Linguaggi di Programmazione

Roberta Gori

Semantica denotazionale dei comandi - 6.1,6.2

Lambda notazione

Lambda notazione

Modo per descrivere funzioni senza assegnargli un nome funzione anonima
$\lambda x . e \quad x$ funge da parametro formale in e denota una funzione che attende che un valore che viene sostituito a x in tutte occorrenze di x in e e poi valuta e

applicazione della funzione anonima

$e_{1} e_{2} \quad e_{2}$ è l'argomento passato alla funzione e_{1} denota l'applicazione della funzione e_{1} ad e_{2} riduce il bisogno di parentesi $e_{1}\left(e_{2}\right)$

Definizione di funzione

$$
f(x) \triangleq x^{2}-2 \cdot x+5
$$

$$
\lambda x \cdot\left(x^{2}-2 \cdot x+5\right)
$$

le parentesi non sono necessarie sono aggiunte solo per chiarezza

Regole associative

$e_{1} e_{2} e_{3} \quad$ si legge $\left(e_{1} e_{2}\right) e_{3}$ l'applicazione e' associativa a sinistra

$\lambda x . \lambda y . \lambda z . e \quad$ si legge $\quad \lambda x .(\lambda y .(\lambda z . e))$
l'astrazione e' associativa a destra

Scoping

$$
\lambda x . e
$$

lo scope di x e' e
x non e' visibile fuori da e
come una variabile locale

Alpha-conversione

$\lambda x \cdot\left(x^{2}-2 \cdot x+5\right)$
i nomi dei parametri formali sono inessenziali:
$\lambda y \cdot\left(y^{2}-2 \cdot y+5\right)$
le due espressioni denotano la stessa funzione
$\lambda x \cdot e \equiv \lambda y \cdot(e[y / x]) \quad$ (sotto alcune condizioni su e, y)
capture-avoiding
substitution
(formalizzeremo a breve il concetto)

Applicazione (beta rule)

($\lambda x . e) e_{0} \quad$ applicazione di una funzione

$$
\equiv
$$

$\left.e^{\left[e_{0}\right.} / x\right] \quad$ valutazione via sostituzione
capture-avoiding substitution

Esempio

$\lambda x .\left(x^{2}-2 \cdot x+5\right) \quad$ una funzione
$\left(\lambda x .\left(x^{2}-2 \cdot x+5\right)\right) 2$ la sua applicazione

$$
2^{2}-2 \cdot 2+5=5 \quad \text { la sua valutazione }
$$

Esempio

$\lambda x . \lambda y \cdot\left(x^{2}-2 \cdot y+5\right) \quad$ una funzione
$\left(\lambda x \cdot \lambda y \cdot\left(x^{2}-2 \cdot y+5\right)\right) 2$ la sua applicazione
$\lambda y \cdot\left(2^{2}-2 \cdot y+5\right) \quad$ la sua valutazione
e' ancora una funzione!

Esempio

$\lambda f \cdot \lambda x \cdot\left(x^{2}+f 1\right) \quad$ una funzione
$\left(\lambda f \cdot \lambda x \cdot\left(x^{2}+f 1\right)\right)(\lambda y \cdot(2 \cdot y))$ la sua applicazione

$$
\begin{array}{cc}
\equiv & \text { (l'argomento e' una funzione!) } \\
\lambda x \cdot\left(x^{2}+(\lambda y \cdot(2 \cdot y))\right. & \text { 1) } \\
\text { la sua valutazione }
\end{array}
$$

posso usare funzioni di ordine superiore come argomenti/ risultati

Esempio

$\lambda f . \lambda x .\left(x^{2}+f 1\right) \quad$ una funzione
$\left(\lambda f \cdot \lambda x \cdot\left(x^{2}+f 1\right)\right)(\lambda y \cdot(2 \cdot y)) 3$ la sua applicazione

$$
\equiv
$$

$\lambda x \cdot\left(x^{2}+(\lambda y \cdot(2 \cdot y)) 1\right) \quad 3$ la sua valutazione e la sua applicazione
$3^{2}+(\lambda y .(2 \cdot y)) 1 \quad$ la sua valutazione
e la sua applicazione
$3^{2}+2 \cdot 1=11 \quad$ la sua valutazione

