
© Copyright Khronos Group 2013 - Page 1

OpenCL Introduction
Neil Trevett

Vice President NVIDIA, President Khronos
OpenCL Working Group Chair

© Copyright Khronos Group 2013 - Page 2

The Inspiration for OpenCL

CPUs
Multiple cores driving

performance increases

GPUs
Increasingly general

purpose data-parallel

computing

Graphics APIs

and Shading

Languages

Multi-processor

programming –

e.g. OpenMP

Emerging

Intersection

Heterogeneous

Computing

© Copyright Khronos Group 2013 - Page 3

The BIG Idea behind OpenCL
• OpenCL execution model …

- Define N-dimensional computation domain

- Execute a kernel at each point in computation domain

kernel void vectorMult(

 global const float* a,

 global const float* b,

 global float* c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

}

void vectorMult(

 const float* a,

 const float* b,

 float* c,

 const unsigned int count)

{

 for(int i=0; i<count; i++)

 c[i] = a[i] * b[i];

}

Traditional Loop Data Parallel OpenCL

© Copyright Khronos Group 2013 - Page 4

OpenCL – Portable Heterogeneous Computing
• Royalty-free native, cross-platform, cross-vendor standard

- Targeting supercomputers -> embedded systems -> mobile devices

• Enables programming of diverse compute resources

- CPU, GPU, DSP, FPGA – and hardware blocks

• One code tree can be executed on CPUs, GPUs, DSPs and hardware

- Dynamically interrogate system load and balance across available processors

• Powerful, low-level flexibility

- Foundational access to compute resources

for higher-level engines, frameworks and languages

OpenCL

Kernel

Code

OpenCL

Kernel

Code

OpenCL

Kernel

Code

OpenCL

Kernel

Code

GPU

DSP CPU

CPU
HW

© Copyright Khronos Group 2013 - Page 5

OpenCL Architecture
• C Platform Layer API

- Query, select and initialize compute devices

• Kernel Language Specification

- Subset of ISO C99 with language extensions

- Well-defined numerical accuracy - IEEE 754 rounding with specified max error

- Rich set of built-in functions: cross, dot, sin, cos, pow, log …

• C Runtime API

- Runtime or build-time compilation of kernels

- Execute compute kernels across multiple devices

• Embedded profile

- No need for a separate “ES” spec

- Reduces precision requirements

© Copyright Khronos Group 2013 - Page 6

OpenCL Platform Model
• A host is connected to one or more OpenCL devices

• OpenCL device is collection of one or more compute units

• A compute unit is composed of one or more processing elements

• Processing elements execute code as SIMD or SPMD

...
...

......
...

...
...

...
...

Host

Compute
Device

Compute
Unit

Processing
Element

...
...

...
...

...
...

...
...

...

© Copyright Khronos Group 2013 - Page 7

OpenCL Execution Model
• Kernel

- Basic unit of executable code (~ C function)

- Data-parallel or task-parallel

• Program

- Collection of kernels and functions

(~ dynamic library with run-time linking)

• Command Queue

- Applications queue kernels & data transfers

- Performed in-order or out-of-order

• Work-item

- An execution of a kernel by a processing element (~ thread)

• Work-group

- A collection of related work-items that execute on a single compute unit (~ core)

Work-items = # pixels

Work-groups = # tiles

Work-group size = tile width * tile height

Work-group Example

© Copyright Khronos Group 2013 - Page 8

OpenCL Memory Model
• Hierarchy of memory types

- Private memory -
- Per work-item

- Local memory (green)
- Per work-group

- Available to work-items in a given work-group

- Global/Constant memory
- Not synchronized

- Host memory
- On the CPU

• Memory management is explicit:

- Application must move data from

host global local and back

© Copyright Khronos Group 2013 - Page 9

Executing OpenCL Programs
1. Query host for OpenCL devices

2. Create a context to associate OpenCL devices

3. Create programs for execution on one or more

associated devices

4. Select kernels to execute from the programs

5. Create memory objects accessible from the

host and/or the device

6. Copy memory data to the device as needed

7. Provide kernels to command queue for

execution

8. Copy results from the device to the host

9

Context

Programs Kernels
Memory
Objects

Command
Queue

Send for
execution

Programs

Kernel0

Kernel1

Kernel2

Images

Buffers In order &
out of order

Create data & arguments Compile

© Copyright Khronos Group 2013 - Page 10

OpenCL Built-in Kernels
• Used to control non-OpenCL C-capable

resources on an SOC – ‘Custom Devices’

