
Master Degree (Laurea Magistrale) in
Computer Science and Networking

Academic Year 2009-2010

MPI Tutorial (part 1)

Patrizio Dazzi
ISTI - CNR
Pisa Research Campus
mail: patrizio.dazzi@isti.cnr.it

domenica 20 dicembre 2009

mailto:patrizio.dazzi@isti.cnr.it
mailto:patrizio.dazzi@isti.cnr.it

Distributed systems: paradigms and models (M. Danelutto) Slide #

What is MPI ?

• M P I = Message Passing Interface

• Specification for developers of message passing libraries

• hence, it is NOT a library - but rather the specification of what
such a library should be.

• specifications have been defined for C/C++ and Fortran.

• Two main versions

• MPI-1: final version of draft released in May, 1994

• MPI-2: was finalized in 1996.

• MPI implementations are a combination of MPI-1 and MPI-2

2

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Programming Model

• MPI lends itself to virtually any distributed memory parallel
programming model.

• Commonly used to implement behind the scenes some shared
memory models, (e.g. Data Parallel), on distributed memory
architectures.

• Parallelism is explicit: the programmer is responsible for
identifying parallelism and implementing parallel algorithms
using MPI constructs.

• The number of tasks dedicated to run a parallel program is
static. New tasks can not be dynamically spawned during run
time. (MPI-2 addresses this issue).

3

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Program Header and MPI calls
structure

• Header
 #include "mpi.h"

• Format of MPI Calls:
 ret_code = MPI_Xxxxx(parameter, ...)

• E.g. ret_code = MPI_Send(&buf, count, type, dest, tag, comm);

• ret_code equals to MPI_SUCCESS when successful

4

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

MPI program structure

• Include file

• Environment initialization

• MPI Exploitation

• Environment termination

5

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Communicator, Group, Rank (1)

• Passing Messages means “communicate”

• MPI communication are based on three concepts:

• communicator

• group

• rank

6

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Communicator, Group, Rank (2)

• “communicators” and “groups” define which collection of processes may
communicate with each other.

• a communicator is passed as an argument to several MPI routines

• E.g. MPI_COMM_WORLD is the predefined communicator that includes all the MPI
processes

• Within a communicator, every MPI process has its own unique identifier: the Rank

• it is assigned by the system when the process initializes.

• rank is sometimes called “task ID”

• ranks are contiguous and begin at zero

• used to specify the source and destination of messages or to control program
execution (e.g. if rank=0 do this / if rank=1 do that)

7

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Communicator vs. Groups

• A group is an ordered set of processes.

• Rank values between zero and N-1.
N: number of processes in the group.

• A group is associated with a
communicator and accessible to the
programmer only by a "handle".

• A communicator encompasses a group
of processes that may communicate
with each other.

• From the programmer's perspective, a
group and a communicator are one.
Groups routines specifies the
processes used to build a
communicator.

8

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines (1)

• The need of defining a MPI environment

• used for several different purposes, such as:

• initializing and terminating the MPI environment

• querying the environment and identity

• etc.

9

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines (2)

• MPI_Init (Prototype: MPI_Init (&argc, &argv))

• Initializes the MPI execution environment. It must be:

• called in every MPI program

• called before any other MPI functions

• called only once in an MPI program.

• MPI_Comm_size (Prototype: MPI_Comm_size (comm, &size))

• Determines the number of processes in the group associated with a
communicator.

• used within the communicator MPI_COMM_WORLD to determine the
total number of application processes.

10

domenica 20 dicembre 2009

https://computing.llnl.gov/tutorials/mpi/man/MPI_Init.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Init.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Comm_size.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Comm_size.txt

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines (3)

• MPI_Comm_rank (Proto: MPI_Comm_rank (comm, &rank))

• Determines the rank of the calling process within the
communicator.

