Programming for Data Science (02/02/2024)

Upload the solutions to the programming exercices to following link:
$\underline{\text { https://evo.di.unipi.it/student/courses/16/exams/NVO5ZWv }}$
Exercise 1. (Math, solve the exercise on paper) Consider the scenario of implementing a phone book. As an example, imagine you have to store:
"John Doe", 5551234
"Jane Smith", 5555678
"Alice Johnson", 5559876
.....
A. Present, with examples, what a hash table, a hash function, a collision are, in this scenario.
B. Describe a collision resolution technique.
C. What are the properties of the hash function " $\mathrm{h}(\mathrm{k}$)" ? Is it injective (aka ono-to-one)? Surjective (aka onto)? Invertible?
D. Use first order logic to formalize that a function $f: N \rightarrow N$ is injective.

SOLUTIONS

A. A hash table is a data structure that stores key-value pairs. It uses a hash function to compute an index into an array of buckets or slots, from which the desired value can be found. In the context of a phone book, the keys would typically be names (e.g., "John Doe") and the values would be corresponding phone numbers (e.g., 5551234). A hash function takes an input (or 'key') and returns a fixed-size string of characters, typically a hash code. In the scenario of implementing a phone book, the hash function would take the name of a person and convert it into an index where the associated phone number can be stored/retrieved, For instance "John Doe" \rightarrow J. A collision occurs when two different keys hash to the same index in the hash table. For example, if both "John Doe" and "Jane Smith" hashed to the same index J , this would result in a collision.
B. One common collision resolution technique is chaining. In chaining, each bucket in the hash table contains a linked list of key-value pairs that hash to the same index. When a collision occurs, the new key-value pair is simply appended to the linked list at that index.
C. $\mathrm{h}(\mathrm{k})$ is not injective, for instance both "John Doe" and "Jane Smith" are mapped in J (hence the collisions); it is in general surjective, but this is not guaranteed, depends on the domain and on the function. It is not invertible (not being injective)
D. $\forall x, y \in N$, if $f(x)=f(y)$, then $x=y$.