- E.g. Video encode/decode, Camera ISP …

• Represent functions of Custom Devices as an

OpenCL kernel

- Can enqueue Built-in Kernels to Custom

Devices alongside standard OpenCL kernels

• OpenCL run-time a powerful coordinating

framework for ALL SOC resources

- Programmable and custom devices

controlled by one run-time

Built-in kernels enable control of
specialized processors and hardware

from OpenCL run-time

© Copyright Khronos Group 2013 - Page 11

OpenCL SPIR 1.2 Provisional released at SIGGRAPH 2013

OpenCL Related Specification Roadmap

OpenCL 2.0

Significant enhancements to memory and execution models to

expose emerging hardware capabilities and provide increased

flexibility, functionality and performance to developers

SPIR (Standard Parallel Intermediate Representation)

LLVM-based, low-level Intermediate Representation for IP Protection

and as target back-end for alternative high-level languages

OpenCL HLM (High Level Model)

High-level programming model, unifying host and device execution environments through

language syntax for increased usability and broader optimization opportunities

OpenCL 2.0 Finalized here at SIGGRAPH Asia 2013!

© Copyright Khronos Group 2013 - Page 12

OpenCL Milestones
• 24 month cadence for major OpenCL 2.0 update

- Slightly longer than 18 month cadence between versions of OpenCL 1.X

• Significant feedback from the developer community on Provisional Specification

- Many suggestions were incorporated into the final 2.0 specification

- Other feedback will be considered for future specification versions

OpenCL 1.0 released.
Conformance tests

released Dec08

Dec08

Jun10

OpenCL 1.1
Specification and
conformance tests

released

Nov11

OpenCL 1.2
Specification and
conformance tests

released

OpenCL 2.0
Specification finalized

and conformance
tests released

Jul13

OpenCL 2.0
Provisional Specification

released for public
review

Nov13

© Copyright Khronos Group 2013 - Page 15

Broad OpenCL Implementer Adoption
• Multiple conformant implementations shipping on desktop and mobile

- For CPUs and GPUs on multiple OS

• Android ICD extension released in latest extension specification

- OpenCL implementations can be discovered and loaded as a shared object

• Multiple implementations shipping in Android NDK

- ARM, Imagination, Vivante, Qualcomm, Samsung …

© Copyright Khronos Group 2013 - Page 16

OpenCL as Parallel Compute Foundation
• 100+ tool chains and languages leveraging OpenCL

- Heterogeneous solutions emerging for the most popular programming languages

C++

syntax/compiler

extensions

OpenCL HLM

JavaScript binding to

OpenCL for initiation

of OpenCL C kernels

WebCL River Trail

Language

extensions to

JavaScript

C++ AMP

Shevlin Park

Uses Clang

and LLVM

OpenCL provides vendor optimized,

cross-platform, cross-vendor access to

heterogeneous compute resources

Harlan

High level

language for GPU

programming

Compiler

directives for

Fortran C and C++

Aparapi

Java language

extensions for

parallelism

PyOpenCL

Python wrapper

around

OpenCL

© Copyright Khronos Group 2013 - Page 17

Widespread Developers Leveraging OpenCL
• Broad uptake of OpenCL in commercial applications

- For desktop and increasingly mobile apps

• “OpenCL” on Sourceforge, Github, Google Code, BitBucket

finds over 2,000 projects

- x264

- Handbrake

- FFMPEG

- JPEG

- VLC

- OpenCV

- GIMP

- ImageMagick

- IrfanView

- Hadoop, Memcched

- Aparapi – A parallel API (for Java)

- Bolt – a Unified Heterogeneous Library

- Sumatra – next generation of compute enabled Java

- WinZip

- Crypto++

- Bullet physics library

- Etc. Etc.

