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State Management 
•  Each VM would have its own architected state 

information 
–  Example: registers/memory/disks, page table/TLB 

•  Not always possible to map all architected states to 
its natural level in the host 
–  Insufficient/Unavailable host resources 
–  Example: Registers of a VM may be architected using main 

memory in the host 

•  VMs keep getting switched in/out by the VMM 
–  “Isomorphism” requires all state transitions to be performed 

on the VM states 

•  State Management: Indirection Vs. Copying 



Indirection 
•  Indirection 

–  Hold state for each VM in fixed locations in the hostʼ’s memory 
hierarchy 

–  A pointer managed by VMM indicating the guest state that is 
currently active 

–  Analogous to page table pointer in virtual memory systems 
–  Pros: Ease of management 
–  Cons: Inefficient (mov eax ebx requires 2 inst) 
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Copying 
•  Copying 

–  Copy VMʼ’s state information to its natural level in memory 
hierarchy when switched in 

–  Copy them back to the original place when switched out 
–  Example: Copy all the VM registers to the processor registers 
–  Pros: Efficient (most instructions are executed natively) 
–  Cons: Copying overhead 
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Classical Virtualization 
•  Popek & Goldberg, 1974 

 
•  Fidelity 

–  Run any software 
•  Performance 

–  Run it fast 
•  Safety and Isolation 

–  VMM manages all hardware 



Resource Control 

•  VMM must maintain overall control of the hardware resources 
–  Hardware resources are assigned to VMs when they are created/

executed 
–  Should have a way to get them back when they need to 

assigned to a different VM 
–  Similar to multi-programming in OS 

•  Privileged Resources 
–  Certain resources are accessible only to and managed by VMM 
–  Interrupts relating to such resources must then be handled by 

VMM 
–  Privileged resources are emulated by VMM for the VM 

•  All resource that could help maintain control are marked 
privileged 
–  “Interval timer” is used to decide VM scheduling 
–  “Page table base register” (CR3 on x86) is used to isolate VM 

memory 



Processor Virtualization 



Classes of instructions 

•  PRIVILEGED instructions trap if executed in 
user mode and do not trap if executed in 
kernel mode 

•  SENSITIVE instructions interact with hardware 
–  CONTROL-sensitive instructions attempt to change the 

configuration of resources in the system 

–  BEHAVIOR-sensitive instructions have their result depending 
on the configuration of resources (e.g. mode of operation) 

•  INNOCUOUS instructions are not sensitive 



Popek & Goldberg Theorem (1974) 

For any conventional third-generation computer a virtual 
machine monitor with the following properties: 
 
1.  Efficiency: innocuous instruction must be executed natively 

2.  Resource Control: guest can not directly change host 
resources 

3.  Equivalence: app behavior in guest must be identical to app 
behavior in host 

may be constructed if the set of sensitive instructions for that 
computer is a subset of the set of privileged instructions 

Full Virtualization 



Trap & Emulate 

•  Must be able to “detect” when VMM must intervene 
•  Some ISA instructions must be “trapped” and “emulated” 
•  Must De-Privilege OS 
•  Very similar to the way programs transfer control to the OS 

kernel during a system call 
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Privileged Resources 

•  Each VM’s privileged state differs from that 
of the underlying HW. 

•  Guest-level primary structures reflect the 
state that a guest sees. 

•  VMM-level shadow structures are copies of 
primary structures. 

•  Traps occur when on-chip privileged state 
is accessed/modified. 

•  HW page protection schemes are 
employed to “detect” when off-chip 
privileged state is accessed/modified 



Handling of Privileged Instructions 
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Traps are expensive! 



Is X86 (fully) virtualizable? 

•  Lack of trap when priviliged instructions run 
at user level 

•  Some privileged instructions execute only in 
ring 0 but do not fault when executed 
outside ring 0  

•  Masking interrupts can 
 only be done in ring 0 



Example: POPF 

•  Same instruction behaves differently 
depending on execution mode 

•  User Mode:  changes ALU flags 
•  Kernel Mode:  changes ALU and system 

flags 
•  Does not generate a trap in user mode 
 
 
The IA-32 instruction set contains 17 sensitive, 
unprivileged instructions 
 



Solution 

•  How can x86ʼ’s faults be overcome? 
•  What if guests execute on an interpreter? 
•  The interpreter can… 
–  Prevent leakage of privileged state. 
–  Ensure that all sensitive instructions are correctly 

detected. 

•  Therefore it can provide… 
–  Fidelity 
–  Safety 
–  Performance?? 

 



•  Binary – input is machine-level code 

•  Dynamic – occurs at runtime 

•  On demand – code translated when needed for execution 

•  System level – makes no assumption about guest code 

•  Subsetting – translates from full instruction set to safe subset 

•  Adaptive – adjust code based on guest behavior to achieve efficiency 
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Example 

mov   ebx, eax 

cli 

and   ebx, ~0xfff 

mov   ebx, cr3 

sti 

ret 

mov   ebx, eax 

mov   [VIF], 0 

and   ebx, ~0xfff 

mov   [CO_ARG], ebx 

call  HANDLE_CR3 

mov   [VIF], 1 

test  [INT_PEND], 1 

jne 

call  HANDLE_INTS 

jmp   HANDLE_RET 

Guest Code Memory Translation Cache 

vPC 



Issues 

•  Translation cache index data structure 

•  Hardware emulation comes with a 
performance price  

•  In traditional x86 architectures, OS kernels 
expect to run privileged code in Ring 0 
–  However, because Ring 0 is controlled by the host OS, VMs 

are forced to execute at Ring 1/3, which requires the VMM 
to trap and emulate instructions  

• Due to these performance limitations, 
paravirtualization and hardware-assisted 
virtualization were developed 



Paravirtualization 
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Drawbacks 

•  Relies on separate OS kernel for native and 
in VM 

•  Tight coupling inhibits compatibility 
•  Changes to the guest OS are invasive 
•  Inhibits maintainability and supportability 
•  Guest kernel must be recompiled when 

VMM is updated 



Hardware-assisted Virtualization 
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New Hardware Features 

•  Virtual Machine Control Blocks (VMCBs) 
•  Root mode privilege level 
•  Ability to transfer control to/from guest mode. 

•  vmrun - host to guest. 
•  exit - guest to host. 

•  VMM executes vmrun to start a guest. 
•  Guest state is loaded into HW from in-memory VMCB. 
•  Guest mode is resumed and guest continues execution. 

•  Guests execute until they “toy” with control bits of the 
VMCB. 
•  An exit operation occurs. 
•  Guest saves data to VMCB. 
•  VMM state is loaded into HW - switches to host mode. 
•  VMM begins executing. 
 


