
The MPI Message-passing Standard
Practical use and implementation (II)

SPD Course
24/02/2021

Massimo Coppola

MPI communication semantics
• Message order is not guaranteed,

– Only communications with same envelope are non-
overtaking

• Different communicators do not allow message
exchange
– Unless you consider termination by error and deadlocks

forms of communication
• No fairness provided

– You have to code priorities yourself
– Implementations may be fair, but you can’t count on that

• Resources are limited
– E.g. Do not assume buffers are always available, allocate

them explicitly
– E.g. You shall free structures and objects you are not going

to use again
– The limits are often within the library implementation, hard

to discover in advance…

SPD - MPI Standard Use and Implementation (2) 2

Point to point and communication
buffers

• All communication primitives in MPI assume
to work with communication buffers
– How the buffer is used is implementation

dependent, but you can specify many constraint
• The structure of the buffer
– depends on your data structures
– depends on your MPI implementation
– depends on your machine hardware and on

related optimizazions
– shall never depend on your programming

language
• The MPI Datatype abstractions aims at that

SPD - MPI Standard Use and Implementation (2) 3

Primitive Data types (C bindings)

MPI_CHAR char
(treated as printable character)

MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_LONG_LONG_INT

signed long long int
MPI_LONG_LONG (as a synonym)

signed long long int
MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT

unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG

unsigned long int
MPI_UNSIGNED_LONG_LONG

unsigned long long int
MPI_FLOAT float
MPI_DOUBLE double

MPI_LONG_DOUBLE long double
MPI_WCHAR wchar_t

(ISO C standard, see <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool

Many special bit-sized types
MPI_INT8_T int8_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINT8_T uint8_t
MPI_UINT16_T uint16_t
MPI_UINT32_T uint32_t
MPI_UINT64_T uint64_t

MPI_C_COMPLEX float _Complex
MPI_C_FLOAT_COMPLEX

(as a synonym) float _Complex
MPI_C_DOUBLE_COMPLEX

double _Complex
MPI_C_LONG_DOUBLE_COMPLEX

long double _Complex
MPI_BYTE
MPI_PACKED

SPD - MPI Standard Use and Implementation (2) 4

Datatype role in MPI

• Datatype
– a descriptor used by the MPI implementation
– holds information concerning a given kind of data

structure
• Datatypes are opaque objects

– Some are constant (PRIMITIVE datatypes)
– More are user-defined (DERIVED datatypes)

• to be explicitly defined before use, and destroyed after

• Defining/using a datatype does not allocate
the data structure itself:
– Allocation done by the host languages
– Datatypes provide explicit memory layout information

to MPI, more than the host language

SPD - MPI Standard Use and Implementation (2) 5

Conversion and packing

• Data type information is essential to allow
packing and unpacking of data within/from
communication buffers

• MPI is a linked library à MPI datatypes
provide type information to the runtime

• Data types known to MPI can be converted
during communication

• For derived datatypes, more complex issues
related to memory layout

SPD - MPI Standard Use and Implementation (2) 6

MPI_SEND
MPI_SEND(buf, count, datatype, dest, tag, comm)

• IN buf initial address of send buffer
• IN count number of elements in send buffer

(non-negative integer, in datatypes)
• IN datatype datatype of each send buffer element

(handle)
• IN dest rank of destination
• IN tag message tag
• IN comm communicator (handle)

• The amount of transferred data is not fixed

SPD - MPI Standard Use and Implementation (2) 7

MPI_RECV
MPI_RECV (buf, count, datatype, source, tag, comm, status)

• OUT buf initial address of receive buffer
• IN count number of elements in receive buffer

(non-negative integer, in datatypes)
• IN datatype datatype of each receive buffer

element (handle)
• IN source rank of source or MPI_ANY_SOURCE
• IN tag message tag or MPI_ANY_TAG
• IN comm communicator (handle)
• OUT status status object (Status)

• The amount of received data is not fixed and can
exceed the receiver’s buffer size

SPD - MPI Standard Use and Implementation (2) 8

Return status

• MPI_Status
structure filled in by many operations
– not an opaque object, an ordinary C struct
– special value MPI_IGNORE_STATUS (beware!!)
– known fields: MPI_SOURCE, MPI_TAG, useful for

wildcard Recv, as well as MPI_ERROR
– additional fields are allowed, but are not defined by

the standard or made openly accessible
– Example: the actual count of received objects

• MPI_Get_count(MPI_Status *status,
MPI_Datatype datatype, int *count)