• Each process will be assigned a unique integer rank between 0
and number of processors - 1

• MPI_Abort (Prototype: MPI_Abort (comm, errorcode))

• Terminates all MPI processes associated with the communicator.

• In most MPI implementations it terminates ALL processes
regardless of the communicator specified.

11

domenica 20 dicembre 2009

https://computing.llnl.gov/tutorials/mpi/man/MPI_Comm_rank.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Comm_rank.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Abort.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Abort.txt

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines (4)

• MPI_Get_processor_name
(Prototype: MPI_Get_processor_name (&name, &resultlength))

• Returns the processor name and the name length.

• Buffer for name must be at least MPI_MAX_PROCESSOR_NAME
characters in size

• What is returned into "name" is implementation dependent

• MPI_Initialized (Prototype: MPI_Initialized (&flag))

• Returns true if MPI_Init has been called, false otherwise

• Useful because MPI requires that MPI_Init be called once and only
once by each process.

12

domenica 20 dicembre 2009

https://computing.llnl.gov/tutorials/mpi/man/MPI_Get_processor_name.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Get_processor_name.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Initialized.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Initialized.txt

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines (5)

• MPI_Wtime (Prototype: MPI_Wtime ())

• Elapsed wall clock time in seconds on the calling processor.

• MPI_Wtick (Prototype: MPI_Wtick ())

• Returns the resolution in seconds of MPI_Wtime.

• MPI_Finalize (Prototype: MPI_Finalize ())

• Terminates the MPI execution environment.

• should be the last MPI routine called in every MPI program

13

domenica 20 dicembre 2009

https://computing.llnl.gov/tutorials/mpi/man/MPI_Wtime.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Wtime.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Wtick.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Wtick.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Finalize.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Finalize.txt

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines -
Example 1

14

#include "mpi.h"
#include <stdio.h>

int main(int argc, char** argv){

 int numtasks, rank, ret_code;

 ret_code = MPI_Init(&argc,&argv);

 if (ret_code != MPI_SUCCESS) {
 printf ("Error starting MPI program. Terminating.\n");
 MPI_Abort(MPI_COMM_WORLD, ret_code);
 }

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 printf ("Number of tasks= %d My rank= %d\n", numtasks, rank);

 /******* do some work *******/

 MPI_Finalize();

}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Environment Management Routines -
Example 2

15

#include "mpi.h"
#include <stdio.h>

int main(argc,argv) {
int numtasks, rank, dest, source, ret_code, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
printf (“I am the process with rank 0”);

}
else if (rank == 1) {

printf (“I am the process with rank 1”);
}

ret_code = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf(“The total number of processes is %d”, count);

MPI_Finalize();
}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Communication Routines

• Point-to-point

• Blocking

• Non-Blocking

• Collective communications

• Synchronization

• Data Movement

• Collective Computation

16

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Point to Point Communication
Routines (1)

• MPI point-to-point operations typically involve message passing between two
different MPI tasks.

• One performs a send operation, the other performs a matching receive
operation

• There are different types of send and receive routines used for different
purposes, for instance:

• Synchronous send

• Blocking send / blocking receive

• Non-blocking send / non-blocking receive

• Buffered send

• Combined send/receive

• "Ready" send

17

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Point to Point Communication
Routines (2)

• Any type of send routine can be paired with any type of receive
routine

• MPI also provides several routines associated with send -
receive operations,

• e.g. those used to wait for a message's arrival or probe to find
out if a message has arrived.

• When a send is not synchronized with its matching receive, the
MPI implementation must be able to manage the data in transit

• The MPI implementation (not the MPI standard) decides what
happens to data in these types of cases. Typically, a system
buffer area is reserved to hold data in transit.

18

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking vs. Non-blocking (1)

• Most of the MPI point-to-point routines can be used in either
blocking or non-blocking mode.

• Blocking:

• A blocking send routine will only return after it is safe to modify the
application send buffer for reuse, i.e. modifications will not affect the
data intended for the receive task.

