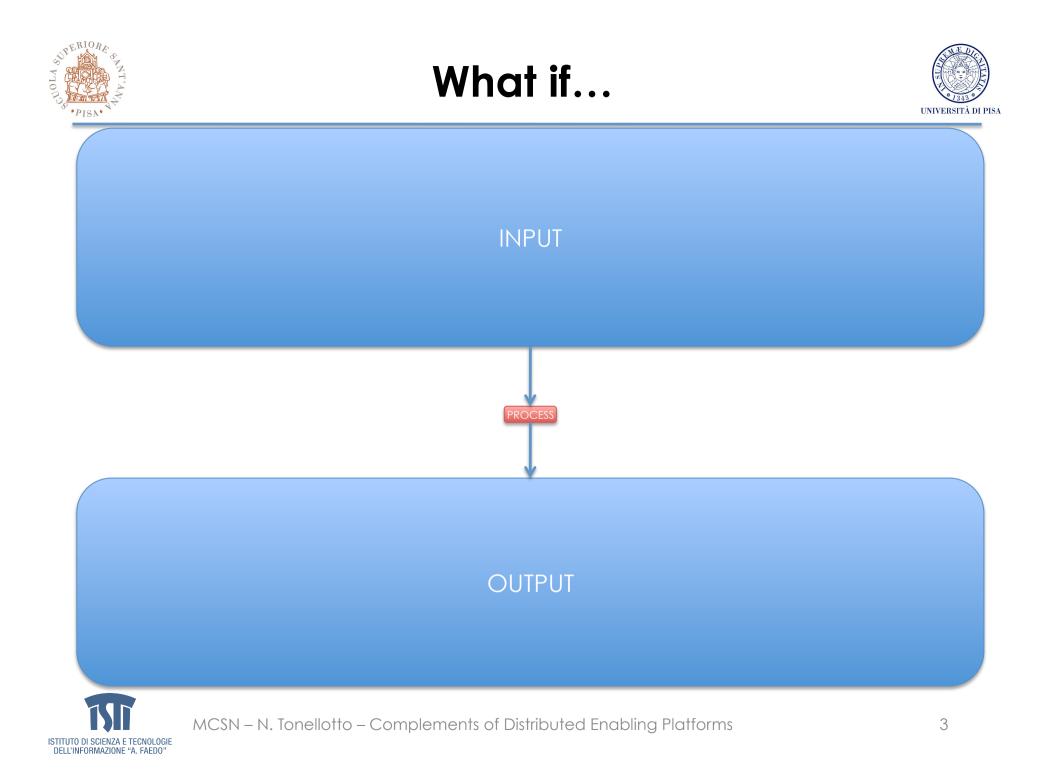
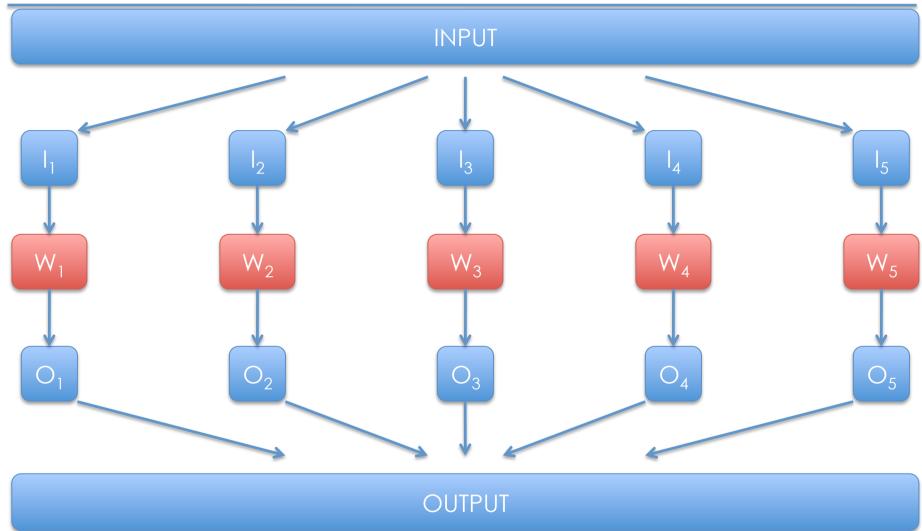


