Logical Time

Causality and physical time

Causality is fundamental to the design and analysis of parallel and
distributed computing and OS.

* Distributed algorithms design
* Knowledge about the progress
 (Concurrency measure

Usually causality is tracked using physical time.

In distributed systems, it is not possible to have a global physical time,
only an approximation.

 Network Time Protocol (NTP) can maintain time accurate to a few tens of
millisecond on the Internet

 Not adequate to capture the causality relationship in distributed systems

|dea

We cannot sync multiple clocks perfectly.

* Thus, if we want to order events happened at different processes, we
cannot rely on physical clocks.

Then came logical time.

* First proposed by Leslie Lamport in the 70's
* Based on causality of events

* Defined relative time, not absolute time

Critical observation: time (ordering) only matters if two or more processes
interact, i.e., send/receive messages.

® internal event O send event receive event

Events

P)-—@—6 = ® ® ® '
D v
P —6 e O ® ®

M \4 /m6
m
P,—G o o °

| %

N

m3 \
P4 e ‘e’ ewe

® inrernal event O send event ‘ receive event

Happens-Before Relation

The execution of a distributed application results in a set of distributed
events produced by the processes.

Let H denote the set of events executed in a distributed computation.

Define a binary relation on the set H, denoted as —, that expresses causal
dependencies between events in the distributed execution.

— is called Happens-Before relation.

Properties:

* Onthe same process: a — b if realtime(a) < realtime(b)
* |f p1 sends mto p2: send(m) — receive(m)

 Transitivity:ifa »>bandb = cthena = cC

System of Logical Clocks

e Informally:
 FEvery process has a logical clock that is advanced according to some rules.
 FEvery event is assigned a logical timestamp.

 The — relation between two events can be inferred from their timestamps.

 Timestamps obey a monotonicity property: if a — b, then timestamp(a) <
timestamp(b).

 Formally, a system of logical clocks is composed by:
 atime domain T, whose elements form a partially ordered set over a relation <.

e alogical clock C, that is a function mapping an event e in H to an element in the time
domain T, denoted as C(e) and called timestamp of e.

» alogical clock C must satisfy the clock consistency condition:

for two events e;and e, i = ;= C(e;) < C(g)

e The system of clocks (T,C) is said to be strongly consistent if the following condition is
satisfied:

for two events e;and e;, ei = ej & C(ej) < C(g))

Implementation

* |Implementation of logical clocks require:
e data structures |local to every process to represent logical time

« a set of rules to update the data structures to ensure the consistency
condition

 The data structures of a process p; must allow it to:
 measure its own progress, with a (logical) local clock Ic;

e represent its own view of the logical global time to assign consistent
timestamps to its local events, with a (logical) global clock gc;

e typically Iciis a part of gc;
e The rules must:

 R1: decide how the logical local clock is updated by a process when it
executes an event (send, receive, internal)

 R2: decide how a process updates its logical global clock to update its view
of the global time and global progress.

Scalar Clocks

Proposed by Lamport in 1978.
Time domain T is the set of non-negative integers.

For each process pj, the logical local clock and the logical global clock are
squashed into one integer variable C..

R1: before executing an event (send, receive, internal), process p; executes the
following:

Ci:Ci+d(d>O)
* In general every time R1 is executed, d can have a different value.
« Typically dis kept at 1 to keep the rate of increase of Ci’s to its lowest values.

R2: Each message piggybacks the clock value of it sender at sending time. When a
process pi receives a message with timestamp Cmgg, it executes the following
actions:

1. Ci — maX(Ci, Cmsg)
2. Execute R

3. Deliver the message to p;

Find the error. ..

Basic Properties

 The consistency property is satisfied.

* |f C(ei) = C(g)) then ej and ej are concurrent events.

* TJo totally order events, we need a tie-breaking mechanism for
concurrent events. This is typically done by augmenting the scalar

timestamp with a process identifier, e.g., (1,i).
 Process identitiers are linearly ordered and used to break ties.

 |f d=1 we have that, it event e has a timestamp h, then h-1

represents the minimum logical duration, counted in units of

events, required before producing event e.

* The strong consistency property is NOT satisfied.

Example

3 < 4 but the former did not happen before the latter

9
9
11
®
10

b
Pj, o
6

5 7

The lack of strong consistency is due to the
squashing of logical local and global clocks into one

Vector Clocks (1)

Proposed by Fidge, Mattern and Schmuck in 1988-1991.

Time domain T is a set of n-dimension non-negative

integer vectors.
Each process pi maintains a vector vti[1..n].
vti[i] is the logical local clock of p:.

Vvii[|] represents process pi's latest knowledge of process

pj local time. If vii[j] = x then process pi knows that local

time at process p; had progressed till x.

Vector Clocks (1)

Initially vt = [0, O, O, ..., O]

R1: before executing an event (send, receive, internal), process pi executes
the following:

vii[i] = vti[i] + d (d > 0)

R2: Each message m is piggybacked with the vector clock vt of the sender
process at sending time. When a process pi receives a message with (m,vt),
it executes the following actions:

1. Update its logical global time as follows:
1 <k < n: vii[k] = max(vti[k], vi[k])
2. Execute R1

3. Deliver the message m to pi

Example

LOMT

SN .4/

noo @

ANOO

—0o0 @

O @
@ o<
TolephSy
A< a\[ephSy
M
Ao @
AMM @
anaL@
aNO ANMO
ANO
NOO
oo~ @
o0 @
Q\ ™M
Q. Q.

Comparing Vector Clocks

e VI1=VI>

e iff VT4[i] = VTo[i], foralli=1,...,n

e VI1<VIy,

o iff VT4[i] < VTo[i], foralli=1,...,n

¢ VT1 < VT2,

* iff VI1i< VT2 & A j(1<)<n&VT4[j] < VT2 [j])

¢ VT1 || VT2

o iff ~(VT1<VT2) & —(VT2 < VT4)

Basic Properties

The consistency property is satisfied.

The strong consistency property is satisfied (using always at least n
elements).

It two events x and y have timestamps vh and vk respectively, then we have
the following isomorphism:

X =y & vh < VK
X ||y e vh || vk

It d = 1 then we have the event counting property of scalar clocks for
logical local clocks.

Since vector clocks are strongly consistent they can track causal
dependencies exactly.

