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Abstract. The paper introduces a novel iterative method that assigns a rep-
utation to n + m items: n raters and m objects. Each rater evaluates a subset

of objects leading to a n × m rating matrix with a certain sparsity pattern.
From this rating matrix we give a nonlinear formula to define the reputation

of raters and objects. We also provide an iterative algorithm that superlin-

early converges to the unique vector of reputations and this for any rating
matrix. In contrast to classical outliers detection, no evaluation is discarded

in this method but each one is taken into account with different weights for

the reputation of the objects. The complexity of one iteration step is linear in
the number of evaluations, making our algorithm efficient for large data set.

Experiments show good robustness of the reputation of the objects against

cheaters and spammers and good detection properties of cheaters and spam-
mers.

1. Introduction

There is an important growth of sites on the World Wide Web where users play
a crucial role: they provide trust ratings to objects or even to other raters. Such
sites may be commercial, where buyers evaluate sellers or articles (Ebay, Amazone,
etc.), or they may be opinion sites, where users evaluate objects (Epinions, Tailrank,
MovieLens, etc.). But websites are not the only place where we can find ratings be-
tween users and items: the simple fact to link to another webpage is considered by
search engines as a positive evaluation (Google, Yahoo, etc.). Therefore the good
working of auction systems, opinion websites, search engines, etc. depends directly
on the reliability of their raters and on the treatment of all the data. Trust and rep-
utation in the electronic market gives a necessary transparency to their users. For
example, in 1970, Akerloff [7] pointed out the information asymmetry between the
buyers and the sellers in the market for lemons. The former had more information
than the latter, making hard trusting trading relationships. From what precedes,
two questions naturally arises:

- What should be the reputation of the evaluated items?
- How can we measure the reliability of the raters?

We will distinguish the reputation, that is what is generally said or believed about
a person’s or thing’s character or standing, and the reliability, that is the subjec-
tive probability by which one expects that a rater gives an evaluation on which its
welfare depends. Let us remark that many technics only calculate the reputations
of items. Sometimes reputation and reliability have the same value as it is the case
in eigenvector based technic where the reputation of any individual depends on the
reputations of his raters [5, 8]. In these methods, they construct a stochastic ma-
trix from the network and the ratings, then the eigenvector of that matrix gives the
reputations. Another part of the literature concerns the propagation of trust (and
distrust) [6, 10, 9, 11] where they define trust metrics between pairs of individuals
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(A,B) looking at the possible paths linking A with B. So reputations depend on
the point of view of the user and these methods differ from ours that assigns one
global reputation for each item.

Our method weights the evaluations of the raters. A small weight is a natu-
ral way to tackle the problem of attackers in reputation systems. Therefore, the
method gives two values for a user: his reputation depending on his received eval-
uations and his weight that influence the impact of his given evaluations. The
algorithm is based on an iterative refinement that is guarantied to converge to a
reputation score and a reliability score for each item: at each step the reliability of
a rater is calculated according to some distance between his given evaluations and
the reputations of the items he evaluates. This distance is interpreted as the belief
divergence. Typically, a rater diverging to much from the group will be distrusted
after convergence. The same definition of distance appears in [1, 2, 3] and is used
for the same issue. In [1], the function that determines the weights is different. This
difference makes their algorithm sensitive to initial conditions without any guaranty
of convergence. Moreover, they are in the less general case where it is supposed that
every rater evaluates all items. In [2], they want to tackle the problem of spam-
mers in collaborative filtering where previous evaluations are used to predict future
evaluations. Again the same definition of distance allows to penalize the divergent
raters. Even though the function that assigns the weights for the evaluations is the
same, there is no iterative procedure but only a simple step is applied. In [3], they
use another function to determine the weights: the log-likelihoods, but again only a
simple step is applied. We show in section 3 the advantage to apply more than one
step in the iterative filtering. Indeed, each step separates a little more the outliers.

Let us remark that beside the refinement process of the reputations and the
outlier detection given by our procedure, other applications can take advantage of
these data. For example, [2] want to remove spammers to improve collaborative
filtering. Similarly in [4], they propose a framework to take into account the dif-
ferent qualities of ratings for collaborative filtering. Hence they weight each rating
according to its reliability, these weights can be those obtained by the iterative
filtering we described.

In the sequel, we first explain in section 2 how the reputation vector for the
objects and the weights for the evaluation are built. Moreover, we develop the
algorithm Reputation that calculates these values, and we explain its interpretation
and its properties of convergence. Then in section 3, our experiments test the
robustness of our method against attackers and show several iterations on graphics.
Finally in section 4, we point out possible extensions and experiments for our
method.
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2. The iterative method

Before to develop the model and the algorithm, we introduce the main notations
in the following tabular.