– MPI primitive used to retrieve the number of elements
actually received

SPD - MPI Standard Use and Implementation (2) 9

The NULL process

• MPI_PROC_NULL
– Rank of a fictional process
– Valid in every communicator and point-to-point
– Communication will always succeed
– A receive will always receive no data and not

modify its buffer

SPD - MPI Standard Use and Implementation (2) 10

Derived datatypes

• Abstract definition
– Type map and type signature

• Program Definition
– MPI constructors

• Local nature
– They are not shared
– In communications, type signatures and type

maps for the data type used are checked
– Need to be consolidated before use in

communication primitives (MPI_Commit)

SPD - MPI Standard Use and Implementation (2) 11

MPI TYPE CONSTRUCTORS
• Typemap & typesignatures
• Rules for matching Datatypes
• Size and extent
• Contiguous
• Vector

– Count, blocklen, stride example
– Row, column, diagonals (exercises)
– Multiple rows
– Stride<blocklen, negative strides

• Examples: composing datatypes
• Hvector
• Indexed
• Hindexed
• Standard send and recv: any_tag, any_source
• Send has modes, recv can be asymmetric, both can be

incomplete

SPD - MPI Standard Use and Implementation (2) 12

Typemaps and type signatures

• A datatype is defined by its memory layout
– as a list of basic types and displacements

• Typemap
TM = {(type0 , disp0), ..., (typen−1 , dispn−1)}

• Type signature
TS = {(type0), ..., (typen−1)}

– Each typei is a basic type with a known size
• Size = the sum of sizes of all typei

• Extent = the distance between the earliest
and the latest byte occupied by a datatype

• Rules for matching Datatypes

SPD - MPI Standard Use and Implementation (2) 13

Typemaps and type signatures

SPD - MPI Standard Use and Implementation (2) 14

• Type map

TM = {(byte , 0), (int, 1), (double , 5)}
• Type signature

TS = {(byte), (int), (double)}
• Size = 1+4+8 = 13

– Note that we are assuming a 32 bit architecture here!
• Extent = 13

Typemaps and type signatures

SPD - MPI Standard Use and Implementation (2) 15

• Your compiler will likely add aligning constraints to basic
types: let’s assume ints are word aligned, and doubles
are double-word aligned

• Type map
TM = {(byte , 0), (int, 4), (double , 8)}

• Type signature
TS = {(byte), (int), (double)}

• Size = 1+4+8 = 13
• Extent = 16
• You need the padding for code execution, but you

want to leave padding out of communication buffers
– E.g. when sending large arrays of structures
– Data packing and unpacking is automated in MPI

Matching rules for datatypes

• Typemaps are essential for packing into the
communication buffer, and unpacking

• datatype in a send / recv couple must
match
– Datatypes are local to the process
– Datatype descriptors (typemaps) may be passed

among processes by MPI routines (but that’s not
mandatory per the standard)

– What really counts is the type signature
• Do not “break” primitive types
• “holes” in the data are dealt with by pack /unpack

• Datatype typemaps can have repeats
– Disallowed on the receiver side!

SPD - MPI Standard Use and Implementation (2) 16

Datatypes: shake before use!
• Before looking at the the core primitive for

defining new derived datatypes, remember
• MPI_TYPE_COMMIT(datatype)

– Mandatory before every actual use of a datatype!
– Consolidates the datatype definition, making it

permanent
– Enables the new datatype for use in all non-datatype

defining MPI primitives
• e.g. commit before a point to point or a collective

– May compile internal information needed to the MPI
library runtime
• e.g. : optimized routines for data packing & unpacking

• MPI_TYPE_FREE(datatype)
– Free library memory used by a datatype that is no

longer needed
– Be sure that the datatype is not currently in use!

SPD - MPI Standard Use and Implementation (2) 17

Contiguous Datatype

int MPI_Type_contiguous(int count,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

• Create a plain array of identical elements
• No extra space between elements
• Overall size is count* number of elements

SPD - MPI Standard Use and Implementation (2) 18

Contiguous Datatype

SPD - MPI Standard Use and Implementation (2) 19

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

MPI_Datatype mytype;
MPI_Type_contiguous(4, MPI_INT, &mytype);
MPI_Type_commit(mytype)

• Type map
TM = {(int, 0), (int, 4), (int, 8), (int, 12),}

• Type signature
TS = { (int), (int), (int), (int)}

• Size = 16
• Extent = 16

Vector Datatype

int MPI_Type_vector(int count, int blocklength,
int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

• Create a spaced array (a series of
contiguous blocks with space in between)

• Count = number of blocks
• Blocklength = number of items in each block
• Stride = distance between the start of each

block
• The size unit is the size of the inner datatype

SPD - MPI Standard Use and Implementation (2) 20

Vector Datatype

SPD - MPI Standard Use and Implementation (2) 21

1 2 3 4 5 6 7 8

MPI_Datatype mytype;
MPI_Type_vector(4, 2, 4, MPI_BYTE, &mytype);
MPI_Type_commit(mytype)

• Type map
TM = {(byte, 0), (byte, 1), (byte, 4), (byte, 5),

(byte, 8), (byte, 9), (byte, 12), (byte, 13)}
• Type signature

TS = { (byte), (byte), (byte), (byte), (byte), (byte), (byte), (byte)}
• Size = 8
• Extent = 13

Vector Datatype

• What if stride is less than the blocklength?
• What if the stride is zero?