http://www.google.com/imgres?imgurl=http://www.evafedoramx.org/wp-content/uploads/2012/09/Logo-Gimp.png&imgrefurl=http://www.evafedoramx.org/2011/10/22/alternativas-libres-a-herramientas-privativas/&docid=lw631MBGbbWMKM&tbnid=gWQaxmY2sehNfM&w=500&h=500&ei=2DFjUdGOIOGEyAHsoYGYDw&ved=0CAMQxiAwAQ&iact=ricl
http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=meU9wMqivTDStM&tbnid=J1NyQ2hSHuMioM:&ved=0CAgQjRwwAA&url=http://blog.unifr.ch/micromus/archives/691/handbrake-logo&ei=SDJjUeC7OOjayAHuh4HADA&psig=AFQjCNFUfrVATOOyrTwcs14EPtvjN38zLg&ust=1365541832955359

© Copyright Khronos Group 2013 - Page 18

OpenCL Academic Traction
• OpenCL at over 100 Universities Worldwide

Teaching multi-faceted programming courses

- Research with top-tier Universities globally

• Complete University Kits available

- Presentation w/instructor & speaker notes

- Example code, & sample application

• Growing textbook ecosystem

- US, Japan, Europe, China and India

• Number of papers referencing OpenCL on

Google Scholar is growing rapidly

- Over 2000 papers in 2012

• Commercial OpenCL training courses
- http://www.accelereyes.com/services/training

http://developer.amd.com/Resources/library/Pages/default.aspx

http://www.accelereyes.com/services/training
http://www.accelereyes.com/services/training
http://developer.amd.com/Resources/library/Pages/default.aspx
http://developer.amd.com/Resources/library/Pages/default.aspx
http://developer.amd.com/Resources/library/Pages/default.aspx

© Copyright Khronos Group 2013 - Page 19

Major Benchmarks Leveraging OpenCL
• PCMark 8 uses OpenCL

- Video Chat and Video Group Chat

- Batch Video Edit

• BasemarkCL, CompuBench use OpenCL as

leading indicators of platform performance

• Reviewed performance benchmarks use

heterogeneous computing via OpenCL

- AnandTech, Tom’s Hardware Guide

• End-user benchmarks transitioning to use

heterogeneous computing

- E.g. Ludashi (China) is using OpenCL

Basemark® CL

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=meU9wMqivTDStM&tbnid=J1NyQ2hSHuMioM:&ved=0CAgQjRwwAA&url=http://blog.unifr.ch/micromus/archives/691/handbrake-logo&ei=SDJjUeC7OOjayAHuh4HADA&psig=AFQjCNFUfrVATOOyrTwcs14EPtvjN38zLg&ust=1365541832955359

© Copyright Khronos Group 2013 - Page 20

Give us YOUR Feedback!
• Full OpenCL 2.0 Documentation available

- Final Specification

- Header files

- Reference Card

- Online Reference pages

• OpenCL Registry contains all specifications

- www.khronos.org/registry/cl/

• Open Resources Area

- Community submitted resources

- http://www.khronos.org/opencl/resources

• Public Forum and Bugzilla is open for comments

- All feedback welcome!

http://www.khronos.org/registry/cl/
http://www.khronos.org/opencl/resources

© Copyright Khronos Group 2013 - Page 21

OpenCL Presentations in This Session
• OpenCL 2.0 Overview

- Allen Hux, Intel

• Accelerated Science – use of OpenCL in Land Down Under

- Tomasz Bednarz, CSIRO

- Sydney Khronos Chapter Leader

© Copyright Khronos Group 2013 - Page 1

OpenCL 2.0 Overview

Allen Hux
Intel Corporation

© Copyright Khronos Group 2013 - Page 2

Goals
• Enable New Programming Patterns

• Performance Improvements

• Well-defined Execution & Memory Model

• Improve CL / GL sharing

© Copyright Khronos Group 2013 - Page 3

Shared Virtual Memory
• In OpenCL 1.2 buffer objects can only be passed as kernel arguments

• Buffer object described as pointer to type in kernel

• Restrictions

- Pass a pointer + offset as argument value

- Store pointers in buffer object(s)

• Why?

