
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, November 2015

 2

ClassWork5: comments

● Let's comment on a possible solution for the ClassWork4. Take a look in the
ClassWork5 folder:

 ~spm1501/public/ClassWork45/primes_parallelfor.cpp

 3

Iterations scheduling in the
ParallelFor* patterns

● Iterations are scheduled according to the value of the “chunk” parameter
 parallel_for(start, stop, step, chunk, body-function);

● Three options:

– chunk = 0 : static scheduling, at each worker thread is given a contiguous
chunk of ~(#iteration-space/#workers) iterations

– chunk > 0: dynamic scheduling with task granularity equal to chunk iterations

– chunk < 0: static scheduling with task granularity equal to chunk, chunks are
assigned to workers in a round-robin fashion

 4

Mandelbrot set example
● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly

leads to load unbalanced computation and poor performance

– Let's consider the minimum computation unit a single image row

(image size 2048x2048, max 103 iterations per point)

● ParallelFor Static partitioning of rows (48 threads) MaxSpedup 14
● ParallelFor Dynamic partitioning of rows (48 threads) MaxSpeedup 37

 5

Combining Data Parallel and Stream
Parallel Computations

● It is possible to nest data-parallel patterns inside a pipeline and/or a task-farm pattern

● We have mainly two options:

– To use a ParallelFor* pattern inside the svc method of a FastFlow node

– By defining a node as an ff_Map<> node

 6

The ff_Map pattern
● The ff_Map pattern is just a ff_node_t that wraps a ParallelForReduce pattern

 ff_Map< Input_t, Output_t, reduce-var-type>

● Inside pipelines and farms, it is generally most efficient to use the ff_Map than a plain
ParallelFor because more optimizations may be introduced by the run-time (mapping of
threads, disabling/enabling scheduler thread, etc...)

● Usage example:
#include <ff/map.hpp>
using namespace ff;

struct myMap: ff_Map<Task,Task,float> {
 using map = ff_Map<Task,Task,float>;

 Task *svc(Task *input) {

 map::parallel_for(....);

 float sum = 0;
 map::parallel_reduce(sum, 0.0, ….);

 return out;
 }
};

 7

ff_Map example

● Let's have a look at the simple test case in the FastFlow tutorial

<fastflow-dir>/tutorial/fftutorial_source_code/tests/hello_map.cpp

 8

ClassWork6

● Consider the following case:

– In input we have a stream of k matrices of size NxM. Let S be a vector
representing an internal state having size M.

– For each input matrix the program computes

● T = M*S (matrix vector product)
● s = sum T[i] (getting the sum of all elements, reduce operation)
● S[i] += s (updating the internal state with the result of the reduce)

– At the end of the data stream, the result produced is s = sum S[i]

● Give a parallel implementation of the problem by using the FastFlow pipeline and
ff_Map. The first stage of the pipeline produces the k matrices.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

