03 - Well founded recursion, posets and semantics

[Ex. 1] Define by well-founded recursion the function vars that, given an arithmetic expression a, returns the set of identifiers that appear in a. Then, prove by rule induction that $\forall a \in Aexp, \forall \sigma \in \Sigma, \forall n \in \mathbb{Z}$

$$\langle a, \sigma \rangle \to n$$
 implies $\forall \sigma'$. $(\forall y \in vars(a). \sigma(y) = \sigma'(y)) \Rightarrow \langle a, \sigma' \rangle \to n$.

[Ex. 2] Define by well-founded recursion the function vars that, given a command, returns the set of identifiers that appear on the left-hand side of some assignment. Then, prove by rule induction that $\forall c \in Com, \forall \sigma, \sigma' \in \Sigma$

$$(c, \sigma) \rightarrow \sigma'$$
 implies $\forall x \notin vars(c). \ \sigma(x) = \sigma'(x).$

[Ex. 3] Consider the CPO_{\perp} ($\wp(\mathbb{N}), \subseteq$). Prove that for any set $S \subseteq \mathbb{N}$:

- the function f_S: ℘(N) → ℘(N) such that f_S(X) = X ∩ S is continuous.
- the function g_S: ℘(N) → ℘(N) such that g_S(X) = X ∪ S is continuous.

[Ex. 4] Prove that any limit-preserving function is monotone.

[Ex. 5] Let
$$D = \{n \in \mathbb{N} \mid n > 0\} \cup \{\infty\}$$
 and $\subseteq \subseteq (D \times D)$ such that

- for any n, m ∈ D ∩ N, we let n

 m iff n divides m;
- for any $x \in D$, we let $x \sqsubseteq \infty$.

Is (D, \sqsubseteq) a CPO_{\perp} ? Explain.

[Ex. 6] Define two functions f_i : D_i → D_i over two suitable CPOs D_i for i ∈ [1, 2] (not necessarily with bottom) such that

- f₁ is continuous, has fixpoints but not a least fixpoint;
- f₂ is continuous and has no fixpoint;

[Ex. 7] Let D, E be two CPO_{\perp}s and $f: D \to E$, $g: E \to D$ be two continuous functions between them. Their compositions $h = g \circ f: D \to D$ and $k = f \circ g: E \to E$ are known to be continuous and thus have least fixpoints.

$$h=g\circ f \bigcap D \xrightarrow{g} E \bigcap k=f\circ g$$

Let $e_0 = \text{fix}(k) \in E$. Prove that $g(e_0) = \text{fix}(h) \in D$ by showing that

- 1. $g(e_0)$ is a fixpoint for h, and
- g(e₀) is the least pre-fixpoint for h.