- Host and OpenCL device may not share the same virtual address space

- No guarantee that the same virtual address will be used for a kernel argument

across multiple enqueues

© Copyright Khronos Group 2013 - Page 4

Shared Virtual Memory
• clSVMAlloc – allocates a shared virtual memory buffer

- Specify size in bytes

- Specify usage information

- Optional alignment value

• SVM pointer can be shared by the host and OpenCL device

• Examples

• Free SVM buffers

- clEnqueueSVMFree, clSVMFree

clSVMAlloc(ctx, CL_MEM_READ_WRITE, 1024 * 1024, 0)

clSVMAlloc(ctx, CL_MEM_READ_ONLY, 1024 * 1024, sizeof(cl_float4))

© Copyright Khronos Group 2013 - Page 5

Shared Virtual Memory
• clSetKernelArgSVMPointer

- SVM pointers as kernel arguments

- A SVM pointer

- A SVM pointer + offset

kernel void

vec_add(float *src, float *dst)

{

 size_t id = get_global_id(0);
 dst[id] += src[id];

}

// allocating SVM pointers

cl_float *src = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_ONLY, size, 0);

cl_float *dst = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_WRITE, size, 0);

// Passing SVM pointers as arguments

clSetKernelArgSVMPointer(vec_add_kernel, 0, src);

clSetKernelArgSVMPointer(vec_add_kernel, 1, dst);

// Passing SVM pointer + offset as arguments

clSetKernelArgSVMPointer(vec_add_kernel, 0, src + offset);

clSetKernelArgSVMPointer(vec_add_kernel, 1, dst + offset);

© Copyright Khronos Group 2013 - Page 6

typedef struct {

 …

 float *pB;

 …

} my_info_t;

kernel void

my_kernel(global my_info_t *pA, …)

{

 …

 do_stuff(pA->pB, …);

 …

}

// allocating SVM pointers

my_info_t *pA = (my_info_t *)clSVMAlloc(ctx,

 CL_MEM_READ_ONLY, sizeof(my_info_t), 0);

pA->pB = (cl_float *)clSVMAlloc(ctx,

 CL_MEM_READ_WRITE, size, 0);

// Passing SVM pointers

clSetKernelArgSVMPointer(my_kernel, 0, pA);

clSetKernelExecInfo(my_kernel,

 CL_KERNEL_EXEC_INFO_SVM_PTRS,

 1 * sizeof(void *), &pA->pB);

Shared Virtual Memory
• clSetKernelExecInfo

- Passing SVM pointers in other SVM pointers or buffer objects

© Copyright Khronos Group 2013 - Page 7

Shared Virtual Memory
• Three types of sharing

- Coarse-grained buffer sharing

- Fine-grained buffer sharing

- System sharing

© Copyright Khronos Group 2013 - Page 8

Shared Virtual Memory – Coarse & Fine Grained
• SVM buffers allocated using clSVMAlloc

• Coarse grained sharing

- Memory consistency only guaranteed at synchronization points

- Host still needs to use synchronization APIs to update data
- clEnqueueSVMMap / clEnqueueSVMUnmap or event callbacks

- Memory consistency is at a buffer level

- Allows sharing of pointers between host and OpenCL device

• Fine grained sharing

- No synchronization needed between host and OpenCL device
- Host and device can update data in buffer concurrently

- Memory consistency using C11 atomics and synchronization operations

- Optional Feature

© Copyright Khronos Group 2013 - Page 9

Shared Virtual Memory – System Sharing
• Can directly use any pointer allocated on the host

- No OpenCL APIs needed to allocate SVM buffers

• Both host and OpenCL device can update data using C11 atomics and

synchronization functions

• Optional Feature

© Copyright Khronos Group 2013 - Page 10

Nested Parallelism
• In OpenCL 1.2 only the host can enqueue kernels

• Iterative algorithm example

- kernel A queues kernel B

- kernel B decides to queue kernel A again

• Requires host - device interaction and for the

host to wait for kernels to finish execution

- Can use callbacks to avoid waiting for kernels to

finish but still overhead

• A very simple but extremely common nested

parallelism example

Kernel A

Kernel B

done

Example

© Copyright Khronos Group 2013 - Page 11

Nested Parallelism
• Allow a device to queue kernels to itself

- Allow a work-item(s) to queue kernels

• Use similar approach to how host queues commands

- Queues and Events

- Functions that queue kernels and other commands

- Event and Profiling functions

© Copyright Khronos Group 2013 - Page 12

kernel void my_func(global int *a, global int *b)

