
System Virtual Machines

(same ISA)

State Management
•  Each VM would have its own architected state

information
–  Example: registers/memory/disks, page table/TLB

•  Not always possible to map all architected states to
its natural level in the host
–  Insufficient/Unavailable host resources
–  Example: Registers of a VM may be architected using main

memory in the host

•  VMs keep getting switched in/out by the VMM
–  “Isomorphism” requires all state transitions to be performed

on the VM states

•  State Management: Indirection Vs. Copying

Indirection
•  Indirection

–  Hold state for each VM in fixed locations in the hostʼ’s memory
hierarchy

–  A pointer managed by VMM indicating the guest state that is
currently active

–  Analogous to page table pointer in virtual memory systems
–  Pros: Ease of management
–  Cons: Inefficient (mov eax ebx requires 2 inst)

Processor

Register Block
Pointer

VMM Memory
Register Values

VM1

Register Values
VM2

Register Values
VM3

Load RBP to point RVs VM2
Load VM2 PC and start exec
…
LOAD PROC.EAX, VM1.EAX
STORE VM1.EBX, PROC.EAX

MOV EBX, EAX

Copying
•  Copying

–  Copy VMʼ’s state information to its natural level in memory
hierarchy when switched in

–  Copy them back to the original place when switched out
–  Example: Copy all the VM registers to the processor registers
–  Pros: Efficient (most instructions are executed natively)
–  Cons: Copying overhead

Processor

Registers

VMM Memory
Register Values

VM1

Register Values
VM2

Register Values
VM3

Copy RVs from VMM memory
Load VM2 PC and start exec
…
MOV PROC.EBX, PROC.EAX
…
Copy RVs to VMM memory

MOV EBX, EAX

Classical Virtualization
•  Popek & Goldberg, 1974

•  Fidelity

–  Run any software
•  Performance

–  Run it fast
•  Safety and Isolation

–  VMM manages all hardware

Resource Control

•  VMM must maintain overall control of the hardware resources
–  Hardware resources are assigned to VMs when they are created/

executed
–  Should have a way to get them back when they need to

assigned to a different VM
–  Similar to multi-programming in OS

•  Privileged Resources
–  Certain resources are accessible only to and managed by VMM
–  Interrupts relating to such resources must then be handled by

VMM
–  Privileged resources are emulated by VMM for the VM

•  All resource that could help maintain control are marked
privileged
–  “Interval timer” is used to decide VM scheduling
–  “Page table base register” (CR3 on x86) is used to isolate VM

memory

Processor Virtualization

Classes of instructions

•  PRIVILEGED instructions trap if executed in
user mode and do not trap if executed in
kernel mode

•  SENSITIVE instructions interact with hardware
–  CONTROL-sensitive instructions attempt to change the

configuration of resources in the system

–  BEHAVIOR-sensitive instructions have their result depending
on the configuration of resources (e.g. mode of operation)

•  INNOCUOUS instructions are not sensitive

Popek & Goldberg Theorem (1974)

For any conventional third-generation computer a virtual
machine monitor with the following properties:

1.  Efficiency: innocuous instruction must be executed natively

2.  Resource Control: guest can not directly change host
resources

3.  Equivalence: app behavior in guest must be identical to app
behavior in host

may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions

Full Virtualization

Trap & Emulate

•  Must be able to “detect” when VMM must intervene
•  Some ISA instructions must be “trapped” and “emulated”
•  Must De-Privilege OS
•  Very similar to the way programs transfer control to the OS

kernel during a system call

OS

Applications OS

Applications

VMM
kernel mode

user mode

Privileged Resources

•  Each VM’s privileged state differs from that
of the underlying HW.

•  Guest-level primary structures reflect the
state that a guest sees.

•  VMM-level shadow structures are copies of
primary structures.

•  Traps occur when on-chip privileged state
is accessed/modified.

•  HW page protection schemes are
employed to “detect” when off-chip
privileged state is accessed/modified

Handling of Privileged Instructions

VMM Guest OS

Resources

Priviliged
Instruction

Resources

Dispatcher

Allocator

Interpeter
Routine

Trap

1.  Change mode
2.  Emulate instruction
3.  Update resource
4.  Computer target
5.  Restore Mode
6.  Jump to target

Traps are expensive!

Is X86 (fully) virtualizable?

•  Lack of trap when priviliged instructions run
at user level

•  Some privileged instructions execute only in
ring 0 but do not fault when executed
outside ring 0

•  Masking interrupts can
 only be done in ring 0

Example: POPF

•  Same instruction behaves differently
depending on execution mode

•  User Mode: changes ALU flags
•  Kernel Mode: changes ALU and system

flags
•  Does not generate a trap in user mode

The IA-32 instruction set contains 17 sensitive,
unprivileged instructions

Solution

•  How can x86ʼ’s faults be overcome?
•  What if guests execute on an interpreter?
•  The interpreter can…
–  Prevent leakage of privileged state.
–  Ensure that all sensitive instructions are correctly

detected.

•  Therefore it can provide…
–  Fidelity
–  Safety
–  Performance??

•  Binary – input is machine-level code

•  Dynamic – occurs at runtime

•  On demand – code translated when needed for execution

•  System level – makes no assumption about guest code

•  Subsetting – translates from full instruction set to safe subset

•  Adaptive – adjust code based on guest behavior to achieve efficiency

Binay Translation

Sensitive

Innocuous

Innocuous

IDENT

SIMUL

Binary Translator
BT

Translation Cache

Compiled
Code

Fragment
CCF

vPC [x]

[y]

([x], [y])

Hash Table

PC
1

Guest Code
Memory

Implementation

Translation Unit
TU 2

3

4

5

6

Example

mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

mov [VIF], 0

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

mov [VIF], 1

test [INT_PEND], 1

jne

call HANDLE_INTS

jmp HANDLE_RET

Guest Code Memory Translation Cache

vPC

Issues

•  Translation cache index data structure

•  Hardware emulation comes with a
performance price

•  In traditional x86 architectures, OS kernels
expect to run privileged code in Ring 0
–  However, because Ring 0 is controlled by the host OS, VMs

are forced to execute at Ring 1/3, which requires the VMM
to trap and emulate instructions

• Due to these performance limitations,
paravirtualization and hardware-assisted
virtualization were developed

Paravirtualization

OS

Applications Applications

ring 0

ring 1

ring 2

ring 3 OS

VMM

Applications

VMM Root Mode
Privilege Level

OS

Drawbacks

•  Relies on separate OS kernel for native and
in VM

•  Tight coupling inhibits compatibility
•  Changes to the guest OS are invasive
•  Inhibits maintainability and supportability
•  Guest kernel must be recompiled when

VMM is updated

Hardware-assisted Virtualization

OS

Applications Applications

para-OS

ring 0

ring 1

ring 2

ring 3 OS

VMM

Applications

VMM

New Hardware Features

•  Virtual Machine Control Blocks (VMCBs)
•  Root mode privilege level
•  Ability to transfer control to/from guest mode.

•  vmrun - host to guest.
•  exit - guest to host.

•  VMM executes vmrun to start a guest.
•  Guest state is loaded into HW from in-memory VMCB.
•  Guest mode is resumed and guest continues execution.

•  Guests execute until they “toy” with control bits of the
VMCB.
•  An exit operation occurs.
•  Guest saves data to VMCB.
•  VMM state is loaded into HW - switches to host mode.
•  VMM begins executing.

