
MCSN - N. Tonellotto - Distributed Enabling Platforms

MapReduce Patterns

1

MCSN - N. Tonellotto - Distributed Enabling Platforms

Intermediate Data
• Written locally
• Transferred from mappers to reducers over network
• Issue

- Performance bottleneck

• Solution
- Use combiners

- Use In-Mapper Combining

2

MCSN - N. Tonellotto - Distributed Enabling Platforms

Original Word Count

• How many intermediate keys per mapper?

• How can we improve this?

• Is it a “real” improvement?

3

MCSN - N. Tonellotto - Distributed Enabling Platforms

Stateless In-Mapper Combining

• Custom local aggregator

• Coding overhead

• Is it a “real” improvement?

4

MCSN - N. Tonellotto - Distributed Enabling Platforms

Stateful In-Mapper Combining

• Custom local aggregator

• Coding overhead

• Is it a “real” improvement?

5

MCSN - N. Tonellotto - Distributed Enabling Platforms

In-Mapper Combining Analysis

• Advantages:
- Complete local aggregation control (how and when)

- Guaranteed to execute

- Direct efficiency control on intermediate data creation

- Avoid unnecessary objects creation and destruction (before combiners)

• Disadvantages:
- Breaks the functional programming background (state)

- Potential ordering-dependent bugs

- Memory scalability bottleneck (solved by memory foot-printing and flushing)

6

MCSN - N. Tonellotto - Distributed Enabling Platforms

Matrix Generation
• Common problem:

- Given an input of size N, generate an output matrix of size N x N

• Example: word co-occurrence matrix

- Given a document collection, emit the bigram frequencies

7

MCSN - N. Tonellotto - Distributed Enabling Platforms

“Pairs”

• We must use custom key type
• Intermediate overhead? Bottlenecks?
• Can we use the reducer as a combiner?
• Keys space?

8

MCSN - N. Tonellotto - Distributed Enabling Platforms

“Stripes”

• We must use custom key and value types
• Intermediate overhead? Bottlenecks?
• Can we use the reducer as a combiner?
• Keys space?

9

MCSN - N. Tonellotto - Distributed Enabling Platforms

Matrix Vector Multiplication

10

Matrix M Vector v

x

• The matrix does not fit in memory
- 1 case: vector v fits in memory

- 2 case: vector v does not fit in memory

MCSN - N. Tonellotto - Distributed Enabling Platforms

Vector fits in memory

11

Matrix M Vector v

x

• Map
- input = (*, chunk of matrix M)
- vector v read from memory
- output = (i, mijvj)

• Reduce
- sum up all the values for the given key i

MCSN - N. Tonellotto - Distributed Enabling Platforms

Vector does not in memory

12

• Divide the vector in equal-sized subvectors that can fit in memory
• According to that, divide the matrix in stripes
• Stripe i and subvector i are independent from other stripes/subvectors
• Use the previous algorithm for each stripe/subvector pair

Matrix M Vector v

x

MCSN - N. Tonellotto - Distributed Enabling Platforms

Relational Databases

13

• SELECTION: Select from R tuples satisfying condition C
• PROJECTION: For each tuple in R, select only certain attributes
• UNION, INTERSECTION, DIFFERENCE: Set operations on two relations with same schema
• NATURAL JOIN
• GROUPING and AGGREGATION

A2 A1 A5 A4 A3

Relation R

Schema

Tuple

MCSN - N. Tonellotto - Distributed Enabling Platforms

Selection and Projection

14

• MAP: Each tuple t, if condition C is satisfied, is outputted

as a (t, t) pair

• REDUCE: Identity

• MAP: For each tuple t, create a new tuple t’ containing

only projected attributes. Outpu is (t’, t’) pair

• REDUCE: Coalesce input (t’, [t’ t’ t’ t’]) in output (t’,t’)

MCSN - N. Tonellotto - Distributed Enabling Platforms

Union, Intersection, Difference

15

• MAP: Each tuple t is outputted as a (t, t) pair

• REDUCE: For each key t, there will be 1 or 2 values t.

Coalesce them in a single output (t,t)

• MAP: Each tuple t is outputted as a (t, t) pair

• REDUCE: For each key t, there will be 1 or 2 values t. If 2

values, coalesce them in a single output (t,t), else ignore

• MAP: For each tuple t in R, produce (t, “R”). For each tuple t in S, produce
(t, “S”).