Map Reduce

Typical application



Divide & Conquer



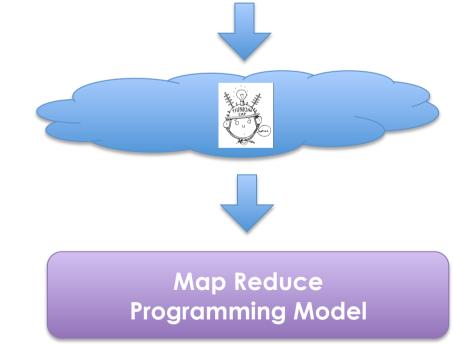
- How do we split the input?
- How do we distribute the input splits?
- How do we collect the output splits?
- How do we aggregate the output?
- How do we coordinate the work?
- What if input splits > num workers?
- What if workers need to share input/output splits?
- What if a worker dies?
- What if we have a new input?

Design ideas

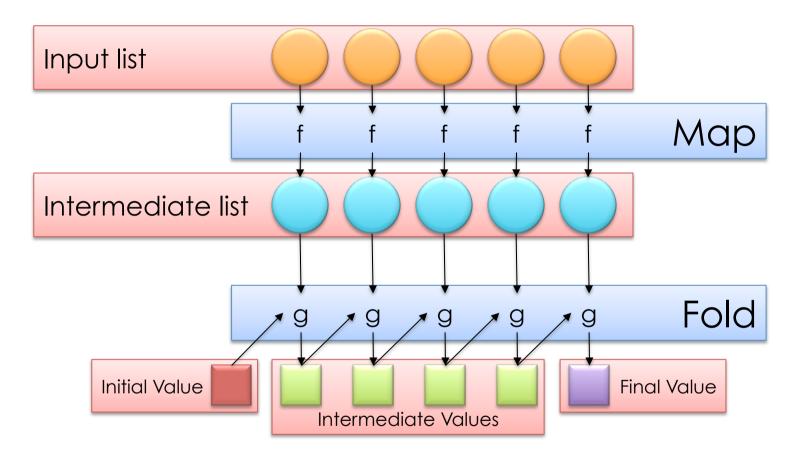
- Scale "out", not "up"
 - Low end machines
- Move processing to the data
 - Network bandwidth bottleneck
- Process data sequentially, avoid random access
 - Huge data files
 - Write once, read many
- Seamless scalability
 - Strive for the unobtainable
- Right level of abstraction
 - Hide implementation details from applications development

Typical Large-Data Problem

- Iterate over a large number of records
- Extract something of interest from each
- Shuffle and sort intermediate results
- Aggregate intermediate results
- Generate final output



From functional programming...



...To MapReduce

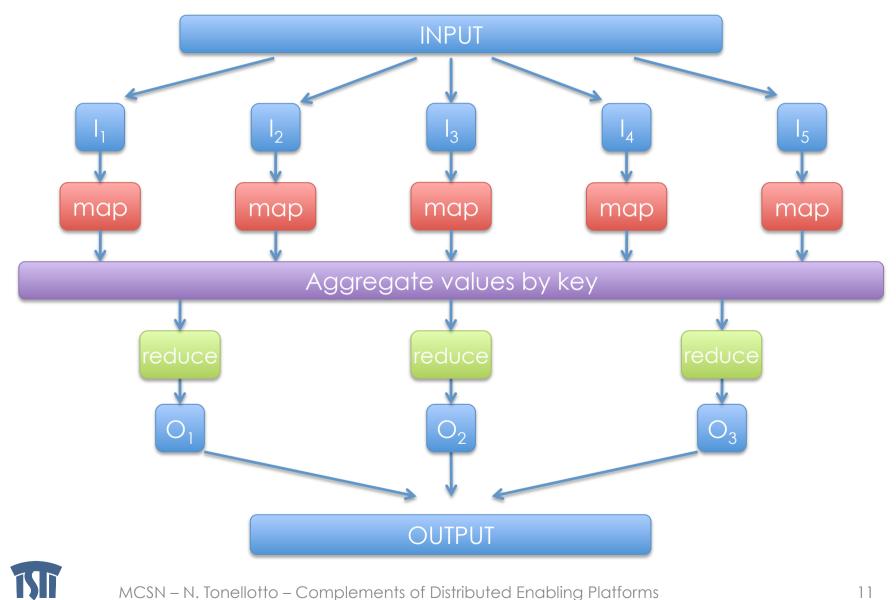
• Programmers specify two functions:

 $\mathbf{map} \ (k_1, v_1) \rightarrow [(k_2, v_2)]$

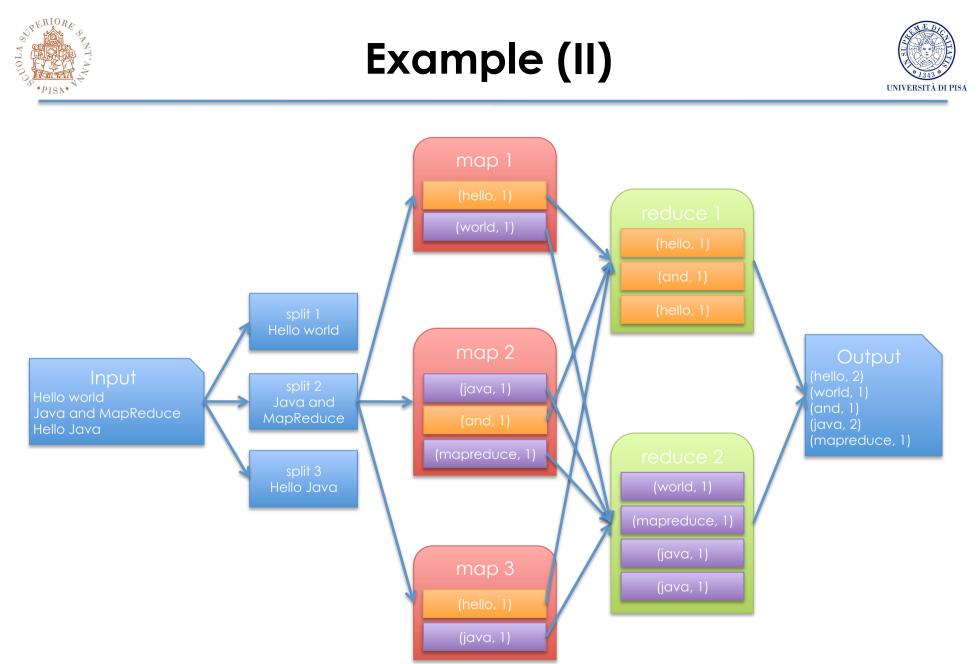
reduce $(k_2, [v_2]) \rightarrow [(k_3, v_3)]$

- All values with the same key are sent to the same reducer
- Input keys and values (k_1, v_1) are drawn from different domain than output keys and values (k_3, v_3)
- Intermediate keys (k_2 , v_2) and values are from the same domain as the output keys and values (k_3 , v_3)
- The runtime handles everything else...

Programming Model (simple)



- 1: **class** MAPPER
- 2: **method** MAP(docid a, doc d)
- 3: for all term $t \in \text{doc } d$ do
- 4: EMIT(term t, count 1)
- 1: **class** Reducer
- 2: method REDUCE(term t, counts $[c_1, c_2, \ldots]$)
- 3: $sum \leftarrow 0$
- 4: for all count $c \in \text{counts} [c_1, c_2, \ldots]$ do
- 5: $sum \leftarrow sum + c$
- 6: EMIT(term t, count sum)



Runtime

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed FS

- Programmers specify two functions: map (k₁, v₁) → [(k₂, v₂)] reduce (k₂, [v₂]) → [(k₃, v₃)] – All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:

partition (k_2 , number of partitions) \rightarrow partition for k_2

- Often a simple hash of the key, e.g., hash(key) mod n
- Divides up key space for parallel reduce operations