• A blocking send can be synchronous which means there is
handshaking occurring with the receive task to confirm a safe send.

• A blocking send can be asynchronous if a system buffer is used to
hold the data for eventual delivery to the receive.

• A blocking receive only "returns" after the data has arrived and is ready
for use by the program.

19

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking vs. Non-blocking (2)

• Non-blocking:

• Non-blocking send and receive routines do not wait for any
communication events to complete, such as message copying from user
memory to system buffer space or the actual arrival of message.

• Non-blocking operations simply request the MPI library to perform the
operation when it is able. The user can not predict when that will happen.

• It is unsafe to modify the application comm. buffer until you know for a
fact the requested non-blocking operation was actually performed by the
library. There are "wait" routines used to do this.

• Non-blocking communications are primarily used to overlap computation
with communication and exploit possible performance gains.

20

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Order and Fairness

• Order

• MPI guarantees that messages will not overtake each other.

• If a sender sends two messages in succession to the same
destination, both matching the same receive, the receive
operation will receive Messages in order.

• If a receiver posts two receives in succession both looking for the
same message, messages will be received in order.

• NOTE: Order rules do not apply if there are multiple threads
participating in the communication operations.

21

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Fairness

• MPI does not guarantee fairness

• it's up to the programmer to prevent "operation starvation"

• Example:

• task 0 sends a message to task 2.

• However, task 1 sends a competing message that matches
task 2's receive.

• Only one of the sends will complete.

22

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

MPI Message Passing Routine
Arguments (1)

• MPI point-to-point communication routines generally have an
argument list that takes one of the following formats:

23

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

MPI Message Passing Routine
Arguments (2)

• Buffer

• Program address space referencing the data that is to be sent or
received. In most cases, this is simply the variable name that is be
sent/received.

• Data Count

• Indicates the number of data elements of a particular type to be
sent.

• Data Type

• For reasons of portability, MPI predefines its elementary data types.

• But programmers may also create their own data types

24

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

MPI Message Passing Routine
Arguments (3)

25

MPI Datatypes

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

MPI Message Passing Routine
Arguments (4)

• Destination

• indicates the process where a message should be delivered. Specified as the
rank of the receiving process.

• Source

• indicates the originating process of the message. Specified as the rank of the
sending process. This may be set to the wild card MPI_ANY_SOURCE to
receive a message from any task.

• Tag

• Arbitrary non-negative integer assigned by the programmer to uniquely
identify a message. Send and receive operations should match message tags.

• For a receive operation, the wild card MPI_ANY_TAG can be used to receive
any message regardless of its tag.

26

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

MPI Message Passing Routine
Arguments (5)

• Communicator

• Indicates the communication context, or set of processes for which the source
or destination fields are valid

• Status

• For a receive operation, indicates the source of the message and the tag of the
message. This argument is a pointer to a predefined structure MPI_Status.

• The actual number of bytes received are obtainable from Status via the
MPI_Get_count routine.

• Request

• Used by non-blocking send and receive operations. Since non-blocking
operations may return before the requested system buffer space is obtained, the
system issues a unique "request number". The programmer uses this system
assigned "handle" later to determine completion of the non-blocking operation.

27

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(1)

• MPI_Send (P: MPI_Send(&buf,count,datatype,dest,tag,comm))

• represents the basic blocking send operation.

• returns only after the application buffer in the sending task is free

• this routine may be implemented differently on different systems.

• MPI_Recv
(P: MPI_Recv(&buf,count,datatype,source,tag,comm,&status))

• simplest operation for receiving a message

• it blocks until the requested data is available in the application buffer
in the receiving task

28

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(1) - Example

29

#include "mpi.h"
#include <stdio.h>

int main(int argc, char** argv) {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}
rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("%d: Received %d char(s) from %d with tag %d\n", rank, count, Stat.MPI_SOURCE,
Stat.MPI_TAG);
MPI_Finalize();

}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(2)

• MPI_Ssend (MPI_Ssend (&buf,count,datatype,dest,tag,comm))

• Synchronous blocking send: Send a message and block until the application
buffer in the sending task is free and the destination process has started to
receive the message.