• REDUCE: For each key t, there will be 1 or 2 values t. If 1 value, and being
”R”, output (t,t), else ignore

MCSN - N. Tonellotto - Distributed Enabling Platforms

Natural Join

16

• We have two relations R(A,B) and S(B,C). Find tuples

that agree on B components

• MAP: For each tuple (a,b) from R, produce (b,(“R”,a)).

For each tuple (b,c) from S, produce (b,(“S”,c)).

• REDUCE: For each key b, there will a list of values of

the form (“R”,a) or (“S”,c). Construct all pairs and

output them with b.

MCSN - N. Tonellotto - Distributed Enabling Platforms

Grouping and Aggregation

17

• We have the relation R(A,B,C) and we group-by A

and aggregate on B.

• MAP: For each tuple (a,b,c) from R, output (a,b).

Each key a represents a group.

• REDUCE: Apply the aggregation operator to the list

of b values associate with group a, producing x.

Output (a,x).

MCSN - N. Tonellotto - Distributed Enabling Platforms

Graph Algorithms
• G = (V,E), where

- V represents the set of vertices (nodes)

- E represents the set of edges (links)

- Both vertices and edges may contain additional information

• Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge

features, and local link structure

- Propagating computations: “traversing” the graph

• Key questions:
- How do you represent graph data in MapReduce?

- How do you traverse a graph in MapReduce?

18

MCSN - N. Tonellotto - Distributed Enabling Platforms

Representing Graphs (I)
• Adjacency Matrix

- Represent a graph as an n x n square matrix M

- n = |V|

- Mij = 1 means a link from node i to j

• Advantages:
- Amenable to mathematical manipulation

- Iteration over rows and columns corresponds to computations on

outlinks and inlinks

• Disadvantages:
- Lots of zeros for sparse matrices

- Lots of wasted space

19

MCSN - N. Tonellotto - Distributed Enabling Platforms

Representing Graphs (II)
• Adjacency List

- Take adjacency matrices…

- and throw away all the zeros

• Advantages:
- Much more compact representation

- Easy to compute over outlinks

• Disadvantages:
- Much more difficult to compute over inlinks

20

MCSN - N. Tonellotto - Distributed Enabling Platforms

Shortest Path
• Consider simple case of equal edge weights

• Solution to the problem can be defined inductively

• Here’s the intuition:
- Define: b is reachable from a if b is on adjacency list of a

DISTANCETO(s) = 0

- For all nodes p reachable from s,  
DISTANCETO(p) = 1

- For all nodes n reachable from some other set of nodes M,

DISTANCETO(n) = 1 + min(DISTANCETO(m), m M)

21

MCSN - N. Tonellotto - Distributed Enabling Platforms

Shortest Path

22

n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

MCSN - N. Tonellotto - Distributed Enabling Platforms

Algorithm
• Data representation:

- Key: node n
- Value: d (distance from start), adjacency list (list of nodes reachable from n)
- Initialization: for all nodes except for start node, d = infinity

• Mapper:
- m Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path
- adjacency list: emit (m, d + 1)

• Sort/Shuffle
- Groups distances by reachable nodes

• Reducer:
- Selects minimum distance path for each reachable node
- Additional bookkeeping needed to keep track of actual path

23

MCSN - N. Tonellotto - Distributed Enabling Platforms

Details
• Each MapReduce iteration advances the “known

frontier” by one hop
- Subsequent iterations include more and more reachable nodes as

frontier expands

- Multiple iterations are needed to explore entire graph

• Preserving graph structure:
- Problem: Where did the adjacency list go?

- Solution: mapper emits (n, adjacency list) as well

24

MCSN - N. Tonellotto - Distributed Enabling Platforms

Pseudocode

25

MCSN - N. Tonellotto - Distributed Enabling Platforms

Recipe

26

• Graph algorithms typically involve:
- Performing computations at each node: based on node features, edge

features, and local link structure

- Propagating computations: “traversing” the graph

• Generic recipe:
- Represent graphs as adjacency lists

- Perform local computations in mapper

- Pass along partial results via outlinks, keyed by destination node

- Perform aggregation in reducer on inlinks to a node

- Iterate until convergence: controlled by external “driver”

- Don’t forget to pass the graph structure between iterations