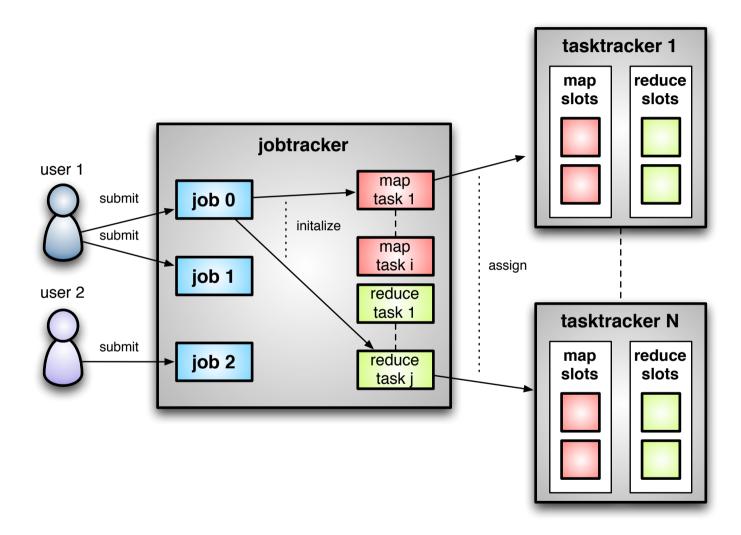
combine $(k_2, v_2) \rightarrow [(k_2, v_2)]$

- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

MapReduce Terminology

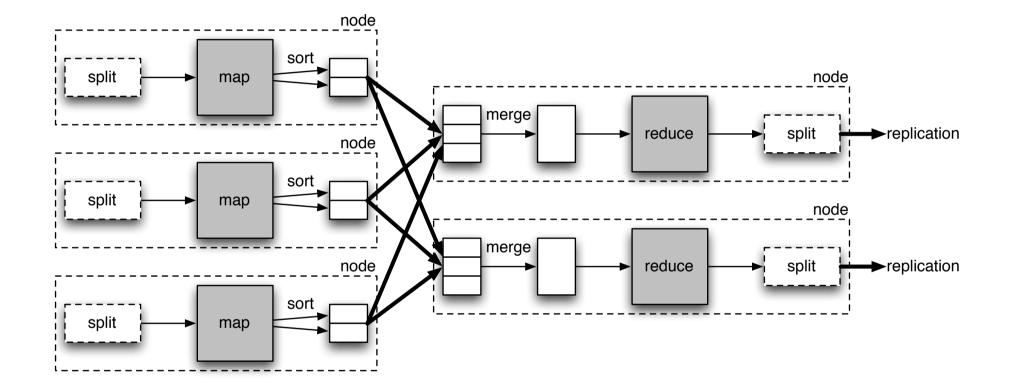
- Job
- Task
- Slot
- JobTracker
 - Accepts Map/Reduce jobs submitted by users
 - Assigns Map and Reduce tasks to Task Trackers
 - Monitors task and Task Tracker status, re-executes tasks upon failure
- TaskTracker
 - Run Map and Reduce tasks upon instruction from the Job Tracker
 - Manage storage and transmission of intermediate output
- Splits
 - Data locality optimization

Runtime Architecture



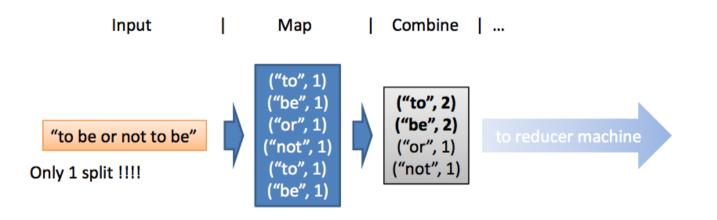
- One master, many workers
 - Input data split into M map tasks (typically 64 MB in size)
 - Reduce phase partitioned into R reduce tasks (hash(k) mod R)
 - Tasks are assigned to workers dynamically
 - Often: M=200,000; R=4000; workers=2000
- Master assigns each map task to a free worker
 - Considers locality of data to worker when assigning a task
 - Worker reads task input (often from local disk)
 - Worker produces R local files containing intermediate k/v pairs
- Master assigns each reduce task to a free worker
 - Worker reads intermediate k/v pairs from map workers
 - Worker sorts & applies user's reduce operation to produce the output

- Problem: Stragglers (i.e., slow workers) significantly lengthen the completion time
 - Other jobs may be consuming resources on machine
 - Bad disks with soft (i.e., correctable) errors transfer data very slowly
 - Other weird things: processor caches disabled at machine init
- Solution: Close to completion, spawn backup copies of the remaining in-progress tasks.
 - Whichever one finishes first, "wins"
- Additional cost: a few percent more resource usage
- Example: A sort program without backup = 44% longer.



