
SPARK
Quick Reference 3

RavenSPARK Patterns

RavenSPARK and the Examiner

To use the Ravenscar profile with the Examiner, provide the profile
option with a value of ravenscar (which can be abbreviated to r). The
default value of profile is sequential (which can be abbreviated to s).

Typical usages:

 spark -pr=ravenscar p.adb

 spark –pr=r @allunits

Periodic Tasks

A periodic task is a task that runs at set intervals. The intervals are
controlled by a delay until statement that must have an absolute (not
relative) time as its argument. The initial time can be obtained from the
Ada.Real_Time.Clock or, more usually, from some program-wide start
time provided by an “Epoch” package (see below).

task type T <any discriminants go here>
--# global ...;
--# derives ...; -- describe the effect of repeated
execution of the task body
is
 pragma Priority (...); -- or Interrupt_Priority
end T;

task body T
is
 Release_Time: Ada.Real_Time.Time :=
 Epoch.T_Start;

 Period : Ada.Real_Time.Time_Span :=
 Epoch.T_Period;
begin
 <initialisation code>
 loop
 delay until Release_Time; -- deterministic release
 -- perform the periodic action required
 Do_Periodic_Work;
 -- calculate next time to run
 Release_Time := Release_Time + Period;
 end loop;
end T;

 Protected Objects

In RavenSPARK we allow package own variables to be marked as being
protected. In the example below, calls to the entry Wait will be blocked by
TheBarrier. A protected sequence of statements may not call
subprograms that can suspend or delay execution. Where an object may
suspend a task, it must be annotated to indicate this with the
suspendable property. A protected type may have only one entry.

package Q
--# own protected PO : PT (priority => 10,
 suspendable);
is
 type Data is ...;

 protected type PT is
 pragma Priority (10);

 procedure Signal (D: in Data);
 --# global in out PT;
 --# derives PT from PT, D; -- “PT” here refers
 -- to “this instance of type”

 entry Wait (D: out Data);
 --# global in PT;
 --# derives D from PT;

 private
 TheData : Data := ...;
 TheBarrier : Boolean := False;
 end PT;

 PO : PT;

end Q;

The body for the type PT might look something like this. Refined global
and derives annotations must be given using the protected elements.

protected body PT is
 entry Wait (D : out Data) when TheBarrier
 --# global in TheData; out TheBarrier;
 --# derives D from TheData &
 --# TheBarrier from ;
 is
 begin
 D := TheData;
 TheBarrier := False;
 end GetDataWhenReady;

 procedure Signal (D : in Data)
 --# global out TheBarrier;
 --# derives TheData from D &
 --# TheBarrier from ;
 is
 begin
 TheData := D;
 TheBarrier := True;
 end Release;
end PT;

 Sporadic Tasks

A sporadic task is a task that is released by some external stimulus
rather than by the passing of time.

Release by Suspension Object

A suspension object is of the predefined type Suspension_Object in
the Ada.Synchronous_Task_Control package which can be set to True
or False. The suspension object would be an own variable with the
annotation:

--# own protected DataReady (Suspendable);

The procedure Suspend_Until_True will suspend the task until the
Set_True procedure is called by another task.

DataReady :
Ada.Synchronous_Task_Control.Suspension_Object;

task body ProcessWhenReady
is
begin
 loop
 -- wait until there is something to do
 Ada.Synchronous_Task_Control.
 Suspend_Until_True
(DataReady);
 -- do it
 P.ProcessTheState;
 end loop;
end ProcessWhenReady;

Release by Entry

Using the protected package Q defined earlier. The task will be
suspended on the call to Wait, until Signal is called. Note that only one
task may suspend on any one entry. The task type definition should
indicate that the task may suspend, and on which object, with a
declares statement:

--# declare suspends => Q.PO;

A suspending task body:

task body T is
 My_Data : P.Data;
begin
 loop
 Q.PO.Wait (My_Data); -- suspend until data available
 Operate_On (My_Data);
 end loop;
end T;

Interrupt Handlers

An interrupt handler is parameterless protected procedure which is
executed not by a procedure call statement but by an external event
signalled by an interrupt. In the example below, the priority must be in
the range System.Interrupt_Priority