Condizionale in Lambda Notazione

Aggiungiamo all'astrazione λx. e e all'applicazione di funzione $e_{1}\left(e_{2}\right)$ anche il condizionale

$$
e \rightarrow e_{1}, e_{2} \quad \text { if } e \text { then } e_{1} \text { else } e_{2}
$$

Posso scrivere $\lambda x . x>0 \rightarrow 1,0$
esempio $\quad \min \triangleq \lambda x . \lambda y . x<y \rightarrow x, y$

Semantica denotazionale dei comandi

Semantica denotazionale

$\mathscr{C}: \operatorname{Com} \rightarrow(\Sigma \rightharpoonup \Sigma)$
$\mathscr{C}: \operatorname{Com} \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)$
$\mathscr{C} \llbracket \mathbf{s k i p} \rrbracket \sigma \stackrel{\text { def }}{=} \sigma$
$\left.\mathscr{C} \llbracket x:=a \rrbracket \sigma \stackrel{\text { def }}{=} \sigma{ }^{\mathscr{}} \llbracket \llbracket a \rrbracket \sigma / x\right]$
$\mathscr{C} \llbracket c_{0} ; c_{1} \rrbracket \sigma \stackrel{\text { def }}{=} \mathscr{C} \llbracket c_{1} \rrbracket^{*}\left(\mathscr{C} \llbracket c_{0} \rrbracket \sigma\right)$
Lifting

$$
\begin{aligned}
& (\cdot)^{*}:\left(\Sigma \rightarrow \Sigma_{\perp}\right) \rightarrow\left(\Sigma_{\perp} \rightarrow \Sigma_{\perp}\right) \\
& f: \Sigma \rightarrow \Sigma_{\perp} \\
& f^{*}: \Sigma_{\perp} \rightarrow \Sigma_{\perp} \\
& f^{*}(x)= \begin{cases}\perp & \text { if } x=\perp \\
f(x) & \text { otherwise }\end{cases}
\end{aligned}
$$

$\mathscr{C} \llbracket i f b$ then c_{0} else $c_{1} \rrbracket \sigma \stackrel{\text { def }}{=} \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \mathscr{C} \llbracket c_{0} \rrbracket \sigma, \mathscr{C} \llbracket c_{1} \rrbracket \sigma$
$\mathscr{C} \llbracket$ while b do $c \rrbracket \sigma \stackrel{\text { def }}{=}$?

Semantica den. (con.)

 $\mathscr{C} \llbracket$ while b do $c \rrbracket \sigma \stackrel{\text { def }}{=} \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \mathscr{C} \llbracket$ while b do $c \rrbracket^{*}(\mathscr{C} \llbracket c \rrbracket \sigma), \sigma$ $\mathscr{C} \llbracket$ while b do $c \rrbracket \stackrel{\text { def }}{=} \lambda \sigma . \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \mathscr{C} \llbracket$ while b do $c \rrbracket^{*}(\mathscr{C} \llbracket c \rrbracket \sigma), \sigma$ $\left(\lambda \varphi . \lambda \sigma . \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \varphi^{*}(\mathscr{C} \llbracket c \rrbracket \sigma), \sigma\right) \mathscr{C} \llbracket$ while b do $c \rrbracket$$$
\Gamma_{b, c} \stackrel{\text { def }}{=} \lambda \varphi . \lambda \sigma . \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \varphi^{*}(\mathscr{C} \llbracket c \rrbracket \sigma), \sigma
$$

$\mathscr{C} \llbracket$ while b do $c \rrbracket=\Gamma_{b, c} \mathscr{C} \llbracket$ while b do $c \rrbracket$

$$
p=f(p) \text { una equazione di punto fisso! }
$$

Semantica den. (con.)