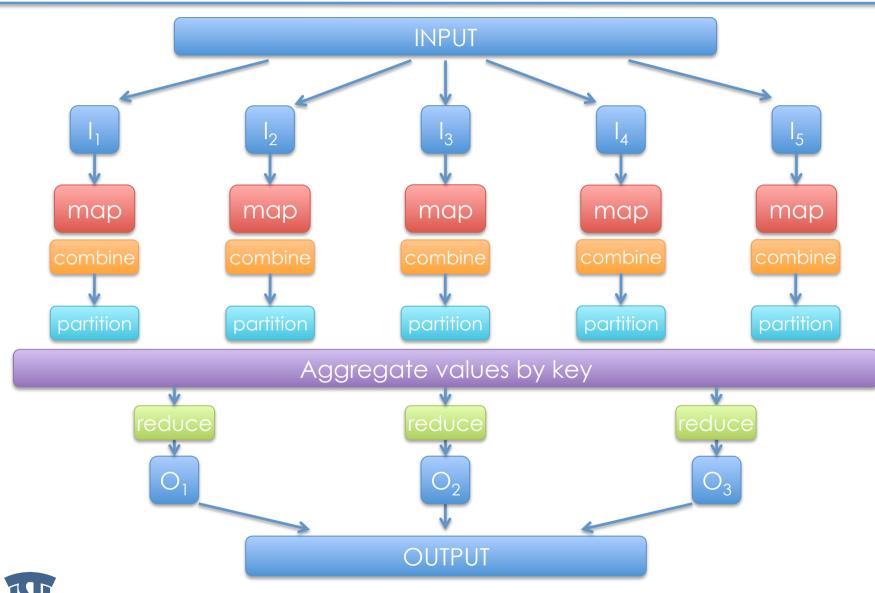
- Applications can define the sort ordering and the partitions of the output (@map)
- Default **partitioner** evenly distributes records
- hashcode(key) mod NR
- Partitioner could be overridden

Aggregation for jobs with reducers that merge values into a single value



- Combiner functions can run on same machine as a mapper
- Causes a mini-reduce phase to occur before the real reduce phase, to save bandwidth

Programming Model (complete)



UPERIORE

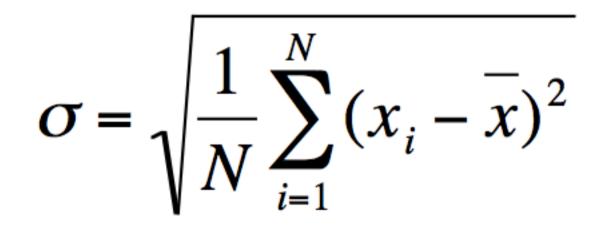
PIGN

Performance

- Maximizing Map input transfer rate
 - Input Locality
 - Minimal deserialization overhead
- Small intermediate output
 - M x R transfers over the network
 - Minimize/compress transfers
 - Avoid shuffling/sorting if possible (e.g. map-only computations)
 - Use combiners and/or partitioners!!!
 - Compress everything (automatic)
- Opportunity to Load Balance
- Changing algorithm to suit architecture yields
 best implementation

- mapred.tasktracker.map.tasks.maximum
- mapred.tasktracker.reduce.tasks.maximum
- Tradeoffs:
 - Number of cores
 - Amount of memory
 - Number of local disks
 - Amount of local scratch space
 - Number of processes
- Consider resources consumed by TaskTracker & Datanode processes

- Input data: 15 TB of doubles
- Output data: standard deviation



Implementation

- Two Map-Reduce stages
 - First stage computes mean
 - Second stage computes std dev
- Stage 1: Compute Mean
 - Map Input: a subset of input data per mapper
 - Map Output: fixed key, mean of the input subset
 - Single Reducer
 - Reduce Input: set of partial means
 - Reduce Output: mean
- Stage 2: Compute Standard deviation
 - Map Input: a subset of input data and mean per mapper
 - Map Output: fixed key, (sum(x_i mean(x))^ of the input subset
 - Single Reducer
 - Reduce Input: set of partial results
 - Reduce Output: standard deviation

$$\sigma = \sqrt{\frac{1}{N} \left(\sum_{i=1}^{N} x_i^2 - N x^2\right)}$$

- Single Map-Reduce stage
 - Map Input: a subset of input data per mapper
 - Map Output: fixed key, sum(x^2) and mean of the input subset
 - Single Reducer
 - Reduce Input: set of partial results
 - Reduce Output: standard deviation

Only a single pass over large input instead of two!

