
$ ./hw

Exercise: the zoo
Write a Python program that simulates a zoo. In particular, create different 
modules in different files as follows.

• Class Animal: 

• Attributes:

• string: name 

• int: age 

• Methods: 

• info (does nothing) 

• speaks (does nothing) 

• moves (does nothing) 

• eats (does nothing) 

• drinks (does nothing)

• sleeps (takes an integer and waits for n seconds) 

• getter/setter for name name and age 



$ ./hw

• Class Dog: subclass of Animal 

• Attributes: 

• string: breed

• Methods: 

• info (returns the breed) 

• speaks (returns the string “barks”) 

• moves (returns the string “runs”) 

• eats (returns the string “eats”) 

• drinks (returns the string “drinks”) 

• getter/setter for the breed



$ ./hw

• Class Horse: subclass of Animal 

• Attributes: 

• string: color

• Methods:

• info (returns the color)

• speaks (returns the string “neigh”) 

• moves (returns the string “gallops”) 

• eats (returns the string “eats”) 

• drinks (returns the string “water”) 

• getter/setter for color



$ ./hw

• Classe Lion: subclass of Animal 

• Attributes: 

• int: weight

• Methods

• info (returns the weight) 

• speaks (che ritorna la stringa “roar”)

• moves (che ritorna la stringa “runs fast”)

• eats (che ritorna la stringa “devour”) 

• drinks (che ritorna la stringa “gobble”)

• getter/setter for weight



$ ./hw

The main program generated a random integre between 1 
and 10 objects of class Animal, using randomly chosen 
names and numbers. 

Next, implement a cycle of 20 iterations where you choose 
randomly one of the 20 object and a random operation to 
apply over the chosen object. 

In each iteration, print a string reporting the name of the 
animal, its age, the information of the animal, and the 
chosen operation. After printing the string, the program 
pauses for 1s before starting the next iteration. 

Names can be stored into an array; to generate random 
numbers you can use functions random; for pauses, refer to 
the function sleep within module time.



$ ./hw

Exercise: Point3D
Write a class Point3D that represents a point in a 3D Euclidean apace. In 
particular, that class contains: 

1. the constructor (__init__) with three parameters (x, y, z) that have 0 as 
default values; 

2. the method distance(self, point) that returns the distance of to point; 

3. the definition of the special method __repr__(self) that returns a string that 
represents the point; for instance, “Point3D(x, y, z)" where x, y, and z are 
the coordinates of the point; 

4. the definition of the methods __eq__(self, point), __lt__(self, point), and 
__gt__(self, point), that returns a boolean stating whether the two points 
are equal, or this point is smaller or greater than point. A point p1 is greater 
than a point p2 if the distance of p1 from the origin is greater than the 
distance of p2 from the origin.  

Write a main where you create points and use all these methods. 
NOTE: recall that methods __eq__, __lt__ and __gt__ are automatically 
called when you use the operators ==, < and >, respectively. __repr__ is called 
when you print on object.



$ ./hw

Exercise: Sphere3D
Write a class Sphere3D that represents a sphere in a 3D Euclidean space. In 
particular, that class contains:

1. the constructor (__init__) with two parameters (center, radius), where 
center is a Point3D that represents the center, with default value the origin, 
and radius is the values of the radius, with default value 1. All’interno del 
costruttore calcolare anche superficie e volume della sfera; 

2. the definition of method __repr__(self), similar to the corresponding method 
of class Point3D; 

3. the definition of methods __eq__(self, sphere), __lt__(self, sphere) and 
__gt__(self, sphere), that given a sphere returns a boolean that represents 
whether the two spheres are equal, or if this sphere has a volume smaller or 
greater than sphere; 

4. the definition of methods contains(self, point) that returns TRUE whether 
point is contained in the sphere; 

5. the definition of method intersect(self, sphere) that returns TRUE whether 
this sphere is intersected by sphere. 

Write a main that uses all of the above methods.



$ ./hw

Exercise: combine Point and Sphere
Finally, define a main that uses Point3D and Sphere3D, that 
randomly generates 20 spheres, having as radius a real number 
between [1, 3] and with center having integer coordinates x, y, z ∈ 
[0, 10], and 40 points having integer coordinates x, y, z ∈ [0, 10]. 
After generating all spheres and points, look for: 

1. the sphere that contains most of the points; if there is more 
than one sphere, returns the smallest one; if again there is 
more than one sphere satisfing this conditions, returns the 
closest to the origin; 

2. the sphere that intersects most of the spheres; if there is more 
than one, follow rules as in the previous case; 

3. the point that is contained in most of the spheres; is there is 
more than one, returns the largest point, according to the 
definition of the methiod __gt__. 