$\mathscr{C} \llbracket$ while b do $c \rrbracket=\Gamma_{b, c} \mathscr{C} \llbracket$ while b do $c \rrbracket$
$\mathscr{C}: \operatorname{Com} \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)$
$\Sigma \rightarrow \Sigma_{\perp}$

$\Gamma_{b, c} \stackrel{\text { def }}{=} \lambda \varphi . \lambda \sigma . \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \varphi^{*}(\mathscr{C} \llbracket c \rrbracket \sigma), \sigma$

$$
\begin{aligned}
& \varphi: \Sigma \rightarrow \Sigma_{\perp} \\
& \varphi^{*}: \Sigma_{\perp} \rightarrow \Sigma_{\perp} \\
& \mathscr{C} \llbracket c \rrbracket \sigma: \Sigma_{\perp} \\
& \varphi^{*}(\mathscr{C} \llbracket c \rrbracket \sigma): \Sigma_{\perp}
\end{aligned}
$$

$\Gamma_{b, c}:\left(\Sigma \boldsymbol{p}_{\perp}\right) \rightarrow \Sigma \rightarrow \Sigma_{\perp}$
funzioni parziali

$$
\Sigma \rightarrow \Sigma
$$

insieme di coppie

$$
\left(\sigma, \sigma^{\prime}\right)
$$

OPC_{\perp}

Monotono e continuo

$$
\Gamma_{b, c} \stackrel{\text { def }}{=} \lambda \varphi . \lambda \sigma . \mathscr{B} \llbracket b \rrbracket \sigma \rightarrow \varphi^{*}(\mathscr{C} \llbracket c \rrbracket \sigma), \sigma
$$

Prendiamo

$$
R_{b, c}=\left\{\frac{\left(\sigma^{\prime \prime}, \sigma^{\prime}\right)}{\left(\sigma, \sigma^{\prime}\right)} \mathcal{B} \llbracket b \rrbracket \sigma \wedge \mathcal{C} \llbracket c \rrbracket \sigma=\sigma^{\prime \prime}, \frac{}{(\sigma, \sigma)} \mathcal{B} \llbracket \neg b \rrbracket \sigma\right\}
$$

chiaramente

$$
\widehat{R}_{b, c}=\Gamma_{b, c} \quad \begin{aligned}
& \text { quando vediamo } \Gamma_{b, c} \text { operare sulle } \\
& \text { funzioni parziali }
\end{aligned}
$$

$\widehat{R}_{b, c} \quad$ e' (monotona e) continua, e cosi' anche $\Gamma_{b, c}$
$\mathscr{C} \llbracket$ while b do $c \rrbracket \stackrel{\text { def }}{=}$ fix $\Gamma_{b, c}=\bigsqcup_{n \in \mathbb{N}} \Gamma_{b, c}^{n}\left(\perp_{\Sigma \rightarrow \Sigma_{\perp}}\right)$

$$
\lambda \sigma . \perp
$$

Bottom

Σ_{\perp} ha un elemento bottom: \perp
 $\Sigma \rightarrow \Sigma_{\perp}$ ha un elemento bottom: $\lambda \sigma . \perp$

per evitare ambiguita'
denotiamo l'elemento bottom del dominio D con \perp_{D}

$$
\perp_{\Sigma_{\perp}}
$$

$$
\perp_{\Sigma \rightarrow \Sigma_{\perp}}
$$

Esempio $w=$ while true do skip

$\Gamma_{\text {true }, \text { skip }} \varphi \sigma=\mathscr{B} \llbracket$ true $\rrbracket \sigma \rightarrow \varphi^{*}(\mathscr{C} \llbracket \mathbf{s k i p} \rrbracket \sigma), \sigma$