{

 …

 void (^my_block_A)(void) =

 ^{

 size_t id = get_global_id(0);

 b[id] += a[id];

 };

 enqueue_kernel(get_default_queue(),

 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

 ndrange_1D(…),

 my_block_A);

}

• Use clang Blocks to describe kernel to queue

Nested Parallelism

© Copyright Khronos Group 2013 - Page 13

Nested Parallelism

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 void (^block)())

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 uint num_events_in_wait_list,

 const clk_event_t *event_wait_list,

 clk_event_t *event_ret,

 void (^block)())

© Copyright Khronos Group 2013 - Page 14

Nested Parallelism

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 void (^block)(local void *, …), uint size0, …)

int enqueue_kernel(queue_t queue,

 kernel_enqueue_flags_t flags,

 const ndrange_t ndrange,

 uint num_events_in_wait_list,

 const clk_event_t *event_wait_list,

 clk_event_t *event_ret,

 void (^block)(local void *, …), uint size0, …)

• Queuing kernels with pointers to local address space as arguments

© Copyright Khronos Group 2013 - Page 15

Nested Parallelism
• Example showing queuing kernels with local address space arguments

void my_func_local_arg (global int *a, local int *lptr, …) { … }

kernel void my_func(global int *a, …)

{

 …

 uint local_mem_size = compute_local_mem_size(…);

 enqueue_kernel(get_default_queue(),

 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

 ndrange_1D(…),

 ^(local int *p){my_func_local_arg(a, p, …);},

 local_mem_size);

}

© Copyright Khronos Group 2013 - Page 16

Nested Parallelism
• Specify when a child kernel can begin execution (pick one)

- Don’t wait on parent

- Wait for kernel to finish execution

- Wait for work-group to finish execution

• A kernel’s execution status is complete

- when it has finished execution

- and all its child kernels have finished execution

© Copyright Khronos Group 2013 - Page 17

Nested Parallelism
• Other Commands

- Queue a marker

• Query Functions

- Get workgroup size for a block

• Event Functions

- Retain & Release events

- Create user event

- Set user event status

- Capture event profiling info

• Helper Functions

- Get default queue

- Return a 1D, 2D or 3D ND-range descriptor

© Copyright Khronos Group 2013 - Page 18

Generic Address Space

• In OpenCL 1.2, function arguments that are a pointer to a type

must declare the address space of the memory region pointed to

• Many examples where developers want to use the same code but

with pointers to different address spaces

• Above example is not supported in OpenCL 1.2

• Results in developers having to duplicate code

void

my_func (global int *ptr, …)

{

 …

 foo(ptr, …);

 …

}

void

my_func (local int *ptr, …)

{

 …

 foo(ptr, …);

 …

}

© Copyright Khronos Group 2013 - Page 19

Generic Address Space
• OpenCL 2.0 no longer requires an

address space qualifier for

arguments to a function that are a

pointer to a type

- Except for kernel functions

• Generic address space assumed if no

address space is specified

• Makes it really easy to write

functions without having to worry

about which address space

arguments point to

void

my_func (int *ptr, …)

{

 …

}

kernel void

foo(global int *g_ptr, local int *l_ptr, …)

{

 …

 my_func(g_ptr, …);

 my_func(l_ptr, …);

}

© Copyright Khronos Group 2013 - Page 20

Generic Address Space – Casting Rules
• Implicit casts allowed from named to generic address space

• Explicit casts allowed from generic to named address space

• Cannot cast between constant and generic address spaces

kernel void foo()

{

 int *ptr;

 local int *lptr;

 global int *gptr;

 local int val = 55;

 ptr = gptr; // legal

 lptr = ptr; // illegal

 lptr = gptr; // illegal

 ptr = &val; // legal

 lptr = (local int *)ptr; // legal

}

© Copyright Khronos Group 2013 - Page 21

Generic Address Space – Built-in Functions
• global gentype* to_global(const gentype*)

local gentype* to_local(const gentype *)

private gentype* to_private(const gentype *)