--# inherit SomePackage;
package Interrupts
--# own protected Handler : PT
--# (priority => 31,
--# interrupt => (Event => UserSuppliedName));
is
private
 protected type PT is
 pragma Interrupt_Priority (31);

 procedure Event;
 --# global in out SomePackage.State;
 --# derives SomePackage.State from
 --# SomePackage.State;
 pragma Attach_Handler (Event, 42);-- make it a
 --handler
 end PT; -- no protected elements declared
end Interrupts;

package body Interrupts
is
 Handler : PT;
 protected body PT is separate;
end Interrupts;

with SomePackage;
separate (Interrupts)
protected body PT is
 procedure Event
 is
 begin
 SomePackage.DoWork;
 end Event;
end PT;

Thread Safe Polled Input Port
This example uses protected elements to provide thread safe access to
the raw input port (RawPort). The protects statement indicates which
variable is being protected.

package SharedPort
--# own in RawPort;
--# protected in SafePort : PortType
--# (priority => 10, protects => RawPort);
is
 function Read return Natural;
 --# global SafePort;

private
 protected type PortType is
 pragma Priority (10);

 function PRead return Natural;
 --# global PortType;
 end PortType;
end SharedPort;

© 2009 Praxis High Integrity Systems Limited
SPARK_QRG3 (v1.2)
For use with SPARK Toolset v8.1 and above

 package body SharedPort
is
 RawPort : Natural;
 for RawPort'Address use 16#FFFF_FFFF#;
 pragma Volatile (RawPort);

 SafePort : PortType;

 protected body PortType is
 function PRead return Natural
 --# global RawPort;
 is
 ReadLocal : Natural;
 begin
 ReadLocal := RawPort;
 if not ReadLocal'Valid then
 ReadLocal := 0;
 end if;
 return ReadLocal;
 end PRead;
 end PortType;

 function Read return Natural
 is
 begin
 return SafePort.PRead;
 end Read;
end SharedPort;

Interrupt Driven Input Port

An interrupt can be used in place of polling processes to drive safe access
to input ports.

package InterruptPort
--# own in RawPort;
--# protected SafePort : PortType
--# (priority => 31, protects => RawPort,
--# interrupt, suspendable);
is
 procedure Read (X : out Data);
 --# global in out SafePort;
 --# derives X, SafePort from SafePort;
 --# declare suspends => SafePort;
private
 protected type PortType is
 pragma Interrupt_Priority (31);

 procedure DataReady;
 --# global in out PortType;
 --# derives PortType from PortType;
 pragma Attach_Handler (DataReady, 5);

 entry PRead (X : out Natural);
 --# global in out PortType;
 --# derives X, PortType from PortType;
 private
 Ready : Boolean := False;
 TheData : Natural := 0;
 end PortType;
end InterruptPort;

 In the body below, the interrupt removes the barrier for the entry,
allowing the input port to be read.

package body InterruptPort
is
 RawPort : Natural;
 for RawPort'Address use 16#FFFF_FFFF#;
 pragma Volatile (RawPort);
 SafePort : PortType;

 protected body PortType is
 procedure DataReady
 --# global out Ready, TheData; in RawPort;
 --# derives Ready from &
 --# TheData from RawPort;
 is
 ReadLocal : Natural;
 begin
 TheData := RawPort;
 Ready := True;
 end DataReady;

 entry PRead (X : out Natural) when Ready
 --# global out Ready; in TheData;
 --# derives Ready from &
 --# X from TheData;
 is
 begin
 X := TheData;
 Ready := False;
 end PRead;
 end PortType;

 procedure Read (X : out Natural)
 is
 begin
 SafePort.PRead (X);
 end Read;
end InterruptPort;

In both this, and the previous (polled input) example, the raw input
port is considered a virtual protected variable. The protected object
is the only object that may access it, resulting in it behaving exactly
as if it were a protected element of the type. The protects property
indicates this relationship.
Epoch Package

An “Epoch” package can be used to define a reference time from
which to co-ordinate task startup:
with Ada.Real_Time;
use type Ada.Real_Time.Time;
--# inherit Ada.Real_Time;
package Epoch is
 StartTime : constant Ada.Real_Time.Time :=
 Ada.Real_Time.Clock;
 T_Start : constant Ada.Real_Time.Time :=
 StartTime + Ada.RealTime.Milliseconds (10);
 T_Period : constant Ada.Real_Time.Time_Span :=
 Ada.Real_Time.Milliseconds (50);
end Epoch;

	SPARK
	Quick Reference 3
	RavenSPARK Patterns
	Periodic Tasks
	Protected Objects
	Sporadic Tasks
	Release by Suspension Object
	Release by Entry
	Interrupt Handlers
	Thread Safe Polled Input Port
	Interrupt Driven Input Port
	Epoch Package