• MPI_Bsend (MPI_Bsend (&buf,count,datatype,dest,tag,comm))

• Buffered blocking send:

• permits the programmer to allocate the required amount of buffer space
into which data can be copied until it is delivered.

• Routine returns after the data has been copied from application buffer
space to the allocated send buffer.

• Make sure you have enough buffer space available.

• Must be used with the MPI_Buffer_attach routine.

30

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(3)

• MPI_Buffer_attach (MPI_Buffer_attach (&buffer,size))
MPI_Buffer_detach (MPI_Buffer_detach (&buffer,size))

• Used by programmer to allocate/deallocate message buffer space to be
used by the MPI_Bsend routine.

• The size argument is specified in bytes - not in “elements”.

• Only one buffer can be attached to a process at a time.

• MPI_Rsend (MPI_Rsend(&buf,count,datatype,dest,tag,comm))

• Blocking ready send.

• Should only be used if the programmer is certain that the matching
receive has already been posted.

31

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(2-3) - Example (1)

32

#include "mpi.h"
#include <stdio.h>

int main(int argc, char** argv) {
int numtasks, rank, dest, source, rc, count, tag=1; char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
 dest = 1;
 source = 1;
 printf("approaching send operation\n");
 rc = MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 printf("data sent\n");
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

} else if (rank == 1) {
 dest = 0;
 source = 0;
 sleep(5);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}
rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("%d: Received %d char(s) from %d with tag %d\n", rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);
MPI_Finalize();
}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(2-3) - Example (2)

33

#include "mpi.h"
#include <stdio.h>
#include <unistd.h>

int main(int argc, char** argv) {
int numtasks, rank, dest, source, rc, count, tag=1; int buffer[20]; char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Buffer_attach (&buffer, 20*sizeof(int));

if (rank == 0) {
 dest = 1;
 source = 1;
 printf("approaching send operation\n");
 rc = MPI_Bsend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 printf("data sent\n");
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

} else if (rank == 1) {
 dest = 0;
 source = 0;
 sleep(5);
 rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
 rc = MPI_Ssend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}
rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("%d: Received %d char(s) from %d with tag %d\n", rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);
MPI_Finalize();
}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(4)

• MPI_Sendrecv
MPI_Sendrecv (&sendbuf, sendcount, sendtype, dest, sendtag,
 &recvbuf, recvcount, recvtype, source, recvtag,
 comm, &status)

• Send a message and post a receive before blocking.

• Will block until

• the sending application buffer is free and

• until the receiving application buffer contains the received
message.

34

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(4) - Example

35

#include "mpi.h"
#include <stdio.h>

int main(int argc, char** argv) {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
 dest = 1;
 source = 1;
 rc = MPI_Sendrecv (&outmsg, 1, MPI_CHAR, dest, tag, &inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

} else if (rank == 1) {
 dest = 0;
 source = 0;
 rc = MPI_Sendrecv (&outmsg, 1, MPI_CHAR, dest, tag, &inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);
printf("%d: Received %d char(s) from %d with tag %d\n", rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);
MPI_Finalize();
}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Blocking Message Passing Routines
(5)

• MPI_Wait (MPI_Wait (&request, &status))
MPI_Waitany (MPI_Waitany (count, &array_of_requests, &index, &status))
MPI_Waitall (MPI_Waitall (count, &array_of_requests, &array_of_statuses))
MPI_Waitsome (MPI_Waitsome(incount, &array_of_requests, &outcount,
 &array_of_offsets, &array_of_statuses))

• MPI_Wait blocks until a specified non-blocking send or receive operation has
completed.

• For multiple non-blocking operations, the programmer can specify any, all or some
completions.