- Returns NULL if cannot cast

• cl_mem_fence_flags get_fence(const void *ptr)

- Returns the memory fence flag value

- Needed by work_group_barrier and mem_fence functions

© Copyright Khronos Group 2013 - Page 22

C11 Atomics
• Implements a subset of the C11 atomic and synchronization operations

- Enable assignments in one work-item to be visible to others

• Atomic operations

- loads & stores

- exchange, compare & exchange

- fetch and modify (add, sub, or, xor, and, min, max)

- test and set, clear

• Fence operation

• Atomic and Fence operations take

- Memory order

- Memory scope

• Operations are supported for global and local memory

© Copyright Khronos Group 2013 - Page 23

C11 Atomics
• memory_order_relaxed

- Atomic operations with this memory order are not synchronization operations

- Only guarantee atomicity

• memory_order_acquire, memory_order_release, memory_order_acq_rel

- Atomic store in work-item A for variable M is tagged with memory_order_release

- Atomic load in work-item B for same variable M is tagged with

memory_order_acquire

- Once the atomic load is completed work-item B is guaranteed to see everything

work-item A wrote to memory before atomic store

- Synchronization is only guaranteed between work-items releasing and acquiring

the same atomic variable

• memory_order_seq_cst

- Same as memory_order_acq_rel, and

- A single total order exists in which all work-items observe all modifications

© Copyright Khronos Group 2013 - Page 24

C11 Atomics
• Memory scope - specifies scope of memory ordering constraints

- Work-items in a work-group

- Work-items of a kernel executing on a device

- Work-items of a kernel & host threads executing across devices and host
- For shared virtual memory

© Copyright Khronos Group 2013 - Page 25

C11 Atomics
• Supported Atomic Types

- atomic_int, atomic_uint

- atomic_long, atomic_ulong

- atomic_float

- atomic_double

- atomic_intptr_t, atomic_uintptr_t, atomic_ptrdiff_t

- atomic_size_t

- atomic_flag

• Atomic types have the same size & representation as the non-atomic types

except for atomic_flag

• Atomic functions must be lock-free

© Copyright Khronos Group 2013 - Page 26

Images
• 2D image from buffer

- GPUs have dedicated and fast hardware for texture addressing & filtering

- Accessing a buffer as a 2D image allows us to use this hardware

- Both buffer and 2D image use the same data storage

• Reading & writing to an image in a kernel

- Declare images with the read_write qualifier

- Use barrier between writes and reads by work-items to the image
- work_group_barrier(CLK_IMAGE_MEM_FENCE)

- Only sampler-less reads are supported

© Copyright Khronos Group 2013 - Page 27

Images
• Writes to 3D images is now a core feature

• New image formats

- sRGB

- Depth

• Extended list of required image formats

• Improvements to CL / GL sharing

- Multi-sampled GL textures

- Mip-mapped GL textures

© Copyright Khronos Group 2013 - Page 28

Pipes
• Memory objects that store data organized as a FIFO

• Kernels can read from or write to a pipe object

• Host can only create pipe objects

© Copyright Khronos Group 2013 - Page 29

Pipes
• Why introduce a pipe object?

- Allow vendors to implement dedicated hardware to support pipes

- Read from and write to a pipe without requiring atomic operations to global

memory

- Enable producer – consumer relationships between kernels

© Copyright Khronos Group 2013 - Page 30

Pipes – Read & Write Functions
• Work-item read pipe functions

- Read a packet from a pipe

- Read with reservation
- Reserve n packets for reading

- Read individual packets (identified by reservation ID and packet index)

- Confirm that the reserved packets have been read

• Work-item write pipe functions

- Write a packet to a pipe

- Write with reservation

• Work-group pipe functions

- Reserve and commit packets for reading / writing

© Copyright Khronos Group 2013 - Page 31

Other 2.0 Features
• Program scope variables

• Flexible work-groups

• New work-item functions

- get_global_linear_id, get_local_linear_id

• Work-group functions

- broadcast, reduction, vote (any & all), prefix sum

• Sub-groups

• Sharing with EGL images and events