Notations Definitions
n, m, mi # of raters,# of items,

# of items evaluated by i.
E The n×m rating matrix :

Eij is the evaluation given
by rater i to item j

A The n×m adjacency matrix :
Aij = 1 if rater i evaluates j,
otherwise Aij = 0 (and Eij = 0)

T The n×m trust matrix of evaluations
t The n× 1 trust vector of raters
r The m× 1 reputation vector of items
1 The n× 1 or m× 1 vector of ones∑

i, i→j Sum over the set {i|Aij = 1}∑
j, i→j Sum over the set {j|Aij = 1}

Without loss of generality, we will consider ratings in the interval [0, 1], i.e. E ∈
[0, 1]n×m and therefore the reputation vector r will belong to [0, 1]m. Moreover,
the trust matrix T and the trust vector t are nonnegative, i.e. the entries of T and
t are nonnegative.

2.1. The model. As already said in the introduction, the reputations of the items
essentially depend on the evaluations they receive. These latter are weighted ac-
cording to their reliability. In that way, the reputation of item j ∈ {1, . . . ,m} is
obtained by taking the weighted sum of its evaluations, i.e.

(1) rj =
∑

i, i→j

WijEij ,
∑

i, i→j

Wij = 1

And we define the matrix W from the trust matrix T in the following way:

(2) Wij =
Tij∑

k, k→j Tkj
, i = 1, . . . , n, j = 1 . . . ,m.

In that manner, evaluations with a higher trust value are taken into account more
for the reputation vector. Now the important role is played by the trust matrix T ,
its definition is given in the next section.

2.2. The trust matrix. Let us describe the trust matrix that assigns a measure
of confidence to each rating. The inputs of the trust matrix are the rating matrix
E and the reputation vector r. Formally, we define the belief divergence of rater
i ∈ {1, . . . , n} as the estimated variance of the ith row of E:

(3) di =
1
mi

∑
j, i→j

(Eij − rj)2,

where mi is the number of items evaluated by i. That definition is somewhat similar
to the one proposed in [2] where d is used to penalize those raters that have an high
belief divergence. The resulting trust matrix is

(4) Tij = cj − di,
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Trust Weight

for each rating T → W for each rating

↑ ↓
Belief divergence d ← r Reputation

for each rater for each item

Figure 1. Cycle of one iteration of the algorithm.

for any evaluation from i to j. The parameters cj are chosen such that the entries of
T are nonnegative. Moreover cj are discriminating in the sense that they influence
the ratios Tij/Tkj for i, k ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Typically, the smaller
cj , the more spammers evaluating object j are penalized. In order to have a trust
value for each raters, we also define the trust vector t:

(5) ti = dmax − di,

where dmax is the maximum of the elements of the vector d.

2.3. The algorithm. From equations (1-5), we can derive the algorithm [r t] =
Reputation(E,A,c) that takes as inputs a rating matrix E, an adjacency matrix
A and a m× 1 vector c of parameters. Then it iteratively calculates the reputation
vectors r and the trust matrix T . Eventually, the algorithm gives the reputation
and the trust vector. The description is given in four steps corresponding to the
initialization, two updates for r and T and the calculation of the trust vector t.

(i) Initialization of matrix T : every rater is evenly trusted, i.e. Tij = 1 for
i = 1, . . . , n and j = 1, . . . ,m.

(ii) The matrix of weights and the reputation vector are calculated from T . For
i = 1, . . . , n and j = 1, . . . ,m:

Wij =
Tij∑

k, k→j Tkj
, rj =

∑
i, i→j

WijEij .

(iii) The belief divergence and the new trust matrix are calculated from r. For
i = 1, . . . , n and j = 1, . . . ,m:

di =
1
mi

∑
j, i→j

(Eij − rj)2, Tij = cj − di.

If the ith row of T is zero, then replace it by a row of ones.
Repeat steps (ii) and (iii) until convergence.

(iv) The trust vector t is given by maxk dk − di.

Let us remind that the input parameters c used in step (iii) are chosen sufficiently
large such that the entries of T are nonnegative at each iteration.