SPD - MPI Standard Use and Implementation (2) 22

Hvector datatype

int MPI_Type_create_hvector(

int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype
*newtype)

• Create a vector of block with arbitrary
alignment

• Same as the vector but:
– The stride is an offset in bytes between each block

starts
• Many other datatypes have an “H version”

where some parameters are in byte units

SPD - MPI Standard Use and Implementation (2) 23

HVector Datatype

SPD - MPI Standard Use and Implementation (2) 24

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4

MPI_Datatype mytype;
MPI_Type_hvector(3, 2, 9, MPI_INT, &mytype);
MPI_Type_commit(mytype)

• Type map
TM = {(int, 0), (int, 4), (int, 9), (int, 13), (int, 18), (int, 22)}

• Type signature
TS = { (int), (int), (int), (int), (int), (int)}

• Size = 24
• Extent = 26

4 5 5 5 5 6 6 6 6

Indexed datatype
int MPI_Type_indexed(

int count, int *array_of_blocklengths,
int *array_of_displacements,

MPI_Datatype oldtype,MPI_Datatype *newtype)

• Blocks of different sizes
• Count is a number of blocks
• Length and position (w.r.t. structure start!) are

specified for each block
• All in units of the inner datatype
• Some uses for this datatype: triangular matrixes,

arrays of contiguous lists, reordering data structure
blocks (e.g. matrix rows) as we communicate

SPD - MPI Standard Use and Implementation (2) 25

Hindexed Datatype

int MPI_Type_create_hindexed(
int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],

MPI_Datatype oldtype, MPI_Datatype
*newtype)

• Same as Indexed, but block positions are
given in bytes

• Enhanced flexibility in memory layout

SPD - MPI Standard Use and Implementation (2) 26

Struct Datatype

MPI_TYPE_CREATE_STRUCT (count,
array_of _blocklengths, array_of _displacements,
array_of _types, newtype)

IN count number of blocks (non-negative integer)
• also number of entries in arrays array_of _types,

array_of _displacements and array_of _blocklengths

IN array_of _blocklength elements in each block
(array of non-negative integer)

IN array_of _displacements byte displacement of
each block (array of integer)

IN array_of _types type of elements in each block
(array of handles to datatype objects)

OUT newtype new datatype (handle)

SPD - MPI Standard Use and Implementation (2) 27

Struct Datatype

SPD - MPI Standard Use and Implementation (2) 28

a a a a b b c c c c c c c c

typedef struct {
int a; char b[2]; double c

}

• Assuming 32 bit words, double-word aligned
doubles etc…

• Type map
TM = {(int, 0), (char, 5), (char, 6), (double, 8)}

• Type signature
TS = { (int), (char), (char), (double)}

• Size = 14
• Extent = 16

MPI TYPE CONSTRUCTORS
• Typemap & typesignatures
• Rules for matching Datatypes
• Size and extent
• Contiguous
• Vector

– Count, blocklen, stride example
– Row, column, diagonals (exercises)
– Multiple rows
– Stride<blocklen, e.g. negative offsets

• Examples: composing datatypes
• Hvector
• Indexed
• Hindexed
• Struct
• A simple tool to display MPI typemaps : MPIMap

http://computation.llnl.gov/casc/mpimap/

SPD - MPI Standard Use and Implementation (2) 29

Exercises

• Start preparing for the lab sessions
– Install a version of MPI which works on your O.S.

– OpenMPI (active development)
– LAM MPI (same team, only maintained)
– MPICH (active development)

– Check out details that have been skipped in the
lessons (read man pages and the docs)

– How to run programs, how to specify the mapping of processes
on machines (Usually it is a file listing all available machines)

– How to check a process rank, act on the rank

– Read the first chapters of the Wilkinson-Allen
– Write a minimal program that runs and initializes MPI, run it with

NP>3
– Write at least a simple program that uses MPI_Comm_World, has

a small fixed number of processes and communications and run
it on your laptop

– E.g. a trivial ping-pong program with 2 processes

SPD - MPI Standard Use and Implementation (2) 30

Reference Texts

• MPI standard Relevant Material for 2nd lesson
– Chapter 3:

• section 3.2 (blocking send and recv with details)
• section 3.3 (datatype matching rules and meaning of

conversion in MPI)
– Chapter 4: sections with the specific datatype

constructors discussed

SPD - MPI Standard Use and Implementation (2) 31