$$
=\operatorname{true} \rightarrow \varphi^{*}(\mathscr{C} \llbracket \mathbf{s k i p} \rrbracket \sigma), \sigma
$$

$$
=\varphi^{*}(\mathscr{C} \llbracket \mathbf{s k i p} \rrbracket \sigma)
$$

$$
=\varphi^{*} \sigma
$$

$$
=\varphi \sigma
$$

$\Gamma_{\text {true }, \text { skip }} \varphi=\varphi \quad \Gamma_{\text {true,skip }}$ e' la funzione identita' ogni elemento e' un punto fisso
fix $\Gamma_{\text {true, skip }}=\lambda \sigma . \perp_{\Sigma_{\perp}}$

Esempio

$w \triangleq$ while $\underbrace{x>1}_{b}$ do $\underbrace{x:=x-1}_{c}$

$$
\begin{aligned}
\Gamma_{b, c} \varphi \sigma & =\mathcal{B} \llbracket x>1 \rrbracket \sigma \rightarrow \varphi^{*}(\mathcal{C} \llbracket x:=x-1 \rrbracket \sigma), \sigma \\
& =(\sigma(x)>1) \rightarrow \varphi^{*}\left(\sigma\left[{ }^{\sigma(x)-1} / x\right\rfloor\right), \sigma
\end{aligned}
$$

$\widehat{R}_{b, c} \triangleq\left\{\frac{}{(\sigma, \sigma)} \sigma(x) \leq 1 \quad, \quad \frac{\left(\sigma^{\prime \prime}, \sigma^{\prime}\right)}{\left(\sigma, \sigma^{\prime}\right)} \sigma(x)>1 \wedge \sigma^{\prime \prime}=\sigma[\sigma(x)-1 / x]\right.$
$\widehat{R}_{b, c} \triangleq\left\{\frac{}{(\sigma, \sigma)} \sigma(x) \leq 1 \quad, \quad \frac{\left(\sigma[\sigma(x)-1 / x], \sigma^{\prime}\right)}{\left(\sigma, \sigma^{\prime}\right)} \sigma(x)>1\right.$

Esempio

$$
w \triangleq \text { while } x>1 \text { do } x:=x-1
$$

$$
\widehat{R}_{b, c} \triangleq\left\{\overline{(\sigma, \sigma)} \sigma(x) \leq 1, \frac{\left(\sigma\left[\sigma^{\sigma(x)-1} / x\right], \sigma^{\prime}\right)}{\left(\sigma, \sigma^{\prime}\right)} \sigma(x)>1\right.
$$

$\widehat{R}_{b, c}^{0}(\varnothing)=\varnothing$
$\widehat{R}_{b, c}^{1}(\varnothing)=\{(\sigma, \sigma) \mid \sigma(x) \leq 1\}$
$\widehat{R}_{b, c}^{2}(\varnothing)=\widehat{R}_{b, c}^{1}(\varnothing) \cup\{(\sigma, \sigma[1 / x]) \mid \sigma(x)=2\}$
$\supseteq\{(\sigma, \sigma|1 / x|) \mid \sigma(x)=2\}$
$\widehat{R}_{b, c}^{3}(\varnothing)=\widehat{R}_{b, c}^{2}(\varnothing) \cup\{(\sigma, \sigma[1 / x]) \mid \sigma(x)=3\}$
$\widehat{R}_{b, c}^{n}(\varnothing)=\{(\sigma, \sigma) \mid \sigma(x) \leq 1\} \cup\{(\sigma, \sigma[1 / x]) \mid 1<\sigma(x) \leq n\}$
$\sqcup_{n} \widehat{R}_{b, c}^{n}(\varnothing)=\{(\sigma, \sigma) \mid \sigma(x) \leq 1\} \cup\{(\sigma, \sigma[1 / x]) \mid 1<\sigma(x)\}$

