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Intermediate Data
• Written locally 
• Transferred from mappers to reducers over network 
• Issue 

- Performance bottleneck 

• Solution 
- Use combiners 

- Use In-Mapper Combining
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Original Word Count

• How many intermediate keys per mapper? 

• How can we improve this? 

• Is it a “real” improvement?
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Stateless In-Mapper Combining

• Custom local aggregator 

• Coding overhead 

• Is it a “real” improvement?
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Stateful In-Mapper Combining

• Custom local aggregator 

• Coding overhead 

• Is it a “real” improvement?
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In-Mapper Combining Analysis

• Advantages: 
- Complete local aggregation control (how and when) 

- Guaranteed to execute 

- Direct efficiency control on intermediate data creation 

- Avoid unnecessary objects creation and destruction (before combiners) 

• Disadvantages: 
- Breaks the functional programming background (state) 

- Potential ordering-dependent bugs 

- Memory scalability bottleneck (solved by memory foot-printing and flushing)
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Matrix Generation
• Common problem: 

- Given an input of size N, generate an output matrix of size N x N 

• Example: word co-occurrence matrix 

- Given a document collection, emit the bigram frequencies 
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“Pairs”

• We must use custom key type 
• Intermediate overhead? Bottlenecks? 
• Can we use the reducer as a combiner?  
• Keys space?
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“Stripes”

• We must use custom key and value types 
• Intermediate overhead? Bottlenecks? 
• Can we use the reducer as a combiner?  
• Keys space?
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Matrix Vector Multiplication
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Matrix M Vector v 

x 

• The matrix does not fit in memory 
- 1 case: vector v fits in memory 

- 2 case: vector v does not fit in memory
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Vector fits in memory
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Matrix M Vector v 

x 

• Map 
- input = (*, chunk of matrix M) 
- vector v read from memory 
- output = (i, mijvj)  

• Reduce 
- sum up all the values for the given key i
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Vector does not in memory
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• Divide the vector in equal-sized subvectors that can fit in memory 
• According to that, divide the matrix in stripes 
• Stripe i and subvector i are independent from other stripes/subvectors 
• Use the previous algorithm for each stripe/subvector pair

Matrix M Vector v 

x 
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Relational Databases
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• SELECTION: Select from R tuples satisfying condition C 
• PROJECTION: For each tuple in R, select only certain attributes 
• UNION, INTERSECTION, DIFFERENCE: Set operations on two relations with same schema 
• NATURAL JOIN 
• GROUPING and AGGREGATION 

A2 A1 A5 A4 A3 

Relation R 

Schema 

Tuple 
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Selection and Projection
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• MAP: Each tuple t, if condition C is satisfied, is outputted 

as a (t, t) pair 

• REDUCE: Identity

• MAP: For each tuple t, create a new tuple t’ containing 

only projected attributes. Outpu is (t’, t’) pair 

• REDUCE: Coalesce input (t’, [t’ t’ t’ t’]) in output (t’,t’)
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Union, Intersection, Difference
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• MAP: Each tuple t is outputted as a (t, t) pair 

• REDUCE: For each key t, there will be 1 or 2 values t. 

Coalesce them in a single output (t,t)

• MAP: Each tuple t is outputted as a (t, t) pair 

• REDUCE: For each key t, there will be 1 or 2 values t. If 2 

values, coalesce them in a single output (t,t), else ignore

• MAP: For each tuple t in R, produce (t, “R”). For each tuple t in S, produce 
(t, “S”). 

• REDUCE: For each key t, there will be 1 or 2 values t. If 1 value, and being 
”R”, output (t,t),  else ignore
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Natural Join
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• We have two relations R(A,B) and S(B,C). Find tuples 

that agree on B components

• MAP: For each tuple (a,b) from R, produce (b,(“R”,a)). 

For each tuple (b,c) from S, produce (b,(“S”,c)).  

• REDUCE: For each key b, there will a list of values of 

the form (“R”,a) or (“S”,c). Construct all pairs and 

output them with b.
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Grouping and Aggregation
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• We have the relation R(A,B,C) and we group-by A 

and aggregate on B.

• MAP: For each tuple (a,b,c) from R, output (a,b). 

Each key a represents a group. 

• REDUCE: Apply the aggregation operator to the list 

of b values associate with group a, producing x. 

Output (a,x).



MCSN - N. Tonellotto - Distributed Enabling Platforms

Graph Algorithms
• G = (V,E), where 

- V represents the set of vertices (nodes) 

- E represents the set of edges (links) 

- Both vertices and edges may contain additional information 

• Graph algorithms typically involve: 
- Performing computations at each node: based on node features, edge 

features, and local link structure 

- Propagating computations: “traversing” the graph 

• Key questions: 
- How do you represent graph data in MapReduce? 

- How do you traverse a graph in MapReduce?
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Representing Graphs (I)
• Adjacency Matrix 

- Represent a graph as an n x n square matrix M 

- n = |V| 

- Mij = 1 means a link from node i to j 

• Advantages: 
- Amenable to mathematical manipulation 

- Iteration over rows and columns corresponds to computations on 

outlinks and inlinks 

• Disadvantages: 
- Lots of zeros for sparse matrices 

- Lots of wasted space
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Representing Graphs (II)
• Adjacency List 

- Take adjacency matrices…  

- and throw away all the zeros 

• Advantages: 
- Much more compact representation 

- Easy to compute over outlinks 

• Disadvantages: 
- Much more difficult to compute over inlinks
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Shortest Path
• Consider simple case of equal edge weights 

• Solution to the problem can be defined inductively 

• Here’s the intuition: 
- Define: b is reachable from a if b is on adjacency list of a 

DISTANCETO(s) = 0 

- For all nodes p reachable from s,  
DISTANCETO(p) = 1 

- For all nodes n reachable from some other set of nodes M, 

DISTANCETO(n) = 1 + min(DISTANCETO(m), m  M)
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Shortest Path
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Algorithm
• Data representation: 

- Key: node n 
- Value: d (distance from start), adjacency list (list of nodes reachable from n) 
- Initialization: for all nodes except for start node, d = infinity 

• Mapper: 
- m Selects minimum distance path for each reachable node 
- Additional bookkeeping needed to keep track of actual path 
- adjacency list: emit (m, d + 1) 

• Sort/Shuffle 
- Groups distances by reachable nodes 

• Reducer: 
- Selects minimum distance path for each reachable node 
- Additional bookkeeping needed to keep track of actual path
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Details
• Each MapReduce iteration advances the “known 

frontier” by one hop 
- Subsequent iterations include more and more reachable nodes as 

frontier expands 

- Multiple iterations are needed to explore entire graph 

• Preserving graph structure: 
- Problem: Where did the adjacency list go? 

- Solution: mapper emits (n, adjacency list) as well
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Pseudocode

25



MCSN - N. Tonellotto - Distributed Enabling Platforms

Recipe
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• Graph algorithms typically involve: 
- Performing computations at each node: based on node features, edge 

features, and local link structure 

- Propagating computations: “traversing” the graph 

• Generic recipe: 
- Represent graphs as adjacency lists 

- Perform local computations in mapper 

- Pass along partial results via outlinks, keyed by destination node 

- Perform aggregation in reducer on inlinks to a node 

- Iterate until convergence: controlled by external “driver” 

- Don’t forget to pass the graph structure between iterations