One iteration of the algorithm Reputation is schematized in figure 1. A slight
modification allows dynamical evaluations. In that case, the rating matrix E
changes at each iteration, i.e. E[k] with k = 1, 2, · · · . A direct way to update
r, T and t, is given when the first step takes as initial vector the previous trust
matrix, and steps (ii) and (iii) are not repeat until convergence, but a certain
number of times.
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2.4. Interpretation of the solution. The algorithm in section 2.3 converges to
the unique solution of equations (1-4), see next section. Let r∗ represents that
solution1 and for the sake of simplicity, let parameters cj be equals to a same
constant c0. Then r∗ is the maximizer of the following scalar function: ψ : [0, 1]m →
R with

ψ(r) =
n∑

i=1

∑
j, i→j

T 2
ij(6)

=
n∑

i=1

mi

c0 − 1
mi

∑
j, i→j

(Eij − rj)2

2

.(7)

It is indeed enough to observe that grad ψ(r∗) = 0. In other words, r∗ maximizes
the Frobenius norm of the sparse trust matrix T . Maximizing such a norm roughly
means that some total degree of confidence over the raters is maximized. More
formally, let assume that the entries Eij are i.i.d.∼ N(rj , σ2). In that case, the
degree of confidence we can have in evaluation Eij is given by

logPr(Eij |rj) = cst− 1
2σ2

(Eij − rj)2,

and by summing the evaluations of i and choosing the appropriate constant, we
obtain the relation

Tij =
2σ2

mi

∑
k, k→j

logPr(Eij |rj).

In other words, the trust matrix is the normalized sum of the degrees of confidence
we have in the evaluations of the raters. Then the maximizer of the Frobenius norm
of T is

r∗ = arg max
r∈[0,1]m

n∑
i=1

1
mi

 ∑
j, i→j

logPr(Eij |rj)

2

.

Another writing of the function ψ leads to

ψ(r) = −2c0
n∑

i=1

∑
j, i→j

(Eij − rj)2 +
n∑

i=1

1
mi

 ∑
j, i→j

(Eij − rj)2

2

,

and the maximizer of the first expression is simply the average of the evaluations for
each item j, i.e.

∑
i, i→j Eij/|i, i→ j|, and the maximizer of the second expression

necessarily belongs to the border of the hyper cube, i.e. {0, 1}m. The solution r∗

is then a compromise between both terms in which the parameters c0 plays the
role of a weighting factor. For large c, the algorithm will give the average of the
evaluations for each item.

2.5. Properties of convergence. In this section we analyze the convergence of
Reputation given in section 2.3 and its rate of convergence. For the sake of clear-
ness, we restrict ourselves to the main and important steps in the proof avoiding
the technical points.

Theorem 1. For cj chosen such that the matrix T is nonnegative at each step, the
iteration in the algorithm Reputation(E,A,c) converges to the unique vector r∗.

1the corresponding matrices and vectors W ∗, T ∗, d∗ and t∗ follow from r∗
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Figure 2. X-Axis: # of iterations. Y-Axis: the euclidian norm
of the error, i.e. ‖r[k] − r∗‖2. The graphic was obtained from a
943× 1682 sparse rating matrix representing 105 evaluations.

Proof. (Only a sketch). For the sake of simplicity, we let parameters cj be equals
to a same constant c0. We first prove the unicity of r∗ and then we prove the
convergence result.

It can be shown that the scalar function ψ : [0, 1]m → R : r 7→ ψ(r) defined in
(7) is continuous and quasiconcave. It has therefore a unique maximizer on [0, 1]m

that corresponds to the vector r∗.
Let rk and rk+1 be two successive iterations of r. It can be shown by simple

developments that these two vectors are linked by the following expression:

(8) rk+1 = rk + α(rk) · grad ψ(rk),

where α(rk) ≥ (4c0)−1 > 0 and grad ψ(rk) is the gradient of ψ in rk pointing to
the direction of greatest ascent. Therefore one iteration corresponds to take the
direction of greatest ascent and make a step of length `k = α(rk) · ‖grad ψ(rk)‖2.
Moreover, it can be shown that `k is such that we have strict ascent:

ψ(r[k]) < ψ(r[k + 1]).

Finally, `k is also lower bounded by (4c0)−1‖grad ψ(r[k])‖2 and therefore the iter-
ation on r monotonically converges to the maximizer of ψ on [0, 1]m. �

Numerical experiments show a linear rate of convergence for the vector r. As
shown in Figure 2, the logarithm of the error decreases linearly and stabilizes after
20 steps. It is possible to speed up the rate of convergence by using a Newton
method provided that we are close enough to r∗. Then the rate of convergence
becomes quadratic making our algorithm efficient for large data set.

3. Experiments

Our experiment concerns a data set2 of 100,000 evaluations given by 943 users
on 1682 movies and raging from 1 to 5. Each user has rated at least 20 movies.

In order to simulate the robustness of the algorithm Reputation, two types of
behavior are analyzed in the sequel: first, raters that give random evaluations, and
second, spammers that try to improve the reputation of their preferred item.

