

Grid Computing

MCSN - N. Tonellotto - Distributed Enabling Platforms

Resource

- An entity that may be shared
 CPU, storage, data, software,...
- Not necessarily a physical entity

Filesystem, bandwidth, thread pool...

- Defined in terms of interfaces and capabilities
 - Open/close/read/write define the access methods to a filesystem
 - Copy/delete/move/create/cat define the methods to manipulate data

- Protocol
 - A formal description of messages format and a set of rules to exchange messages
 - Messages allow two or more resources to communicate
 - Rules may define a sequence of message exchanges
 - Message may change resources status and/or behavior
 - A good protocol does a single job
 - Filesystem, bandwidth, thread pool...
 - Defined in terms of interfaces and capabilities (APIs)
 Open/close/read/write define the access methods to a filesystem
 Copy/delete/move/create/cat define the methods to manipulate data

Definitions (III)

Service

- A server-side protocol implementation providing a set of capabilities
 - The protocol defines the interactions between a client and a server
 - A server implementing a protocol is the service
- Every service needs a protocol to implement
- A service can implement more than one protocol, but good services expose just

one

- Examples
- FTP servers (ftp://)
- Web servers (http://)
- Mail servers (pop or imap)

Example

- A web service is a service available on the Internet
- It allows creation of client/server applications.
- Platform and language independent protocol based on XML.
- Most use HTTP for transporting messages
- Lend themselves naturally to build loosely coupled distributed systems.

- Service Provider
 - Implements the service and make it available on the Internet
- Service Requestor
 - Service consumers use existing services opening a network connection, sending XML requests and receiving XML responses
- Service Registry
 - The service registry provides a central point where service providers can publish their services and service requestors can look for existing services

Protocols

Discovery	UDDI
Description	WSDL
Invocation	SOAP,XML-RPC
Transpost	HTTP,FTP

MCSN - N. Tonellotto - Distributed Enabling Platforms

- Resource sharing
 - Computers, data, storage, sensors, networks, ...
 - Sharing always conditional: issues of trust, policy, negotiation, payment, ...
- Coordinated problem solving
 - Beyond client-server: distributed data analysis, computation, collaboration, ...
- Dynamic, multi-institutional virtual organizations
 - Community overlays on classic org structures
 - Large or small, static or dynamic

- Components
 - set of individual/institutions
 - set of resources
 - set of sharing rules
- Dynamic set of individuals and/or institutions defined by a shared goal and a set of sharing rules
- May vary in size, scope, duration and structure
 - Example: class students for cooperative lecture writing
 - Example: industrial consortium building a new aircraft
- The sharing is highly controlled, with resource providers and consumers defining clearly and carefully just what is shared

- Three physical organizations (A, B, C)
- Two virtual organizations (X, Y)

- Three physical organizations (A, B, C)
- Two virtual organizations (X, Y)

- Three physical organizations (A, B, C)
- Two virtual organizations (X, Y)

Multidisciplinary Design

MCSN - N. Tonellotto - Distributed Enabling Platforms

DELL'INFORMAZIONE "A. FAEDO" lunedì 24 settembre 12

Scope of Grids

MCSN - N. Tonellotto - Distributed Enabling Platforms

lunedì 24 settembre 12

11

"Controlling things locally": Access to & control of resources

MCSN - N. Tonellotto - Distributed Enabling Platforms

Fabric

The Hourglass Model

I. Foster, "The Grid: A New Infrastructure for 21st Century Science," Physics Today, vol. 55, no. 2, pp. 42–47, 2002.

Fabric Layer

- Just what you would expect: the diverse mix of resources that may be shared
 - Individual computers, Condor pools, file systems, archives, metadata catalogs, networks, sensors, etc.
- Few constraints on low-level technology: connectivity and resource level protocols form the "neck in the hourglass"
- Defined by interfaces not physical characteristics

Communication

- Internet protocols: IP, DNS, routing, etc.
- Security: Grid Security Infrastructure (GSI)
 - Uniform authentication, authorization, and message protection mechanisms in multi-institutional setting
 - Single sign-on, delegation, identity mapping
 - Public key technology, SSL, X.509, GSS-API
 - Supporting infrastructure: Certificate Authorities, certificate
 & key management, ...

- Grid Resource Allocation Management (GRAM)
 - Remote allocation, reservation, monitoring, control of compute resources
- GridFTP protocol (FTP extensions)
 - High-performance data access & transport
- Grid Resource Information Service (GRIS)
 - Access to structure & state information
- Others emerging: Catalog access, code repository access, accounting, etc.
- All built on connectivity layer: GSI & IP

- Index servers a.k.a. meta-directory services
 - Custom views on dynamic resource collections assembled by a community
- Resource brokers
 - Resource discovery and allocation
- Replica catalogs
- Replication services
- Co-reservation and co-allocation services
- Workflow management services
- etc...

