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Questions 

•  How do we split the input? 

•  How do we distribute the input splits? 

•  How do we collect the output splits? 

•  How do we aggregate the output? 

•  How do we coordinate the work? 

•  What if input splits > num workers? 

•  What if workers need to share input/output splits? 

•  What if a worker dies? 

•  What if we have a new input? 
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Design ideas 

•  Scale “out”, not “up” 
–  Low end machines 

•  Move processing to the data 
–  Network bandwidth bottleneck 

•  Process data sequentially, avoid random access 
–  Huge data files 
–  Write once, read many 

•  Seamless scalability 
–  Strive for the unobtainable 

•  Right level of abstraction 
–  Hide implementation details from applications 

development 
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Typical Large-Data Problem 

•  Iterate over a large number of records 
•  Extract something of interest from each 
•  Shuffle and sort intermediate results 
•  Aggregate intermediate results 
•  Generate final output 

(Dean and Ghemawat, OSDI 2004) 

Map Reduce 
Programming Model 
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From functional programming… 
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…To MapReduce 
•  Programmers specify two functions: 

map (k1, v1) → [(k2, v2)] 

reduce (k2, [v2]) → [(k3, v3)] 

•  All values with the same key are sent to the same 
reducer 

•  Input keys and values (k1, v1) are drawn from different 
domain than output keys and values (k3, v3) 

•  Intermediate keys (k2, v2) and values are from the same 
domain as the output keys and values (k3, v3) 

•  The runtime handles everything else… 

10 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Programming Model (simple) 
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Example (I) 
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Example (II) 
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Runtime 

•  Handles scheduling 
–  Assigns workers to map and reduce tasks 

•  Handles “data distribution” 
–  Moves processes to data 

•  Handles synchronization 
–  Gathers, sorts, and shuffles intermediate data 

•  Handles errors and faults 
–  Detects worker failures and restarts 

•  Everything happens on top of a distributed 
FS 
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Partitioners and combiners 

•  Programmers specify two functions: 
map (k1, v1) → [(k2, v2)] 
reduce (k2, [v2]) → [(k3, v3)] 
–  All values with the same key are reduced together 

•  The execution framework handles everything else… 

•  Not quite…usually, programmers also specify: 

partition (k2, number of partitions) → partition for k2 
–  Often a simple hash of the key, e.g., hash(key) mod n 
–  Divides up key space for parallel reduce operations 

combine (k2, v2) → [(k2, v2)] 
–  Mini-reducers that run in memory after the map phase 
–  Used as an optimization to reduce network traffic 
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MapReduce Terminology 

•  Job 
•  Task 
•  Slot 
•  JobTracker 

–  Accepts Map/Reduce jobs submitted by users 
–  Assigns Map and Reduce tasks to Task Trackers 
–  Monitors task and Task Tracker status, re-executes tasks 

upon failure 

•  TaskTracker 
–  Run Map and Reduce tasks upon instruction from the Job 

Tracker 
–  Manage storage and transmission of intermediate output 

•  Splits 
–  Data locality optimization 



Runtime Architecture 
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MapReduce Scheduling 

•  One master, many workers 
–  Input data split into M map tasks (typically 64 MB in size) 
–  Reduce phase partitioned into R reduce tasks (hash(k) 

mod R) 
–  Tasks are assigned to workers dynamically 
–  Often: M=200,000; R=4000; workers=2000 

•  Master assigns each map task to a free worker  
–  Considers locality of data to worker when assigning a task 
–  Worker reads task input (often from local disk) 
–  Worker produces R local files containing intermediate k/v 

pairs 

•  Master assigns each reduce task to a free worker 
–  Worker reads intermediate k/v pairs from map workers 
–  Worker sorts & applies user’s reduce operation to produce 

the output 



MapReduce Speculative Execution 

•  Problem: Stragglers (i.e., slow workers) significantly 
lengthen the completion time 
–  Other jobs may be consuming resources on machine 
–  Bad disks with soft (i.e., correctable) errors transfer data 

very slowly 
–  Other weird things: processor caches disabled at machine 

init 

•  Solution: Close to completion, spawn backup 
copies of the remaining in-progress tasks. 
–  Whichever one finishes first, “wins” 

•  Additional cost: a few percent more resource 
usage 

•  Example: A sort program without backup = 44% 
longer. 
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Optimizations: output ordering 

•  Applications can define the sort ordering 
and the partitions of the output (@map) 

•  Default partitioner evenly distributes records  
•  hashcode(key) mod NR 
•  Partitioner could be overridden 



Optimizations: output aggregation 

•  Aggregation for jobs with reducers that merge 
values into a single value 

•  Combiner functions can run on same machine as a 
mapper 

•  Causes a mini-reduce phase to occur before the 
real reduce phase, to save bandwidth 
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Performance 
•  Maximizing Map input transfer rate 

–  Input Locality 
–  Minimal deserialization overhead 

•  Small intermediate output 
–  M x R transfers over the network 
–  Minimize/compress transfers 
–  Avoid shuffling/sorting if possible (e.g. map-only 

computations) 
–  Use combiners and/or partitioners!!! 
–  Compress everything (automatic) 

•  Opportunity to Load Balance 
•  Changing algorithm to suit architecture yields 

best implementation 



How many tasks? 

•  mapred.tasktracker.map.tasks.maximum 
•  mapred.tasktracker.reduce.tasks.maximum 
•  Tradeoffs: 

–  Number of cores 
–  Amount of memory 
–  Number of local disks 
–  Amount of local scratch space 
–  Number of processes 

•  Consider resources consumed by TaskTracker & 
Datanode processes 



Exercise 

•  Input data: 15 TB of doubles 
•  Output data: standard deviation 



Implementation 

•  Two Map-Reduce stages 
–  First stage computes mean 
–  Second stage computes std dev 

•  Stage 1: Compute Mean  
–  Map Input: a subset of input data per mapper 
–  Map Output: fixed key, mean of the input subset 
–  Single Reducer  
–  Reduce Input: set of partial means 
–  Reduce Output: mean 

•  Stage 2: Compute Standard deviation  
–  Map Input: a subset of input data and mean per mapper 
–  Map Output: fixed key, (sum(x_i – mean(x))^ of the input subset 
–  Single Reducer 
–  Reduce Input: set of partial results 
–  Reduce Output: standard deviation 



…but… 

•  Single Map-Reduce stage 
•  Map Input: a subset of input data per mapper 
•  Map Output: fixed key, sum(x^2) and mean of the input 

subset 
•  Single Reducer 
•  Reduce Input: set of partial results 
•  Reduce Output: standard deviation 

Only a single pass over large input instead of two! 


