
–  Mini-reducers that run in memory after the map phase
–  Used as an optimization to reduce network traffic

15 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms

MapReduce Terminology

•  Job
•  Task
•  Slot
•  JobTracker

–  Accepts Map/Reduce jobs submitted by users
–  Assigns Map and Reduce tasks to Task Trackers
–  Monitors task and Task Tracker status, re-executes tasks

upon failure

•  TaskTracker
–  Run Map and Reduce tasks upon instruction from the Job

Tracker
–  Manage storage and transmission of intermediate output

•  Splits
–  Data locality optimization

Runtime Architecture

jobtracker

job 0submit

job 1

job 2

map
task 1

map
task i

reduce
task 1

reduce
task j

map
slots

reduce
slots

tasktracker 1

map
slots

reduce
slots

tasktracker N

submit

submit

initalize

assign

user 1

user 2

MapReduce Scheduling

•  One master, many workers
–  Input data split into M map tasks (typically 64 MB in size)
–  Reduce phase partitioned into R reduce tasks (hash(k)

mod R)
–  Tasks are assigned to workers dynamically
–  Often: M=200,000; R=4000; workers=2000

•  Master assigns each map task to a free worker
–  Considers locality of data to worker when assigning a task
–  Worker reads task input (often from local disk)
–  Worker produces R local files containing intermediate k/v

pairs

•  Master assigns each reduce task to a free worker
–  Worker reads intermediate k/v pairs from map workers
–  Worker sorts & applies user’s reduce operation to produce

the output

MapReduce Speculative Execution

•  Problem: Stragglers (i.e., slow workers) significantly
lengthen the completion time
–  Other jobs may be consuming resources on machine
–  Bad disks with soft (i.e., correctable) errors transfer data

very slowly
–  Other weird things: processor caches disabled at machine

init

•  Solution: Close to completion, spawn backup
copies of the remaining in-progress tasks.
–  Whichever one finishes first, “wins”

•  Additional cost: a few percent more resource
usage

•  Example: A sort program without backup = 44%
longer.

Dataflow

split map
sort

node

split map
sort

node

split map
sort

node

reduce split
merge

node

replication

reduce split
merge

node

replication

Optimizations: output ordering

•  Applications can define the sort ordering
and the partitions of the output (@map)

•  Default partitioner evenly distributes records
•  hashcode(key) mod NR
•  Partitioner could be overridden

Optimizations: output aggregation

•  Aggregation for jobs with reducers that merge
values into a single value

•  Combiner functions can run on same machine as a
mapper

•  Causes a mini-reduce phase to occur before the
real reduce phase, to save bandwidth

Programming Model (complete)

INPUT

I1

map

I2

map

I3

map

I4

map

I5

map

Aggregate values by key

OUTPUT

O1 O2 O3

reduce reduce reduce

partition

combine

partition

combine

partition

combine

partition

combine

partition

combine

Performance
•  Maximizing Map input transfer rate

–  Input Locality
–  Minimal deserialization overhead

•  Small intermediate output
–  M x R transfers over the network
–  Minimize/compress transfers
–  Avoid shuffling/sorting if possible (e.g. map-only

computations)
–  Use combiners and/or partitioners!!!
–  Compress everything (automatic)

•  Opportunity to Load Balance
•  Changing algorithm to suit architecture yields

best implementation

How many tasks?

•  mapred.tasktracker.map.tasks.maximum
•  mapred.tasktracker.reduce.tasks.maximum
•  Tradeoffs:

–  Number of cores
–  Amount of memory
–  Number of local disks
–  Amount of local scratch space
–  Number of processes

•  Consider resources consumed by TaskTracker &
Datanode processes

Exercise

•  Input data: 15 TB of doubles
•  Output data: standard deviation

Implementation

•  Two Map-Reduce stages
–  First stage computes mean
–  Second stage computes std dev

•  Stage 1: Compute Mean
–  Map Input: a subset of input data per mapper
–  Map Output: fixed key, mean of the input subset
–  Single Reducer
–  Reduce Input: set of partial means
–  Reduce Output: mean

•  Stage 2: Compute Standard deviation
–  Map Input: a subset of input data and mean per mapper
–  Map Output: fixed key, (sum(x_i – mean(x))^ of the input subset
–  Single Reducer
–  Reduce Input: set of partial results
–  Reduce Output: standard deviation

…but…

•  Single Map-Reduce stage
•  Map Input: a subset of input data per mapper
•  Map Output: fixed key, sum(x^2) and mean of the input

subset
•  Single Reducer
•  Reduce Input: set of partial results
•  Reduce Output: standard deviation

Only a single pass over large input instead of two!