• MPI_Probe (MPI_Probe (source,tag,comm,&status))

• Performs a blocking test for a message.

• The "wildcards" MPI_ANY_SOURCE and MPI_ANY_TAG may be used to test for a
message from any source or with any tag.

36

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Non-Blocking Message Passing
Routines (1)

• MPI_Isend (MPI_Isend
(&buf,count,datatype,dest,tag,comm,&request))

• Processing continues immediately without waiting for the
message to be copied out from the application buffer.

• Returns a request handle for handling the pending message
status.

• The program should not modify the buffer until subsequent calls
to MPI_Wait or MPI_Test indicate that the Isend has completed.

37

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Non-Blocking Message Passing
Routines (2)

• MPI_Irecv (MPI_Irecv
(&buf,count,datatype,source,tag,comm,&request))

• Processing continues immediately without actually waiting for
the message to be received and copied into the the application
buffer.

• Returns a request handle for handling the pending message
status.

• The program must use calls to MPI_Wait or MPI_Test to
determine when the Irecv completes and the requested message
is available in the application buffer.

38

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Non-Blocking Message Passing
Routines (3)

• MPI_Issend (MPI_Issend (&buf,count,datatype,dest,tag,comm,&request))
MPI_Ibsend (MPI_Ibsend (&buf,count,datatype,dest,tag,comm,&request))
MPI_Irsend (MPI_Irsend (&buf,count,datatype,dest,tag,comm,&request))

• Non-blocking:

• synchronous send. Similar to MPI_Isend(), except MPI_Wait() or MPI_Test()
indicates when the destination process has received the message.

• buffered send. Similar to MPI_Bsend() except MPI_Wait() or MPI_Test()
indicates when the destination process has received the message. Must be
used with the MPI_Buffer_attach routine.

• ready send. Similar to MPI_Rsend() except MPI_Wait() or MPI_Test()
indicates when the destination process has received the message.

• Remember: Should only be used if the programmer is certain that the
matching receive has already been posted.

39

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Non-Blocking Message Passing
Routines (4)

• MPI_Test (MPI_Test (&request, &flag, &status))
MPI_Testany (MPI_Testany (count, &array_of_requests, &index, &flag, &status))
MPI_Testall (MPI_Testall (count, &array_of_requests, &flag, &array_of_statuses))
MPI_Testsome (MPI_Testsome (incount, &array_of_requests, &outcount,
 &array_of_offsets, &array_of_statuses))

• MPI_Test checks the status of a specified non-blocking send or receive operation.

• "flag" parameter is returned logical true (1) if the operation has completed, and logical
false (0) if not.

• For multiple non-blocking operations, the programmer can specify any, all or some
completions.

40

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Non-Blocking Message Passing
Routines (5)

• MPI_Iprobe (MPI_Iprobe (source, tag, comm, &flag, &status))

• Performs a non-blocking test for a message.

• The "wildcards" MPI_ANY_SOURCE and MPI_ANY_TAG may be
used to test for a message from any source or with any tag.

• "flag" parameter is returned logical true (1) if a message has arrived,
and logical false (0) if not.

• Source and tag will be returned in the status structure as
status.MPI_SOURCE and status.MPI_TAG.

41

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Non-Blocking Message Passing
Routines - Example

42

#include "mpi.h"
#include <stdio.h>

int main(int argc, char** argv){
int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;
MPI_Request reqs[4];
MPI_Status stats[4];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

prev = rank-1;
next = rank+1;
if (rank == 0) prev = numtasks - 1;
if (rank == (numtasks - 1)) next = 0;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

printf("%d: received %d and %d\n", rank, buf[0], buf[1]);

MPI_Waitall(4, reqs, stats);
MPI_Finalize();

}

domenica 20 dicembre 2009

Distributed systems: paradigms and models (M. Danelutto) Slide #

Questions ?

43

domenica 20 dicembre 2009