3.1. Robustness against random raters. We added to the original data set
237 raters evaluating randomly some items. In that manner, 20% of the raters give
random evaluations. Let r∗ and r̃∗ be respectively the reputation vector before

2The MovieLens data set used in this paper was supplied by the GroupLens Research Project.
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Figure 3. X-Axis: the sorted movies according to their reputa-
tions before the addition of random raters. Y-Axis: their reputa-
tions according to our algorithm (Top) and to the average (Bot-
tom).

and after the addition of the random raters. If the reputation vector is calculated
according to Reputation, then the 1-norm difference between r∗ and r̃∗ is

‖r∗ − r̃∗‖1 = 182,

if the reputation vector is the average of the evaluations for each item, then the
1-norm difference between r∗ and r̃∗ increases:

‖r∗ − r̃∗‖1 = 259.

Figure 3 illustrates this perturbation due to the addition of random raters. The
reputations are better preserved when using Reputation. It turns out that the
reputations given by Reputation take less into account the random users. More-
over, one iteration of the algorithm gives poor information to trust the raters, it is
indeed useful to wait until convergence, as seen in Figure 4.

3.2. Robustness against spammers. We now added to the original data set 237
spammers giving always 1 except for their preferred movie, which they rated 5. Let
r∗ and r̃∗ be respectively the reputation vector before and after the addition of
the random raters. If the reputation vector is calculated according to Reputation,
then the 1-norm difference between r∗ and r̃∗ is

‖r∗ − r̃∗‖1 = 267,
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Figure 4. X-Axis: the trust values for the raters. Y-Axis: the
density after one iteration (Top), after two iterations (Left), and
after convergence (Right). In black: the random raters. In white:
the original raters. In grey: both raters.

Figure 5. X-Axis: the sorted movies according to their reputa-
tions before the addition of spammers. Y-Axis: their reputations
according to our algorithm (Top) and to the average (Bottom).

if the reputation vector is the average of the evaluations for each item, then the
1-norm difference between r∗ and r̃∗ increases:

‖r∗ − r̃∗‖1 = 638.

Figure 5 illustrates this perturbation due to the addition of spammers. The repu-
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Figure 6. X-Axis: the trust values for the raters. Y-Axis: the
density after one iteration (Top), after two iterations (Left), and
after convergence (Right). In black: the spammers. In white: the
original raters. In grey: both users.

tations are again better preserved when using Reputation. Again the reputations
given by Reputation take less into account the spammers. As previously, one iter-
ation of the algorithm gives poor information to trust the raters, it is indeed useful
to wait until convergence, as seen in Figure 6.

4. Conclusion and Future Work

Our method described in the paper allows us to efficiently refine reputations for
evaluated objects from structured data. It is based on the trust we can have in
the evaluations of the raters, and also in the raters themselves. The parameters
cj , introduced in equation 4, make the method flexible, ranging from the average
method, i.e. every rater is evenly trusted, until the discriminating method that
takes cj as small as possible.

The experiments show interesting results of robustness even though the behavior
of the added outliers is somewhat naive. The weights of spammers and random
raters are low for the aggregation of the reputation vector. However, other behaviors
could be analyzed. For example, clumsy raters could evaluate once correctly and
once randomly or we can imagine a more complicated mix of behaviors. Typically,
the weights of such raters will be between those of spammers and those of honest
raters. Last but not least, the creative cheaters can use engineering to understand
the working of the system. The way to proceed is simple: they need to evaluate
correctly a group of item and then with that trust, they can rate some target items.
In order to significantly change the reputation of these target items, they must have
a number of coordinated evaluations larger than the one of honest raters. Therefore
such cheaters can easily be disqualified by looking after coordinated ratings to one
or several items.

As said at the end of section 2.1, the trust matrix T is the important point for
the model. We define it by

Tij = cj − di,

for any evaluation from i to j. Hence, the trust we have in evaluation Tij decreases
when the belief divergence di increases. Other decreasing functions with respect to
d make sense. For instance, Tij = e−cj di and Tij = (cj + di)−1 may perform well
on some data sets. The second definition with cj = 0 gives the method described
in [1]. However, the main difference with our definition lies in the uniqueness of
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the solution. It turns out that the method in [1] may have several solutions. On
the other hand, these solutions can be of interest if they reflect for example two
opinion trends.

In section 2.4, the solution is interpreted as the maximizer of the Frobenius
norm of T . It is possible to maximize other norms of T . Then there can be several
maximizers and these maximizers will no more satisfy equation (1), but a different
one.

We see that our method can be extended towards different directions. Our future
work will address the interpretation and the convergence of these extensions.
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