Grid Services

App	Medicine	llaboration	o <mark>lications</mark> ogy Co	App Biolo	Engineering	Science
User	Web Tools	eduling	ment and De Debuggers ment and Sche	<mark>tion Develop</mark> Libraries urce Manager	Applicat ompilers Resou	Languages
Core	ring QoS	ı <mark>gers</mark> 1g Monitor	sources Mana Accountin curity	<mark>stributed Res</mark> Execution Sec	Di Data	Informatio
Fabric	net Protocols c Instruments	rs Kernels Interr VOs ces Scientific	rces Manager s Libraries I ources across Data Sourc	Local Resou leing Systems worked Reso Storage	stems Queu Net Networks	Operating Computer

Using the Grid

DELL'INFORMAZIONE "A. FAEDO lunedì 24 settembre 12

STITUTO DI SCIENZA E 1

Collaboration Grids

- Multiple institutions, secure, widely distributed, VOs
- Collaborative agreements & commercial partnerships
- Financial Model: Increase overall revenue
- Data Center Grids (evolving to Clouds)
 - Centralized management of multiple platforms
 - Aggregation of enterprise resources and applications
 - Financial Model: Reduce Total Cost Ownership (TCO)

Cluster Grids

- Networks of Workstations, Blades, etc.
- Cycle scavenging, Homogeneous workload
- Financial Model: Lower marginal costs

• An example Grid middleware

http://www.globus.org/toolkit/

- A software toolkit addressing key technical problems in the development of Grid enabled tools, services, and applications
 - Offer a modular "bag of technologies"
 - Enable incremental development of Grid-enabled tools and applications
 - Implement standard Grid protocols and APIs (the "core" of the hourglass)
 - Is available under liberal open source license
- Now is evolving to Cloud middleware

Key Protocols

ISTITUTO DI SCIENZA E TECNOLOGIE DELL'INFORMAZIONE "A. FAEDO"

MCSN - N. Tonellotto - Distributed Enabling Platforms

GT2 Protocols and Services

Grid Security

- Resources being used may be valuable & the problems being solved sensitive
- Resources are often located in distinct administrative domains
 - Each resource has own policies & procedures
- Set of resources used by a single computation may be large, dynamic, and unpredictable
 - Not just client/server, requires delegation
- It must be broadly available & applicable
- Standard, well-tested, well-understood protocols; integrated with wide variety of tools

- PKI allows you to know that a given public key belongs to a given user
- PKI builds upon asymmetric encryption:
 - Each entity has two keys: public and private
 - Data encrypted with one key can only be decrypted with the other
 - The private key is known only to the owner
- The public key is given to the world encapsulated in a X.509

GSI in Action

"Create Processes at A and B that Communicate & Access Files at C"

- Provide access to static and dynamic information regarding system components
- A basis for configuration and adaptation in heterogeneous, dynamic environments
- Resource Description Services
 - Supplies information about a specific resource
- Aggregate Directory Services
 - Supplies collection of information which was gathered from multiple resource description services
 - Customized naming and indexing

MDS Protocols and Services

MCSN - N. Tonellotto - Distributed Enabling Platforms

- Grid Resource Management System consists of :
 - Local resource management system (Resource Layer)
 - Basic resource management unit
 - Provide a standard interface for using remote resources
 - Grid Resource Allocation Manager (GRAM)
 - Global resource management system (Collective Layer)
 - Coordinate all Local resource management system within multiple or distributed
 Virtual Organizations (VOs)
 - Provide high-level functionalities to efficiently use all of resources
 - Job Submission
 - Resource Discovery and Selection
 - Scheduling
 - Co-allocation
 - Job Monitoring, etc.
 - e.g. Meta-scheduler, Resource Broker, etc.

Definitions

- **Resource**: entity able to execute one or more jobs on the behalf of the user
- Client: process using GRAM protocol to submit a job request
- Job: one or more processes being part of a job request
- Job request: a message containing the request and the specification for a job execution on a remote resource. A typical job request specifies:
 - When and where processes should be created
 - How and what processes to create
 - How to execute and terminate processes
- Gatekeeper: remote resources service managing incoming job requests (GT2)
- Job Manager: service instantiated by the gatekeeper to manage the execution and monitor the job's processes (GT2)

GRAM Protocols and Services

MCSN - N. Tonellotto - Distributed Enabling Platforms

- Data access and transfer
 - **GASS**: Simple multi-protocol tool to transfer 'normal' files; integrated in GRAM
 - GridFTP: Reliable and high-performance file transfer protocol for 'big' files in computer networks
- Replica Management
 - **Replica Catalog**: Service to keep updated information on sets of replicated data
 - Replica Management: Service to create and manage sets of replicated data

Replica Catalog

ISTITUTO DI SCIENZA E TECNOLOGIE DELL'INFORMAZIONE "A. FAEDO" Iunedì 24 settembre 12

• C. Kesselman, et al., *The Anatomy of the Grid: Enabling Scalable Virtual Organizations*, International Journal of Supercomputing Applications, pp. 1-25, 2001.

http://www.globus.org/alliance/publications/papers/anatomy.pdf

• I. Foster, et al., The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, Globus Research, Work-in-Progress 2002.

http://www.globus.org/alliance/publications/papers/ogsa.pdf

• Links provided at:

http://www.cli.di.unipi.it/doku/doku.php/magistraleinformaticanetworking/cpa/start

